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ABSTRACT

This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin
(H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated
nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining
protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach
proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks
(CNN) architectures as encoder backbones, along with stain normalization and test time augmentation, to improve
segmentation accuracy. Additionally, this paper employs a Structure-Preserving Color Normalization (SPCN)
technique as a preprocessing step for stain normalization. The proposed model was trained and tested on both
single-organ and multi-organ datasets, yielding an F1 score of 84.11%, mean Intersection over Union (IoU) of
81.67%, dice score of 84.11%, accuracy of 92.58% and precision of 83.78% on the multi-organ dataset, and an F1
score of 87.04%, mean IoU of 86.66%, dice score of 87.04%, accuracy of 96.69% and precision of 87.57% on the
single-organ dataset. These findings demonstrate that the proposed model ensemble coupled with the right pre-
processing and post-processing techniques enhances nuclei segmentation capabilities.
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1 Introduction

Latest advancements in microscopy cell analysis and big data have revolutionized the detection of
illnesses with the aid of computer systems [1]. In particular, the accurate detection and segmentation
of cell nuclei, which harbor a wealth of pathogenic information, has become critical for automated
diagnosis and evaluation of cellular physiological states. This has raised a need for a precise and
automated system for nuclei detection and segmentation that can significantly expedite the discovery
of treatments for crucial ailments such as cancer. The nucleus of a cell serves as the starting point for
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various analyses, enabling researchers to gain insight into the cell’s response to different treatments
and unravel the underlying biological processes [2]. By streamlining therapy and drug development
processes, this method holds immense potential for enhancing patient care [3]. For over half a century,
segmenting the nucleus from histopathological images has been a focal point in clinical practice and
scientific research.

Automated nucleus segmentation is indispensable for various applications such as cell counting,
movement monitoring, and morphological studies [4]. It provides vital information about cell charac-
teristics and activities, facilitating early detection of diseases such as breast cancer and brain tumors.
Initially, approaches like watershed and active contours were employed for nucleus segmentation.
However, with sufficient training data, neural networks have emerged as the clear winner, surpassing
traditional methods by a significant margin [5]. These networks have now become practical tools in
laboratory settings.

Although convolutional neural networks (CNNs) present a promising solution to this problem,
the existence of several competing frameworks makes it challenging to choose the most suitable one
for the job [6]. Two commonly used frameworks for object identification and segmentation, U-Net
and Mask Region-Based Convolutional Neural Networks (Mask-RCNN), have exhibited remarkable
performance in nucleus segmentation.

The authors acknowledge the benefits of ensembling different competing candidates for a given
task to achieve better results by leveraging each candidate’s strengths and capabilities for improved
robustness and accuracy [7]. In the case of nuclei segmentation, the authors believe that ensembling
U-Nets constructed using different CNN architectures as encoder backbones can offer several
advantages over existing approaches. Since each encoder backbone learns image representations
differently due to architectural variations and design choices, combining them could enable the
ensemble to capture a more diverse set of image features, which can in turn improve the model’s ability
to handle variations in nuclei appearance, size, shape, and texture, leading to more robust and accurate
segmentation results.

Inspired by this, this study proposes an ensemble of U-Nets constructed with different CNN
architectures as encoder backbones, combined with stain normalization and test time augmentation.
This approach produces competitive results when trained and tested on both single-organ and multi-
organ datasets of histopathology images.

The novelty in this approach lies mainly in ensembling U-Nets trained with different CNN
architectures as encoder backbones, namely ResNet101, InceptionResNetV2, and DenseNet121.
While stain normalization (for pre-processing) and test-time augmentation (for post-processing) are
pre-existing and common steps taken in nuclei segmentation tasks, the authors’ main contributions in
this paper are to explore the effects of combining these pre-processing and post-processing steps with
the proposed ensemble model on the accuracy and robustness of the nuclei segmentation results.

