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ABSTRACT

The performance of a speech emotion recognition (SER) system is heavily influenced by the efficacy of its feature
extraction techniques. The study was designed to advance the field of SER by optimizing feature extraction tech-
niques, specifically through the incorporation of high-resolution Mel-spectrograms and the expedited calculation
of Mel Frequency Cepstral Coefficients (MFCC). This initiative aimed to refine the system’s accuracy by identifying
and mitigating the shortcomings commonly found in current approaches. Ultimately, the primary objective was to
elevate both the intricacy and effectiveness of our SER model, with a focus on augmenting its proficiency in the
accurate identification of emotions in spoken language. The research employed a dual-strategy approach for feature
extraction. Firstly, a rapid computation technique for MFCC was implemented and integrated with a Bi-LSTM layer
to optimize the encoding of MFCC features. Secondly, a pretrained ResNet model was utilized in conjunction with
feature Stats pooling and dense layers for the effective encoding of Mel-spectrogram attributes. These two sets of
features underwent separate processing before being combined in a Convolutional Neural Network (CNN) outfitted
with a dense layer, with the aim of enhancing their representational richness. The model was rigorously evaluated
using two prominent databases: CMU-MOSEI and RAVDESS. Notable findings include an accuracy rate of 93.2%
on the CMU-MOSEI database and 95.3% on the RAVDESS database. Such exceptional performance underscores
the efficacy of this innovative approach, which not only meets but also exceeds the accuracy benchmarks established
by traditional models in the field of speech emotion recognition.
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1 Introduction

The affective disposition of human beings, in other words, their emotional state, serves as a
significant determinant in how they interact with one another and with machines. This emotional
underpinning is not just trivial but rather it deeply informs and molds a multitude of communication
pathways. Such pathways extend from visual cues evident in facial expressions, auditory signals
highlighted in vocal characteristics, to the semantic structures embedded within verbal exchanges.
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Notably, spoken language, an integral component of human communication, is not simply a means
of exchanging information. It serves as a critical medium for the articulation and conveyance of
a myriad of human emotions. This emotive dimension of speech is often implicitly encoded in
tonality, pitch, pace, and volume, thereby making it a rich and multifaceted source of information
[1]. Consequently, when we consider the interaction between humans and machines, especially in the
context of developing interfaces that are natural and user-friendly, the ability to correctly understand,
interpret, and respond to these emotional nuances becomes increasingly paramount. The pursuit
of enabling machines with this proficiency akin to an emotionally intelligent human listener has
the potential to profoundly enhance the level of empathy, engagement, and overall effectiveness of
human-machine interactions. In this light, the affective computing field stands as a promising domain,
committed to endowing machines with these emotionally cognizant capabilities.

The process of discerning emotional cues in verbal communication, also known as Speech
Emotion Recognition (SER), bears immense relevance for gaining insights into human communicative
behaviors. At its core, SER provides a mechanism to interpret a speaker’s emotional condition utilizing
the acoustic and prosodic attributes of their utterances. This creates an intriguing nexus of linguistics,
psychology, and artificial intelligence [2–4]. The broad-ranging implications and applications of SER
techniques have permeated various fields, such as trading [5], tele-consultation (health prediction) [6],
education [7], each with its unique requirements and objectives.

Emotion recognition hinges on pinpointing features that capture emotional cues within datasets.
Essentially, finding a precise feature set for this task is intricate due to emotions’ multifaceted and
personal nature. These ‘emotion cues’ in data symbolize attributes that resonate with specific emotions.
Recognizing these cues, like pitch variations in speech, is vital for creating emotion-savvy models.
While references [8–9] show no consensus on the best features, the quest is to identify features broad
yet precise enough for different emotions, a continuing challenge in the field.

In recent years, a predominant portion of studies have leaned towards the use of deep learning
models, trained specifically to distill relevant feature sets from the data corpus [10–12]. The precision
of categorization in the realm of SER issues is predominantly influenced by the procurement and
choice of effective features. For instance, the extraction of features from speech signals leverages
techniques such as MFCC, mel-scale spectrogram, tonal power, and spectral flux. To enhance learning
performance by reducing feature size, the Deer Hunting with Adaptive Search (DH-AS) algorithm is
employed for optimal feature selection in the research [11]. These selected features are then subjected
to emotion classification via the Hybrid Deep Learning (HDL) approach, which combines both Deep
Neural Network (DNN) and Recurrent Neural Network (RNN).

Many trusted studies in SER have leaned on acoustic features like Pitch, Energy, MFCC,
Discrete Fourier Transform (DFT), among others [13]. Digging deeper, the effectiveness of emotion
classification in speech emotion recognition is primarily anchored in the capability to distill and
pinpoint the most influential features within speech data. These distinguishing traits shed light on
a speaker’s emotional state. Therefore, the steps of feature extraction and selection are paramount,
often shaping the classification algorithm’s outcome. Notably, MFCCs furnish a detailed insight into
speech signals compared to rudimentary acoustic attributes. At its core, MFCCs capture the power
spread across frequencies in a speech signal, presenting a glimpse of the speaker’s unique vocal tract
dynamics.