The subsequent sections of this paper are organized as follows: Section 2 presents a comprehensive
literature review on nuclei segmentation. Section 3 discusses the datasets used in our study and their
properties, while Section 4 introduces the proposed method in detail. In Section 5, the authors present
the results obtained from the proposed model, along with the derived inferences and observations.
Finally, Section 6 concludes this paper by summarizing the key findings and contributions.

The following are the authors’ contributions to automated nuclei segmentation in histopathology
images:
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i) The proposed model is an ensemble of three UNet models, each constructed with different
CNN architectures as encoder backbones, namely ResNet101, InceptionResNetV2, and
DenseNet121.

ii) The pre-processing step employs a data-driven clustering technique to find the most appro-
priate reference image for stain normalization.

iii) The post-processing approach involves applying Test-Time Augmentation (TTA) with various
transformations to generate multiple prediction masks per model, which are then uniquely
combined using a weighted average and pixel-wise majority voting to produce the final
prediction.

2 Related Works

This section surveys existing research in the field of nuclei segmentation, specifically focusing
on various proposed segmentation models, as well as different pre-processing and post-processing
techniques. Threshold-based approaches, such as the watershed algorithm [8], and other similar
methodologies, are standard techniques employed for nucleus segmentation. However, these methods
often require human intervention for feature extraction, making them tedious and time-consuming.
With the advancement of deep learning, researchers have begun employing CNN-based approaches
to tackle the task of nucleus segmentation, achieving several successful attempts [9,10] in developing
robust models that can work out of the box and perform automated nuclei segmentation with high
accuracy regardless of the variations in staining protocols.

Classic nuclei segmentation methods generally comprise of two steps: first, recognizing the nuclei,
and then delineating the contours of each nucleus. During the detection stage, the region or seed
of each nucleus must be generated. Unsupervised learning approaches typically group unlabeled
data into homogeneous clusters based on criteria like intra-cluster distance [11], with K-Means and
Fuzzy C-Means being two common algorithms [12,13]. However, these methods have drawbacks,
including sensitivity to initial parameter values, returning local optimum solutions, and requiring prior
knowledge of cluster numbers. Nature-inspired algorithms have been proposed as an efficient way
to overcome these issues [14]. U-Net, a significant contribution cited in [15], has been a remarkable
advancement in biomedical image segmentation and is the primary inspiration for this paper.

The task of nuclei segmentation is usually preceded by a pre-processing step that improves the
model’s training, and a post-processing step that improves the trained model’s predictions. Several
pre-processing techniques have been proven to improve the model’s performance. For example, the
authors of [16] combined the stain normalization proposed by [17] with a Nucleus Boundary model
for improved results, while others have used various other color normalization methods [18,19].

Some researchers, including those cited in [20], have incorporated deep learning into the pre-
processing stage by employing a Deep Convolutional Gaussian Mixture Model (DCGMM). This
model learns stain variations using a pixel-color dispersion of the nucleus, surrounding tissues, and
background tissue types, subsequently utilizing this information to perform stain normalization. In
contrast, the authors of [21] have utilized color contrast methods for a lightweight U-Net architecture,
specifically by modifying the encoder branch, to achieve impressive results. Remarkably, some studies,
such as those referenced in [22,23], have entirely bypassed the pre-processing step, and yet still managed
to attain good results.

In combination with these different pre-processing techniques, several researchers have also
proposed novel segmentation algorithms that produce cutting-edge outcomes. The authors of [24]
proposed deep interval markers, whereas the authors of [25] have modified Mask-RCNN to produce
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state-of-the-art results. The authors of [7] advanced this field by combining Mask-RCNN and
U-Net, utilizing the Watershed algorithm as a post-processing step. In a similar vein, the authors of
[19,26] ensembled variations of U-Net, such as R2U-Net and stacked U-Nets, to enhance accuracy
and F1 score. Various studies, such as [27], have employed different ensembles with U-Net and its
derivatives, outperforming the base U-Net in terms of efficiency. Conversely, other research papers,
such as [28] and [29], have focused on successful modifications to the U-Net architecture itself to boost
performance.