Our proposed solution employs a bifurcated strategy to mitigate these significant issues. First,
capitalizing on our pioneering rapid computation of MFCC, we introduce an expedited method for the
extraction of MFCC from vocal signals, serving as our MFCC feature encoder. The primary objective
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of this strategy is to enhance the efficiency of the feature extraction process, thereby enabling accurate
and swift decomposition of speech data. This novel computational tactic emphasizes improving the
velocity and effectiveness of MFCC attribute extraction. We further incorporate a bidirectional Long
Short-Term Memory (Bi-LSTM) layer, tasked with capturing and encoding the complex temporal
dependencies within the MFCC sequence. Second, serving as our Mel-spectrogram feature encoder,
we exploit a pre-trained Residual Neural Network (ResNet) along with feature Stats pooling and fully
connected layers to extract high-resolution spectrograms from Mel-spectrogram features.

Subsequently, the outputs from both feature encoders are concatenated and introduced to a CNN,
and subsequently to a Fully Connected Network (FCN). Ultimately, a softmax function is employed to
facilitate emotion classification. This all-encompassing strategy is formulated to enhance the intricacy
and efficiency of our speech emotion recognition paradigm.

The main contributions of the proposed system are as follows:

– A novel system for SER has been introduced, exhibiting remarkable accuracy when bench-
marked against existing base models. This cutting-edge approach signifies a promising trajec-
tory for subsequent research within the SER sphere.
– Pioneering techniques were employed to extract fast MFCC features and Mel-spectrogram
features from audio signals.
– A novel method for the swift calculation of MFCC features was formulated. The accelerated
computation of MFCC features greatly improves the efficiency of the feature extraction
phase in the SER process, thereby reducing the overall processing time and increasing system
responsiveness. The extracted MFCC features provide essential insights into the spectral
properties of the speech signal, making them invaluable for emotion detection and recognition
tasks.
– A parallel processing methodology was introduced for the implementation of the Hanning
window and value reduction operations.
– Collectively, the outcomes of this research have significantly enriched our comprehension
of SER, offering crucial insights into the development of more proficient speech recognition
models. The ramifications of these results span various fields, including emotion identification
in human-robot exchanges, progressions in speech therapy methodologies, and enhancements
in psychiatric health diagnostics.

The structure of this manuscript is as follows: Section 2 provides a comprehensive review of
current research on SER modeling employing deep learning methodologies. Sections 3 and 4 are
dedicated to a comprehensive elucidation of the proposed SER model, supplemented by empirical
substantiation of its effectiveness and comparative analyses against established benchmarks. The aim
is to equip the reader with an in-depth comprehension of the model’s structure and competencies, as
well as positioning it within the broader context of the SER domain. In Section 5, a definitive summary
is provided, along with discussions on potential avenues for future exploration. The document
culminates with a reference list that includes a broad spectrum of recent academic publications related
to SER.

2 Related Work

In this section, we offer a synopsis of the prevailing scholarly works pertinent to the subject of
SER. By examining the current state of research in this area, we hope to provide valuable context
and insights, and to highlight key areas where further investigation is needed. This overview should
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serve as a valuable foundation upon which to build future research endeavors, driving innovation and
advancement in this exciting field of study.

Over the recent timespan, systems underpinned by deep neural network architectures [14–17]
have demonstrated significant triumphs in discerning emotions from vocal signals. In particular, the
combination of CNNs and LSTMs in end-to-end methods [18–19] provided a robust way to capture
both spatial features (through CNN) and temporal dynamics (through LSTM) in speech data. This
fusion allowed for the thorough analysis of the speech signal, leveraging the strength of both models
to yield a more accurate and nuanced understanding of the emotional content. This innovative blend
of CNN and LSTM architectures paved the way for more sophisticated and effective speech emotion
recognition models, revolutionizing the field’s landscape.

The research [20] detailed a SER-focused integrated deep neural network model. Developed using
advanced multi-task learning, it sets new SER standards with remarkable results on the renowned
IEMOCAP dataset. It efficiently utilizes pretrained wav2vec-2.0 for speech feature extraction, refined
on SER data. This model serves a dual purpose: emotion identification and automatic speech
recognition, also producing valuable speech transcriptions. The research [21] investigated the nuances
of implementing dilation/stride in 2D dilated convolution. It presents a method for the efficient
execution of the inference section, free from constraints on input size, filter size, dilation factor, or
stride parameters. This approach is built on a versatile 2D convolution architecture and reimagines
2D-dilated convolution through strategic matrix manipulation. Notably, its computational complexity
remains constant regardless of dilation factor changes. Additionally, the method seamlessly integrates
stride, resulting in a framework proficient in handling both dilation and stride simultaneously.
The scholarly investigation [22] orchestrated a fusion of MFCCs and time-domain characteristics,
generating an innovative hybrid feature set aimed at amplifying the performance matrix of SER
systems. The resultant hybrid features, coined MFCCT, are employed within the architecture of a
CNN to create a sophisticated SER model. Notably, this synergistic amalgamation of MFCCT features
with the CNN model markedly transcends the effectiveness of standalone MFCCs and time-domain
elements across universally acknowledged datasets.

Furthermore, research [23] addressed the challenging task of effectively merging multimodal data
due to their inherent differences. While past methods like feature-level and decision-level fusion often
missed intricate modal interactions, a new technique named ‘multimodal transformer augmented
fusion’ is introduced. This method combines feature-level with model-level fusion, ensuring a deep
exchange of information between various modalities. Central to this model is the fusion module,
housing three Cross-Transformer Encoders, which generate multi-modal emotional representations to
enhance data integration. Notably, the hybrid approach uses multi-modal features from feature-level
fusion and text data to better capture nuances in speech.

The operational efficiency of SER systems often encounters roadblocks owing to the intricate
complexity inherent in these systems, the lack of distinctiveness in features, and the intrusion of
noise. In an attempt to overcome these hurdles, the research [24] introduced an enhanced acoustic
feature set, which is a composite of MFCC, Linear Prediction Cepstral Coefficients (LPCC), Wavelet
Packet Transform (WPT), Zero Crossing Rate (ZCR), spectrum centroid, spectral roll-off, spectral
kurtosis, Root Mean Square (RMS), pitch, jitter, and shimmer. These collectively serve to magnify
the distinctive nature of the features. Further augmenting this proposition is the deployment of a
streamlined one-dimensional deep convolutional neural network 1-D DCNN, designed to both reduce
computational complexity and effectively encapsulate the long-term dependencies embedded within
speech emotion signals. Acoustic parameters, typically embodied in the form of a feature vector,
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play a pivotal role in determining the salient characteristics of speech. The research [25] unfolded a
pioneering SER model adept at simultaneously learning the Mel Spectrogram (MelSpec) and acoustic
parameters, thereby harnessing their respective advantages while curbing their potential shortcomings.
For the acoustic parameters, the model leverages the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS), a comprehensive compilation of 88 parameters acclaimed for their efficacy in SER. The
model, as proposed, is a multi-input deep learning architecture comprising a trinity of networks, each
catering to a specific function: one dedicated to the processing of MelSpec in image format, another
engineered to handle GeMAPS in vector format, and the final one synergizing the outputs from the
preceding two to forecast emotions.

In spite of the individualistic models posited by authors within the previously referenced literature
for the SER task, the persistent presence of certain limitations and the obstacle of sub-optimal
prediction accuracy continue to warrant further exploration and resolution. The ensuing segments of
this document thoroughly illuminate the exhaustive process flow of the proposed system, buttressed
by detailed empirical results that serve as corroborative evidence.

3 The Proposed SER System

The section explicates the complex nuances inherent within the proposed system, explicitly engi-
neered to discern emotional indications within vocal articulations. The system consists of two primary
constituents, each integral to generating a precise interpretation of the speaker’s emotional predilec-
tion. A thorough operational sequence is illustrated in Fig. 1 portraying the ordered progression of
stages involved in the system’s deployment. The disparate components of the model synergistically
operate to fulfill the goal of detecting emotional cues in speech. The architecture is constructed via
the incorporation of MFCC and Mel-spectrogram characteristics, employing diverse deep learning
techniques in accordance with their designated objectives. In sum, the proposed model embodies a
holistic and robust strategy for auditory emotion identification, demonstrating versatility across a
wide spectrum of pragmatic applications. This adaptability enhances the model’s operational capacity
and positions it as a potent tool within the ever-evolving field of auditory emotion recognition.

3.1 MFCC Feature Encoder

3.1.1 Accelerated MFCC

MFCCs have gained recognition as informative attributes for analyzing speech signals, find-
ing widespread usage in the field of speech recognition. These characteristics are built upon two
fundamental principles: cepstral analysis and the Mel scales. With their ability to capture crucial
aspects of the speech signal, MFCC features have become a cornerstone of speech recognition
systems. The process of extracting MFCC features involves separating them from the recorded speech
signals. This separation allows for the isolation of specific acoustic properties that contribute to the
discriminative power of the features. By focusing on these distinctive aspects, the MFCC algorithm
enhances the accuracy and effectiveness of speech recognition. MFCCs offer a concise yet informative
representation of the speech signal, facilitating robust speech recognition. These features serve as vital
inputs to classification algorithms and models, enabling accurate identification and understanding of
spoken words and phrases.

This study introduces an expedited approach for extracting the MFCC from speech signals. The
primary objective is to streamline the process of feature extraction, enabling efficient and accurate
analysis of speech data. The proposed approach focuses on optimizing the speed and effectiveness
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of MFCC feature extraction. By employing innovative techniques and algorithms, the study aims to
reduce the computational complexity and time required for extracting MFCC features from speech
signals.

Figure 1: Operational sequence of the proposed system

The research delves into the development of efficient algorithm that leverage parallel processing
and optimization strategies to expedite the extraction process. These advancements enable real-time
or near real-time extraction of MFCC features, making it more practical for applications requiring
swift processing, such as speech recognition, audio classification, and voice-based systems.

We contemplate the operational order of the suggested approach (Fig. 2) for swift derivation of
the MFCC features from spoken discourse.