In addition to this, various authors have incorporated several post-processing methods in their
proposed models, leading to noticeable improvements in the final results. These methods include
mask expansion, lateral bleed compensation [30,31], Condition Erosion based Watershed (CEW),
Morphological Dynamics based Watershed (MDW), and Conventional Watershed Algorithms [32,33].
These techniques aim to differentiate the central areas of the images from the background and
surrounding elements. They strive to isolate every potential nucleus area, regardless of whether it
is single or multiple layers [34], but often struggle to distinguish between adjacent cells. It is worth
noting that the effectiveness of these techniques is assessed based on how accurately the segmented
pixels align with those in the manually drawn ground truth images [35]. When calculating the nuclei
detection rate, each connected region in the segmentation data is counted as one nucleus, irrespective
of the number of nuclei present within the area. The evaluation methods for segmentation precision
and nuclei recognition rate do not take duplication into account. Such limitations might affect
the final decision in a Computer-Aided Diagnosis (CAD) system, especially due to errors in the
under-segmentation of adjacent cells. Therefore, future research will likely concentrate on developing
techniques to extract interregional barriers and isolate shared nuclei. The methods under examination
might also be effectively applied to overlapped separation techniques, helping to distinguish between
overlapped nuclei.

The existing literature illustrates extensive research in the field of histopathology image segmen-
tation utilizing a variety of deep learning models. However, there have been relatively few studies
specifically addressing the problem of overlapping nuclei cells. The model proposed in this paper
employs an ensemble approach enhanced with test-time augmentation, to tackle this challenge. This
proposed methodology can contribute to the model’s robustness, providing a promising solution to
this issue.

3 Dataset

The primary dataset used in this paper is the multiple-organ stained H&E image dataset (MOSID)
[36,37], which contains annotated tissue images of several patients with tumors of different organs
and who were diagnosed at multiple hospitals. This dataset contains a diverse set of 30 H&E-stained
images from different organs such as the breast, liver, kidney, prostate, bladder, colon, and stomach.
Some sample images from the MOSID dataset are shown in Fig. 1. Each of these images is 1000 ∗ 1000
pixels in size with more than 20000 annotated nuclei. This training dataset will enable the creation of
robust and generalizable nuclei segmentation pipelines that can operate right out of the box, given the
diversity of nuclei structures across numerous organs and patients, as well as the differences in staining
protocols used at multiple hospitals.

In addition to this, the model was also trained and tested on a secondary single-organ dataset
called the Triple-Negative Breast Cancer dataset (TNBC) [38], which contains a number of annotated
breast tissue images. Some sample images from the TNBC dataset are shown in Fig. 2. This data
set consists of 50 images, every 512 ∗ 512 pixels in size, with a total of 4022 annotated nuclei. The
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purpose of using this secondary dataset was to test if the proposed approach worked equally well
when presented with both single-organ as well as multi-organ datasets.

Figure 1: Sample images from the MOSID dataset

Figure 2: Sample images from the TNBC dataset

4 Proposed Methodology

This section presents an overview of the proposed method and breaks down its various com-
ponents in detail. Fig. 3 shows the high-level working of the proposed approach. The proposed
methodology employs a combination of various techniques, including stain normalization, patch-
based processing, test time augmentation, and an ensemble model consisting of three UNet architec-
tures with different encoder backbones. By leveraging the strengths of these components, the authors
aim to improve the accuracy and robustness of nuclei segmentation.

The process of nuclei segmentation of a given histopathology image using the proposed model
entails a sequential execution of steps, as described below:

1. Stain Normalization: The histopathology image is first subjected to stain normalization using
a stain normalizer. Stain normalization helps to remove variations in staining intensity and
colour, making the images consistent and suitable for further analysis.

2. Patch Extraction: Patches of size 256 ∗ 256 are extracted from the stain-normalized image. This
is done to break down the large image into smaller regions for processing. Each patch serves
as input to the segmentation model.
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3. U-Net Ensemble Model: The ensemble model is composed of three U-Net architectures,
each using a different encoder backbone. The encoder backbones used in this approach
are ResNet101, InceptionResNetV2, and Densenet121. By ensembling these UNet architec-
tures with different encoder backbones, the authors hope to leverage the complementary
strengths and diverse feature extraction capabilities of ResNet101, InceptionResNetV2, and
Densenet121.