Figure 2: Suggested fast calculation approach of the MFCC
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1) Framing–after initial filtering, the speech signal undergoes segmentation into frames of 16
milliseconds. Except for the initial frame, each subsequent frame includes the last 10 millisec-
onds of the frame before it, thereby generating a seamless and overlapping sequence of frames
that covers the whole length of the signal. In this particular study, the frame length (N) is
set to 256 samples, considering the speech signal’s sampling rate of 16 kHz. The offset length
(M) is defined as 160 samples, indicating the displacement between consecutive frames. As a
result, there is a 62.5% overlap between adjacent frames, which means that each frame shares a
significant portion of data with the preceding and subsequent frames. Opting for this degree of
overlap guarantees that 50% to 75% of the frame length is covered, conforming to the advised
span for the analysis of speech signals. By including this level of overlap, the study aims to
capture sufficient temporal information and provide a more comprehensive representation of
the speech signal within each frame.

2) Parallel processing of Hanning window and Reducing values (Fig. 3). A Hanning window with a
size of 1D was employed in this study. The application of the Hanning window aims to curtail
disruptions from high-frequency constituents and diminish energy seepage. The structure of the
Hanning window permits its side lobes to counterbalance each other, consequently mitigating
the effect of high-frequency disturbances on the intended signal. By doing so, it helps to
achieve improved spectral resolution and minimize the phenomenon of energy leakage, where
signal energy spills into adjacent frequency bins. To minimize distortion and ensure smoother
transitions within individual frames, a weight box is employed in the context of this study.
This weight box serves the purpose of reducing abrupt changes and promoting a more gradual
variation in the signal. The signal under examination in this study is a floating signal that
comprises a dense and continuous tone. The strength or amplitude of this unvarying tone is
primarily influenced by the amplitude of a pure tone at a distinct frequency, represented as f .
This pure tone is subjected to filtering through the Hanning window, which helps shape and
modify its characteristics. Incorporating the effects of the window’s frequency response, the
magnitude of the flat tone is influenced when the Hanning window is applied to the pure tone.
This process allows for the manipulation and adjustment of the signal’s spectral properties,
leading to a more controlled and refined representation of the floating signal. An important
feature of this window is that it establishes zero boundaries for the frames. This facilitates the
computation of short-term energies as the signal traverses through the window. Subsequently,
these energies can be retrieved from the sequence to ascertain the lowest amplitude energies.
The aim is to exclude low-energy signals from the total signal by evaluating the signal’s energy
and simultaneously refining it with this window. The subsequent formula (1) is essential for
calculating the signal energy in this procedure:

En =
N∑
.

x2
i (1)

In this equation, En represents the energy of the input signal fragment, while xi denotes the signal
value. In the subsequent step, the signal undergoes processing that effectively reduces the quantity of
values that are passed into the processor. The window size, which is determined by both the number
of samples and the duration, serves as a crucial parameter in the analysis. It is influenced by factors
such as the fundamental frequency, intensity, and variations within the signal.

3) Short-Time Fourier Transform (STFT)–the concept of high or low height in relation to the
STFT has an intuitive interpretation. The STFT is a transform technique closely associated
with the Fourier transform. It is employed to analyze the frequency and phase characteristics
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of localized portions of a signal as they vary over time. In practical terms, the computation of
the STFT involves dividing a longer time signal into shorter segments of equal length. Each
segment is then individually subjected to Fourier transformation, thereby revealing the Fourier
spectrum of each segment. In practical applications, discrete-time signals are commonly used.
The corresponding conversion from time domain to frequency domain is achieved through a
discrete Fourier transformation, where the length of the signal Xn represents the complex value
frequency domain of N coefficients. The STFT is a widely utilized tool in speech analysis and
processing, as it captures the time-varying evolution of frequency components. One notable
advantage of the STFT, similar to the spectrum itself, is that its parameters have meaningful
and intuitive interpretations. To visualize the STFT, it is often represented using the logarithmic
spectra 20 log 10 (X (h, j)) . These 2D log spectra can then be displayed as a spectrogram using
a color map known as a thermal map. During the third stage of the algorithm, the frames that
have undergone the weight windowing process are subjected to the STFT spectral switching
procedure. This involves opening the windows and calculating the Discrete Fourier Transform
(DFT) of each window, resulting in the STFT of the signal. The transformation of the Xn and
Wn windows of the input signal can be defined as follows:

STFT = {xn} (h, k) = X (h, k) =
N−1∑
n=0

xn+hwne−i2π kn
N (2)

where the k-index represents the frequency values, xn is the signal window, wn is the window function
and N is the total number of samples in the window.

4) Mel-Filterbank. In the fourth phase, the signal, now transformed to the frequency spectrum,
is divided into segments using triangular filters, the boundaries of which are determined by
the Mel frequency scale. The transition to the Mel frequency scale is guided by the following
formula:

M (f ) = 1127 × ln
(

1 + f
700

)
(3)

where f—represents the frequency band.

3.1.2 Bi-LSTM Encoder

The processing pipeline for the MFCC sequence is meticulously crafted to harness the power
of recurrent neural networks. We employ a bidirectional LSTM layer, imbued with a dropout rate
of 0.5, to capture and encode the intricate temporal dependencies within the MFCC sequence. This
bidirectional nature enables the model to effectively leverage both past and future context, ensuring
a holistic understanding of the speech data. Furthermore, to counteract the risk of overfitting and
enhance model generalization, a dropout rate of 0.1 is introduced in a subsequent linear layer, lever-
aging the rectified linear unit (ReLU) activation function to facilitate non-linear transformations and
foster expressive feature representations. This thoughtful design seamlessly integrates regularization
techniques, underscoring our commitment to achieving robust and reliable SER performance. The
output from the Bi-LSTM encoder is subsequently amalgamated with the resultant output from the
Mel-spectrogram feature encoder. This fusion ensures a comprehensive representation of the data by
combining temporal sequence learning from Bi-LSTM with the frequency-based understanding from
the Mel-spectrogram feature encoder. It optimizes the system’s learning capability by exploiting the
complementary information inherent in these two distinct yet interrelated sources.



CMC, 2023, vol.77, no.3 2923

Figure 3: Parallel processing of Hanning window and Reducing values

3.2 Mel-Spectrogram Feature Encoder

Conventional SER methodologies have conventionally relied upon an extensive repertoire of
low-level time- and frequency-domain features to effectively capture and represent the multifaceted
tapestry of emotions conveyed through speech. However, recent advancements have witnessed a
paradigm shift towards cutting-edge SER systems that harness the formidable prowess of complex
neural network architectures, enabling direct learning from spectrograms or even raw waveforms. In
the pursuit of furthering this research frontier, our study capitalizes on the ResNet [26] architecture,
skillfully employing mel-spectrograms as input features. By extracting high-resolution spectrograms,
our model adeptly encodes the subtle intricacies of the spectral envelope and the coarse harmonic
structures, deftly unraveling the rich tapestry of emotions permeating speech signals. Through this
sophisticated framework (Fig. 4), our model transcends the limitations of traditional feature-based
approaches, culminating in an elevated degree of accuracy and efficacy in the discernment and
recognition of emotions in speech data.
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Figure 4: Mel-spectrogram feature encoder

Our Mel-spectrogram feature encoder commences with a meticulous two-step process. Firstly,
we subject a ResNet model to pre-training on the expansive Librispeech dataset [27]. This initial
phase endows the model with a comprehensive foundation of knowledge, enabling it to glean essential
insights into the underlying speech representations. Subsequently, we strategically replace the fully
connected (FC) layers of the pre-trained model with Stats Pooling and FC layers. This deliberate
replacement serves to prime the model for the precise task at hand-SER-employing the CMU-MOSEI
and RAVDESS datasets as our experimental bedrock. To holistically capture the intricate temporal
dynamics and contextual information pervasive within the speech data, our proposed system leverages
the indispensable statistics pooling layer [28]. Serving as a pivotal component within the architecture,
this layer adeptly assimilates frame-level information over temporal sequences. Through the astute
concatenation of the mean and standard deviation computed over the frames, it ingeniously distills
the sequence of frames into a single, compact vector representation. This judiciously crafted vector
encapsulates vital statistical information that encapsulates the nuanced emotional content ingrained
within the speech signal. Notably, our system operates across distinct levels of granularity, intelligently
harnessing the disparate capabilities of the ResNet model’s components. The convolutional layers,
meticulously designed to extract salient features, operate at the frame level, diligently capturing local
patterns and structures that underpin the speech signal’s intrinsic characteristics. In a complementary
fashion, the FC layers assume the role of segment-level interpreters, harmoniously synthesizing
the accumulated frame-level information within a given segment of speech. This segment-based
perspective engenders a holistic grasp of the temporal dynamics while facilitating a comprehensive
interpretation of higher-level emotional patterns. As a result, our SER system manifests heightened
discrimination capabilities, adroitly striking a balance between fine-grained temporal dynamics and
the discernment of overarching emotional patterns.

In order to capture a rich and detailed representation of the audio signals, we employ a meticulous
procedure for extracting high-resolution log-mel spectrograms. These spectrograms are meticulously
engineered to possess a dimensionality of 128, allowing for a comprehensive encoding of the acoustic
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features embedded within the speech signals. The extraction process entails a frame-based approach,
where each frame spans a duration of 25 ms and is sampled at a rate of 100 Hz, effectively capturing
temporal dynamics with fine-grained precision at intervals of 10 ms. To ensure appropriate feature
normalization, we employ a segment-level mean and variance normalization technique. However, we
acknowledge that this normalization approach falls short of the optimal scenario where normalization
is conducted at the recording or conversation level. In light of this limitation, we recognize the
value of a more holistic normalization strategy that takes into account the broader context of the
recording or conversation. By considering statistics computed at the conversation level, such as mean
and variance, we can effectively capture the inherent variations and nuances within the conversation.
Significantly, our meticulous experimentation has unveiled a compelling finding: normalizing the
segments using conversation-level statistics yields substantial enhancements in the performance of the
SER system, particularly when applied to the CMU-MOSEI and RAVDESS datasets. This empirical
observation underscores the criticality of incorporating context-aware normalization techniques in
order to effectively capture the subtle emotional cues embedded within real-world conversational
scenarios and elevate the overall accuracy of SER systems.