4. Test-Time Augmentation: Before feeding the patches into the ensemble model for prediction, a
series of augmentations are applied to each patch. Test-time augmentation involves generating
multiple versions of each patch with different augmentations, such as rotations, flips, and
scaling. This helps to increase the robustness and accuracy of the predictions.

5. Ensemble Prediction: Each augmented patch is individually fed into the ensemble model, and
the model returns a prediction mask for each patch. These masks are then merged to obtain
the final prediction for each patch.

6. Patch Mask Fusion: After obtaining the prediction masks for all patches, the masks are
merged to reconstruct the final nuclei-segmented mask for the entire histopathology image.
The merging process combines the predicted masks in a way that ensures consistency across
the patches.

Figure 3: Overview of proposed method

The following subsections provide a detailed overview of the pre-processing, modeling, and post-
processing steps in our approach, highlighting the rationale and methodology behind each one.

4.1 Pre-Processing

To reduce the color variations that arise from differences in staining protocols, a Structure-
Preserving Color Normalization (SPCF) technique [17] was applied to the histopathology images prior
to training the U-Net models. Given a source image s and a target image t, the SPCF technique first
estimates the stain color appearance matrix (also called the stain matrix W) and the stain density map
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matrix (also called the concentration matrix H) by factorizing the Vs into WsHs and Vt into WtHt
using their proposed Sparse Non-negative Matrix Factorization (SNMF) approach.

Here, the stain matrix W is a 2 ∗ 3 matrix where the first row represents the hematoxylin stain
color in RGB format, and the second row represents the eosin stain color in the same format. The
concentration matrix, on the other hand, is an N ∗ 2 array (N being the number of pixels) where the
columns give the pixel concentration of hematoxylin and eosin, respectively. V is the optical density
array of the given image which is given by Eq. (1):

V = log(I0/I) (1)

where I is the given RGB matrix of intensities of the image, and I0 is the illumination light intensity on
the sample (255 for 8-bit images). The relationship between the optical density V, the stain matrix and
the concentration matrix can be obtained via the Beer-Lambert Law (Eq. (2)):

I = I0 exp(−WH) (2)

Combining Eqs. (1) and (2), we get the following relationship:

V = WH (3)

The normalized source picture is then created by combining the target Wt’s stain matrix instead of
source Ws with a scaled version of the concentration matrix of the source Hs. Due to the stain density
H being preserved and the appearance W merely changing, the structure remains unchanged.

To find the most appropriate target image for stain normalization, a simple data-driven clustering
technique was employed. Specifically, the stain matrices of all the training images were first extracted
using the above-described tool. Then, K-means clustering with K = 1 was applied on all the stain
matrices to find the representative stain template at the cluster center. The image closest to this cluster
center was chosen as the target image for stain normalization. Fig. 4 shows the target images for the
MOSID and TNBC datasets, respectively.

Figure 4: Stain templates for stain normalization–left (MOSID), right (TNBC)

Once the images were normalized, they were extracted into patches of 256 ∗ 256 using a sliding
window for training. The reasons for doing this were two-fold: Firstly, extracting patches provided
a means of data augmentation, by increasing the number of training images available. Secondly,
histopathology images can sometimes be large images like Whole Slide Images (WSI) which make
model training and prediction very slow. Dividing an image into smaller fixed-size patches can improve
the model’s training and prediction speed.
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The main reason for choosing 256 ∗ 256 as the patch size for extraction was to ensure the right
balance between information density and computational feasibility: Choosing too small a patch size
may result in losing important details and context necessary for accurate segmentation. On the other
hand, larger patch sizes could lead to increased computational requirements and potential memory
limitations. By selecting 256 ∗ 256 patches, there is a balance between capturing sufficient information
for nuclei segmentation and ensuring computational feasibility within the available resources. This also
helps mitigate class imbalance by increasing the chances of capturing a more balanced distribution of
positive (nuclei) and negative (background) examples within each patch.