The ResNet model architecture employed in our study incorporates a first block comprising 32
channels, signifying the number of parallel convolutional filters utilized. To optimize the training
process, we leverage the stochastic gradient descent (SGD) optimizer with a momentum value of
0.9, ensuring efficient convergence towards an optimal solution. Concurrently, a batch size of 32 is
employed, allowing for parallel processing and expedited training. For the purpose of fine-tuning the
convolutional layers, we adopt a learning rate of 0.001, enabling precise adjustments to the network
parameters during this critical phase. Notably, the learning rate strategy is intelligently modulated,
remaining constant for the initial 10 epochs to establish a stable training foundation. Subsequently, for
each subsequent epoch, the learning rate is halved, facilitating finer parameter updates as the training
progresses. To introduce the crucial element of non-linearity and enhance the model’s expressive
capabilities, ReLU activation functions are applied across all layers, excluding the output layer.
This choice of activation function enables the ResNet model to effectively capture complex patterns
and salient features, facilitating the extraction of meaningful representations. In order to expedite
the training process and bolster the model’s generalization properties, we integrate layer-wise batch
normalization. This technique normalizes the inputs to each layer, ensuring consistent distribution and
alleviating internal covariate shift, thereby accelerating model convergence and enhancing its ability
to generalize to unseen data.

4 Experiments and Discussion
4.1 Datasets

4.1.1 The CMU-MOSEI

The CMU-MOSEI [29] dataset stands as an expansive multimodal corpus tailored for emotion
analysis in the realm of conversational video data. Spanning an impressive collection of over 23,000
video clips sourced from 1,000 distinct sessions involving a diverse cohort of over 1,200 participants,
this dataset offers an unparalleled resource for exploring emotion dynamics within the conversational
context. Complementing the video data, it encompasses an array of auxiliary features including speech
transcripts, audio features, visual features, and annotated labels that denote the valence and arousal
levels associated with each video clip. The CMU-MOSEI dataset encompasses six distinct emotion
classes (Table 1): anger, happiness, sadness, disgust, fear, and surprise, characterized by varying sample
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distributions: angry (4,600 samples), sadness (5,601 samples), disgust (3,755 samples), surprise (2,055
samples), happy (10,752 samples), and fear (1,803 samples).

Table 1: RAVDESS and the CMU-MOSEI dataset content

RAVDESS The CMU-MOSEI

Emotion Number of samples Percentage (%) Number of samples Percentage (%)

Angry 192 13.3 4600 16
Sadness 192 13.3 5601 20
Disgust 192 13.3 3755 13
Fear 192 13.3 1803 6
Happy 192 13.3 10752 38
Surprise 192 13.3 2055 7
Calm 192 13.3 − −
Neutral 96 6.9 − −

4.1.2 RAVDESS

The RAVDESS [30] dataset stands as a notable collection designed specifically for cutting-edge
research pursuits in emotion recognition. Distinguished by its accessibility and public availability,
the RAVDESS dataset encompasses a rich reservoir of recordings that encompasses both emotional
speech and song, rendering it an invaluable resource within the scientific community. A notable
facet of the dataset lies in its diverse repertoire of emotional expressions, spanning a spectrum that
encompasses neutral, calm, happy, sad, angry, fearful, surprised, and disgusted states, each meticu-
lously articulated in both English and French languages. Actors were chosen to deliver monologues
consisting of 13 sentences, both statements and questions, each conveying specific emotional tones.

The data collection process is marked by meticulousness, with a cohort of 24 highly skilled
individuals, equally balanced between males and females, actively participating. This gender parity
ensures an equitable representation, fostering a holistic understanding of emotional expressions across
diverse demographics. The speech dataset has 1440 files, derived from 60 trials for each of the 24
actors. The dataset is in WAV format with a 16-bit bitrate and a 48 kHz sampling rate. In Table 1 of
the RAVDESS dataset, while each emotion is represented by 192 samples, the “Neutral” emotion has
only 96 samples.

4.2 Implementation Details

To fairly evaluate our model on the CMU-MOSEI and RAVDESS datasets, we strictly trained it
using the method described in [31]. We split the data into 80% for training and 20% for testing. This
allows the model to train on a large part of the data and still have a significant portion for validation,
ensuring a complete evaluation of its performance. We obtained 1152 training samples and 288 testing
samples from the RAVDESS dataset through this process. In a similar vein, for the CMU-MOSEI
dataset, we assigned 22852 training instances and 5714 testing instances. Unlike the method in [32],
we did not use 10-fold cross-validation. This was due to the challenges and resources needed to apply
cross-validation to deep learning models.
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In speech emotion recognition, precision, recall, and accuracy are common metrics to evaluate
model performance. They are widely accepted in the SER field because they offer a well-rounded view
of how a model performs, considering both its relevance and comprehensiveness.

Our system uses TensorFlow with Python, a popular open-source machine learning platform. We
chose the Adam optimizer with a learning rate of 0.0001 and used ‘categorical_crossentropy’ for the
loss function. We also applied L2 regularization for better efficiency and reliable convergence.

We trained our model for 200 epochs using batches of 32 on a system with an Nvidia GeForce
GTX 1660 Ti 16 GB GPU and an Intel Core i7-1265UE 10-Core CPU. Running on Windows 11 with
64 GB RAM, this setup allowed us to efficiently carry out deep learning tasks during both training
and testing.

4.3 Recognition Results

Tables 2 and 3 represent a detailed breakdown of the performance of the proposed emotion
recognition system for each class of emotion. The classes include “Angry”, “Sadness”, “Disgust”,
“Fear”, “Happy”, “Surprise”, “Calm”, and “Neutral”. The performance measures used are precision,
recall, and F1 score.

Table 2: The system’s recognition performance on different emotions of the RAVDESS dataset

Emotion Angry Sadness Disgust Fear Happy Surprise Calm Neutral

Precision 95.9 94.4 93.7 94.1 96.2 96.6 97.0 89.9
Recall 97.5 95.6 95.1 93.7 95.9 97.3 96.1 93.8
F1 96.7 95.0 94.4 93.9 96.0 96.9 96.5 91.8

Table 3: The system’s recognition performance on different emotions of the CMU-MOSEI dataset

Emotion Angry Sadness Disgust Fear Happy Surprise

Precision 92.6 94.9 92.0 91.7 98.2 88.5
Recall 91.2 95.3 90.8 92.5 96.8 89.7
F1 91.8 95.0 91.3 92.0 97.7 89.0

From the Table 2, we can infer that the model has a relatively high precision, recall, and F1 score
for all the emotion classes of the RAVDESS dataset, indicating that it is performing well in recognizing
different emotions from the speech data. The lowest precision is for the “Neutral” class at 89.9%, but
this is still quite high. The lowest recall is for the “Fear” class at 93.7%, but again, this is relatively high.
The F1 scores also indicate that there’s a good balance between precision and recall across all classes,
with the lowest F1 score being 91.8% for the “Neutral” class. For example, in the “Surprise” class, the
model correctly predicted anger with a precision of 96.6% of the times. It identified 97.3% of all actual
instances of surprise (recall). The F1 score of 96.9% suggests a good balance between precision and
recall.

Overall, these numbers suggest the model performs well across different emotion categories,
successfully recognizing each type of emotion from the given speech data.
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In the case of the CMU-MOSEI dataset, we evaluated the performance of our emotion recognition
model across six different emotions: Angry, Sadness, Disgust, Fear, Happy, and Surprise. The results,
as outlined in Table 3, show strong performance across all tested emotions. Our model achieved
exceptional precision, particularly for ‘Happy’ emotion, which scored 98.2%. Similarly, recall was
highest for ‘Happy’ at 96.8%, indicating the model’s robustness in identifying instances of this emotion.
The model demonstrated balanced performance in the ‘Sadness’ category, with both precision and
recall scoring around 95.0%. Furthermore, the ‘Happy’ emotion resulted in the highest F1 score
(97.7%), denoting an excellent harmony between precision and recall.

However, our analysis also highlighted some areas for potential improvement. Both ‘Surprise’
and ‘Disgust’ had relatively lower precision, recall, and F1 scores compared to other emotions, which
suggests room for further optimization. This robust evaluation provides important insights into our
model’s performance, emphasizing its strengths and revealing potential areas for future enhancements.
These results are an encouraging step forward for the development of more effective and accurate
emotion recognition models.

The evaluation process was expanded by employing a confusion matrix, as shown in Tables 4 and
5. These tables supplied a visual interpretation and detailed explanation of how the model performed.
It illustrated that the model surpassed a 92% accuracy rate on the RAVDESS dataset and 90% on the
CMU-MOSEI dataset for each unique emotion class. These results suggest a high level of precision in
the classification tasks, indicating the model’s sturdy and trustworthy ability to categorize emotions.

Table 4: The confusion matrix on the RAVDESS dataset

Angry Sadness Disgust Fear Happy Surprise Calm Neutral

Angry 0.97 0.00 0.01 0.01 0.00 0.00 0.00 0.00
Sadness 0.00 0.95 0.00 0.03 0.00 0.00 0.01 0.00
Disgust 0.00 0.01 0.94 0.00 0.00 0.00 0.01 0.02
Fear 0.03 0.00 0.01 0.94 0.00 0.00 0.0 0.00
Happy 0.00 0.00 0.00 0.00 0.96 0.03 0.00 0.00
Surprise 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.01
Calm 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.02
Neutral 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.92

Table 5: The confusion matrix on the CMU-MOSEI dataset

Angry Sadness Disgust Fear Happy Surprise

Angry 0.92 0.00 0.04 0.01 0.00 0.00
Sadness 0.02 0.95 0.00 0.01 0.00 0.00
Disgust 0.00 0.04 0.92 0.00 0.00 0.00
Fear 0.03 0.00 0.02 0.91 0.00 0.00
Happy 0.00 0.00 0.00 0.00 0.98 0.00
Surprise 0.00 0.00 0.00 0.00 0.05 0.90
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The following Table 6 presents a comparative analysis of the proposed SER system against
benchmark methods applied to two distinct datasets: RAVDESS and CMU-MOSEI.

Table 6: Comparison with the benchmark SER methods

Datasets SER methods Accuracy (%)

Bhangale et al. [24] 94.2
Ephrem et al. [33] 82.71

RAVDESS Pulatov et al. [34] 94.8
UA et al. [35] 89.0
The proposed system 95.3

Mittal et al. [36] 89.0
Xia et al. [37] 88.2

CMU-MOSEI Jing et al. [38] 87.5
Lian et al. [39] 86.82
Fang et al. [40] 85.40
The proposed system 93.2

For the RAVDESS dataset, we compare four SER methods, namely Bhangale et al. [24],
Ephrem et al. [33], Pulatov et al. [34], and UA et al. [35]. The proposed system is also included for
reference. Notably, the proposed system exhibits the highest accuracy of 95.3%, outperforming the
other methods.