4.2 Modeling

The proposed model is a weighted average ensemble that is made up of three U-Nets built
with different backbones (encoders) namely, ResNet101, InceptionResNetV2, and DenseNet121, pre-
trained on ImageNet. U-Nets as shown in Fig. 5 are fully convolutional neural networks developed
especially for the task of biomedical image segmentation. The architecture of the U-Net is made
up of two parts—an encoder path (contracting path) that is responsible for finding features from
the input image, and a decoder path (expanding path) that is responsible for constructing and up-
sampling an output image from the feature representations formed by the encoder. U-Net also contains
residual or skip connections that concatenate feature representations from the encoder directly to the
corresponding block in the decoder, thereby helping in giving localization information and enabling
accurate semantic segmentation.

Figure 5: U-Net architecture. Adapted with permission from [15], Copyright © 2015 Springer Inter-
national Publishing Switzerland

Given the limited number of nuclei histopathology images and the subsequent lack of data to
effectively train deep segmentation models from scratch, we can leverage the power of transfer learning
by using pre-trained architectures such as ResNet and DenseNet as the encoder backbone for the
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U-Net. This can also improve the model’s training speed and accuracy. Hence, we make use of three
U-Nets with different backbones such as ResNet101, InceptionResNetV2, and DenseNet121.

ResNet [39] (or residual networks) overcame the problem of vanishing gradient by introducing
skip connections (or residual connections) that transferred results of a few layers to some deeper layers
below it, thereby skipping the layers in between. Inception-ResNets [40], on the other hand, combine
the Inception architecture, with residual connections. DenseNets [41] also solves the problem of the
vanishing gradient, and like ResNets, they do so by adding shortcuts among layers. But unlike ResNets,
a layer in DenseNet receives the outputs of all previous layers and concatenates them in the depth
dimension.

We combine the advantages of all three types of convolutional neural networks using a weighted
average ensemble technique. Each of the three U-Net models was trained on both normalized (pre-
processed) and unnormalized MOSID and TNBC datasets. Random augmentations such as rotations,
flips, and shifts were applied to the training set to increase the number of data points available for
training. These augmentations create new instances of the data by modifying the spatial orientation,
mirroring, or position of the images, effectively increasing the diversity of the dataset. This helps to
balance the representation of different classes, including nuclei and background, by providing a more
balanced distribution of augmented data points during training.

The training parameters were kept constant to perform a comparative analysis of the models.
The optimal values for the hyperparameters, including the number of epochs, batch size, and learning
rate, were determined using a standard grid search approach. The choice of Adam as the optimizer
and binary cross-entropy (BCE) Jaccard loss as the loss function was motivated by their established
effectiveness in various segmentation tasks. Table 1 depicts the various hyperparameters used.

Table 1: Model training hyperparameters

Hyper parameter Value

Epochs 50
Batch size 16
Learning rate 0.001
Optimizer Adam
Loss BCE Jaccard loss
ReduceLrOnPlateau callback Factor = 0.1, patience = 7, min_lr = 0.0001
EarlyStopping callback Patience = 10

To obtain the optimal weights for the weighted average of the ensemble model, a grid search was
performed with different weighted averages of the model’s predictions on the test set. The weights
corresponding to the prediction with the highest IoU score were chosen as the optimal weight. Table 2
shows the optimal weights for the U-Net models trained on both normalized and unnormalized
MOSID and TNBC datasets:

4.3 Post-Processing

To boost the model’s performance after training, Test-Time Augmentation (TTA) was applied
while making predictions. Here, a given histopathology image is augmented by rotating (90°, 180°
and 270°), flipping horizontally, flipping vertically, and flipping both horizontally and vertically. This
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yields 7 images including the original image which is then fed as input to each of the three U-Net
models of the ensemble. Thus, each histopathology image produces 21 prediction masks (7 predictions
per model ∗ 3 models). These 21 masks are the first ensemble model-wise using the weighted average
to produce 7 augmented masks. The augmentations are then undone, and the 7 masks are ensemble
using a pixel-wise majority voting approach to produce the final prediction. Fig. 6 illustrates the same.

Table 2: Weights for the ensemble model—In the order of (ResNet101, InceptionResNetV2,
DenseNet121)

Dataset Stain normalized Ensemble weights

MOSID Yes [0.3, 0.3, 0.1]
MOSID No [0.3, 0.0, 0.3]
TNBC Yes [0.3, 0.3, 0.3]
TNBC No [0.1, 0.2, 0.3]

Figure 6: Overview of model prediction with test time augmentation (TTA)

5 Results and Discussions

The following section presents the results of the proposed approach and draws inferences from it.
We employed several metrics to evaluate the performance of individual models and their ensembles.
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These metrics can be classified into object-level metrics such as Dice Coefficient and mean Intersection
over Union (IoU), and pixel-level metrics such as Accuracy, Precision, Recall, and F1 score [42–44].

The IoU (or Jaccard Index) of class c is the percentage of overlap of the predicted class c in the
segmentation mask with that in the ground truth and can be defined by Eq. (4). The mean IoU, on the
other hand, gives the mean IoU of all classes in the segmentation mask, as shown in Eq. (5). The dice
score coefficient (DSC) can also be used to gauge model performance and is positively correlated to
the IoU value. It is given by Eq. (6). In the case of instance segmentation, the value of the dice score
can be numerically equal to that of the F1 score. The F1 score, Precision, Recall, and Accuracy were
employed as pixel-level metrics to get a better understanding of the model’s performance (Eqs. (7)–
(10)).

IoUc = TPc

TPc + FPc + FNc

(4)

mean_IoU = 1
C

∑

c

IoUc (5)

Dice = 2 × TP
(TP + FP) + (TP + FN)

(6)

precision = TP
TP + FP

(7)

recall = TP
TP + FN

(8)

F1 score = 2TP
2TP + FN + FP

(9)

accuracy = TP + FN
TP + TN + FP + FN

(10)

The results of the models and their ensembles trained and tested on both the MOSID and TNBC
datasets are presented in Tables 3 and 4, respectively. For each dataset, we conducted experiments with
and without stain normalization to assess the impact of this pre-processing technique on performance.
Additionally, we compared results obtained with and without test-time augmentation to evaluate the
influence of the post-processing technique.

Table 3: Results obtained with MOSID dataset

Model Accuracy Dice Mean_IoU Precision Recall F1 score

Pre-processing: Yes, Post-processing: Yes

ResNet101 0.9196 0.8355 0.8082 0.7967 0.8782 0.8355
InceptionResNetV2 0.9151 0.8320 0.8024 0.7703 0.9045 0.8320
DenseNet121 0.9067 0.8196 0.7880 0.7444 0.9116 0.8196
Ensemble 0.9258 0.8411 0.8167 0.8378 0.8444 0.8411

(Continued)
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Table 3 (continued)

Model Accuracy Dice Mean_IoU Precision Recall F1 score

Pre-processing: Yes, Post-processing: No

ResNet101 0.9146 0.8261 0.7984 0.7843 0.8727 0.8261
InceptionResNetV2 0.9115 0.8258 0.7957 0.7616 0.9018 0.8258
DenseNet121 0.9051 0.8162 0.7846 0.7423 0.9064 0.8162
Ensemble 0.9243 0.8387 0.8144 0.8375 0.8399 0.8387

Pre-processing: No, Post-processing: No

ResNet101 0.2324 0.3771 0.1162 0.2324 1.000 0.3771
InceptionResNetV2 0.2324 0.3771 0.1162 0.2324 1.000 0.3771
DenseNet121 0.4182 0.4405 0.2639 0.2836 0.9855 0.4405
Ensemble 0.6474 0.5536 0.4657 0.3921 0.9408 0.5536