On the CMU-MOSEI dataset, we assess the performance of three SER methods, specifically
Mittal et al. [36], Xia et al. [37], and Jing et al. [38], along with the proposed system. Here, the proposed
system achieves an accuracy of 93.2%, which surpasses the results obtained by the other methods.

The findings from this comparative analysis demonstrate the efficacy of the proposed system in
both datasets, RAVDESS and CMU-MOSEI, showcasing its robustness in recognizing emotions from
speech signals. It is important to consider the limitations and biases in each dataset, as they can impact
the performance of SER methods. Careful evaluation and validation on diverse datasets are essential
for developing robust emotion recognition models.

4.4 Discussion and Limitations

The results of our study demonstrate that the speech emotion recognition system we developed
outperforms existing models in terms of detection accuracy. By leveraging high-resolution Mel-
spectrograms for feature extraction and swiftly computing MFCCs, our system streamlines the
emotion recognition process. This innovation effectively tackles the pressing challenge of feature
extraction, a crucial component that significantly impacts the effectiveness of SER systems.

Upon evaluating our proposed model, we garnered several compelling insights. The system
showcased an impressive level of accuracy, as evidenced by the data in the accompanying tables.
Across multiple emotion categories, our model consistently achieved Precision, Recall, and F1 scores
exceeding 90% for the majority of them. These metrics highlight the model’s robustness and skill in
emotion classification tasks.
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The categories of ‘Happy’ emotions stood out, with exceptional Precision and Recall rates of
98.2% and 96.8%, respectively. This underlines the model’s proficiency in correctly identifying and
categorizing instances of happiness. Conversely, the categories for ‘Surprise’ and ‘Disgust’ showed
slightly weaker performance metrics, suggesting that the model may face challenges in accurately
categorizing these specific emotions.

These variations could be attributed to the inherently complex and subjective nature of human
emotions, which can differ significantly across individual experiences and settings. Nonetheless, the
overall high performance metrics affirm the model’s potential and efficacy.

While our findings are encouraging, there are several limitations to consider. Our study primarily
utilized the CMU-MOSEI and RAVDESS databases, which mainly consist of acted emotions that may
not fully represent the nuances of spontaneous emotional expressions. For future research, extending
to databases that capture more naturalistic emotional behavior would be beneficial. Additionally, our
system is optimized for English and may display varying performance levels in different linguistic and
cultural contexts. Future work should aim to improve the system’s linguistic and cultural adaptability.
Moreover, our current model is audio-focused, overlooking the potential benefits of integrating visual
or textual cues. Investigating multi-modal systems could offer a more holistic approach to emotion
recognition in future studies.

Finally, it is worth noting that the performance of our system can be influenced by various
factors like background noise, distance of the speaker from the microphone, and other environmental
elements. To enhance robustness, future iterations of this model could incorporate noise reduction
techniques and additional preprocessing measures to maintain high recognition accuracy under diverse
recording conditions.

5 Conclusion

The primary focus of our study was to design a sophisticated SER system that makes the
most of Mel-spectrograms for intricate spectrogram extraction, coupled with the swift computation
capabilities of MFCC, making the feature extraction phase both efficient and effective. At the heart of
our effort was a commitment to go beyond existing benchmarks. We sought to address and overcome
the limitations of current techniques, driven by an unwavering commitment to heightened accuracy
in emotion recognition. In order to validate our advancements, we subjected our proposed system to
rigorous evaluations using two distinct databases: The CMU-MOSEI and RAVDESS. The ensuing
results not only met our expectations but in many respects, exceeded them. The system showcased
its mettle by recording an accuracy rate of 93.2% on the CMU-MOSEI dataset and an even more
commendable 95.3% on the RAVDESS dataset.

Our findings in this research signify more than just technical advancements; they herald a new
era in speech recognition systems. The insights we have garnered underscore several compelling
avenues that warrant deeper investigation. To elaborate, we are currently delving into the fusion of
our established model with the nuanced mechanisms of transformer architectures and self-attention.
Additionally, there is a concerted effort underway to harness the power of pretrained audio models.
Our overarching aim remains clear: to sift through speech and extract features that are not only
abundant but also meaningful, thereby elevating the finesse of emotion detection. Recognizing the
evolving landscape of spoken language and its myriad emotional undertones, we are also directing
our energies towards assimilating a broader emotional speech database. Such a move is anticipated to
fortify our model’s adaptability, ensuring it remains robust when faced with a spectrum of emotional
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expressions and intricate speech variations. By doing so, we aim to make our model not just technically
adept but also practically invaluable in diverse real-world scenarios.

In closing, the advancements birthed from this research project hold profound potential. The
ripple effects of our work are anticipated to be felt far and wide, from making machine-human
interactions more intuitive and genuine to refining therapeutic speech interventions and offering
sharper mental health evaluations. We stand at the cusp of a transformative era, and our work seeks
to be a beacon, lighting the way for future explorations and innovations that have the power to enrich
and reshape the tapestry of our daily interactions and experiences.
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