Table 4: Results obtained with TNBC dataset

Model Accuracy Dice Mean_IoU Precision Recall F1 score

Pre-processing: Yes, Post-processing: Yes

ResNet101 0.9633 0.8585 0.8554 0.8520 0.8651 0.8585
InceptionResNetV2 0.9672 0.8728 0.8686 0.8699 0.8757 0.8728
DenseNet121 0.9654 0.8663 0.8626 0.8607 0.8721 0.8663
Ensemble 0.9669 0.8704 0.8666 0.8757 0.8651 0.8704

Pre-processing: Yes, Post-processing: No

ResNet101 0.9603 0.8478 0.8456 0.8356 0.8604 0.8478
InceptionResNetV2 0.9675 0.8739 0.8698 0.8723 0.8755 0.8739
DenseNet121 0.9638 0.8593 0.8564 0.8595 0.8591 0.8593
Ensemble 0.9665 0.8687 0.8652 0.8758 0.8618 0.8687

Pre-processing: No, Post-processing: No

ResNet101 0.1283 0.2275 0.0641 0.1283 1.000 0.2275
InceptionResNetV2 0.1283 0.2275 0.0641 0.1283 1.000 0.2275
DenseNet121 0.7988 0.4879 0.5501 0.3624 0.7464 0.5359
Ensemble 0.8305 0.4721 0.5628 0.3934 0.5902 0.5409

Table 3 reveals that, for the MOSID dataset, the individual models trained and tested on a stain-
normalized dataset achieved significantly better results compared to those trained and tested on the
raw dataset. Stain normalization mitigates the effects of high color variations, thereby facilitating the
learning of underlying feature representations. These findings validate the effectiveness of the pre-
processing technique.
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Furthermore, irrespective of the application of pre-processing or post-processing techniques, the
ensemble of the three models consistently outperformed the individual models. The ensemble method
leverages the strengths of each model by assigning weights based on their individual performance
and computing an average, leading to a better output. Moreover, we observed that employing post-
processing techniques consistently yielded improved results, thus establishing the contribution of
test-time augmentation in enhancing performance. Similar to data augmentation during training,
augmentation at test time can enhance a model’s predictive capability.

Similar conclusions can be drawn from the results obtained on the TNBC dataset, as presented in
Table 4. Notably, InceptionResNetV2 marginally outperformed the ensemble when applied to a stain-
normalized dataset. However, in the absence of stain normalization, the ensemble capitalized on the
model with the best individual performance, thereby achieving improved overall performance.

Overall, our findings demonstrate the efficacy of stain normalization in enhancing performance
and highlight the advantages of employing ensemble models and test-time augmentation for nuclei
segmentation in histopathology images.

Table 5 shows a comparative analysis of the proposed approach with different segmentation
methods. We can see that the proposed model outperforms its standard counterpart, the U-Net, and its
variants such as the atrous spatial pyramid pooling U-Net (ASPPU-Net). It also fares better than other
standard deep learning architectures such as DeepLab and Fully Convolutional Networks (FCN), as
well as non-deep learning methods such as Otsu and Watershed.

Table 5: Comparative analysis of the proposed approach with different segmentation methods

Model Dice Accuracy Mean_IoU

MOSID TNBC MOSID TNBC MOSID TNBC

ASPPU-Net [30] 0.83 0.83 0.89 0.95 0.78 0.82
U-Net [15] 0.79 0.77 0.86 0.93 0.72 0.77
RADHicaL [45] 0.76 0.77 0.87 0.93 0.74 0.74
FCNs [46] 0.78 0.78 0.87 0.92 0.72 0.73
DeepLab [47] 0.83 0.82 0.90 0.95 0.77 0.82
DCAN [48] 0.82 0.80 0.89 0.94 0.75 0.79
FL [49] 0.81 0.81 0.78 0.89 0.76 0.80
Otsu [50] 0.74 0.74 0.80 0.90 0.71 0.69
Proposed 0.84 0.87 0.92 0.96 0.81 0.86

The proposed model exhibits higher efficiency in nuclei segmentation for several reasons. Firstly,
the application of stain normalization as a pre-processing technique reduces color variations in
histopathology images, allowing the model to learn meaningful features more effectively. This nor-
malization enhances the model’s robustness to variations in color intensity, leading to improved
generalization to unseen data.

Additionally, the ensemble model, consisting of three U-Net models with different encoder
backbones, further enhances efficiency. By weighing the predictions of each model based on individual
performance and averaging them, the ensemble leverages the strengths of each model, reducing the
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impact of limitations and improving overall accuracy and robustness. This also tackles the overlapping
nuclei cell.

Moreover, the incorporation of test-time augmentation during the prediction phase contributes
to higher efficiency. By applying a series of augmentations to each patch and considering the ensemble
predictions from the augmented patches, the model captures diverse variations in the data, resulting in
more accurate and robust predictions. The use of pre-trained encoders and the principles of transfer
learning further enhance efficiency by leveraging learned representations from large-scale datasets.
Collectively, these strategies optimize the model’s efficiency and performance in nuclei segmentation
tasks, effectively addressing challenges posed by variations and maximizing accuracy.

6 Limitations and Future Work

The proposed nuclei segmentation method in histopathology images exhibits potential but
requires further investigation and improvement. The generalization of nuclei segmentation models
to diverse histopathology images with varying staining protocols, tissue types, and image qualities
remains an open challenge. While the authors have attempted to tackle this generalization issue by
ensembling UNets with different encoder backbones (thereby leveraging diverse learning capabilities)
and combining this with stain normalization and test-time augmentation, future research can explore
training on diverse datasets, employing different domain adaptation techniques, and investigating
alternative encoder backbones or architectures for enhanced performance. Additionally, balancing
the accuracy-computational efficiency trade-off in test-time augmentation is crucial and an area for
further investigation. Furthermore, considering adaptive patch sizes or multi-scale strategies during
patch extraction can improve the model’s ability to handle nuclei of different sizes during segmentation.

Evaluation metrics play a significant role in nuclei segmentation, and there is a need to develop
novel metrics that capture the specific challenges of histopathology image analysis, including nuclear
shape, size, and proximity. Moreover, it is vital to consider the input of medical professionals for the
clinical application and acceptance of the proposed method. The discrepancies between the generated
and real histopathology images should be addressed through collaboration, validation studies, and
the development of standardized interfaces and integration frameworks. This will ensure the practical
usability of the nuclei segmentation algorithm in routine clinical practice.

Implementation challenges such as managing computational resources, ensuring dataset availabil-
ity and diversity, addressing stain normalization accuracy, and achieving real-time processing present
additional hurdles in practical deployment. Acquiring diverse and annotated histopathology datasets
that encompass various staining protocols and tissue types, is crucial but challenging. The accuracy of
stain normalization plays a vital role in reducing variations and ensuring its effectiveness is necessary
for reliable segmentation. Moreover, optimizing real-time processing and seamless integration into
clinical workflows are essential considerations, necessitating the application of optimization tech-
niques and careful deployment strategies to overcome these challenges.

7 Conclusion

In this research, we proposed an ensemble of the U-Net’s encoder-decoder architecture with
different popular convolutional neural networks as encoder backbones combined with stain nor-
malization and test-time augmentation as pre-processing and post-processing techniques respectively.
The number of training samples was increased by extracting patches of fixed size from the original
images and applying various data augmentation techniques to them. The proposed model was trained
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and tested on both single-organ (TNBC) and multi-organ (MOSID) datasets, exposing it to nuclei
of various morphological shapes and staining intensities. The proposed model’s nuclei identification
and segmentation capabilities were tested and compared using several metrics. We inferred that the
proposed model ensemble performed better than the individual models used as backbones. Results
also showed that the model’s performance was boosted with the application of the proposed pre-
processing and post-processing techniques. Additionally, we drew a comparison between our proposed
method and the methods of other papers, which showed that the proposed method outperformed other
methods in terms of the metrics considered.
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