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ABSTRACT

Advanced Persistent Threat (APT) is now the most common network assault. However, the existing threat analysis
models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.
They cannot provide rapid and accurate early warning and decision responses to the present system state because
they are inadequate at deducing the risk evolution rules of network threats. To address the above problems, firstly,
this paper constructs the multi-source threat element analysis ontology (MTEAO) by integrating multi-source
network security knowledge bases. Subsequently, based on MTEAO, we propose a two-layer threat prediction
model (TL-TPM) that combines the knowledge graph and the event graph. The macro-layer of TL-TPM is based
on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements
for threat warning and decision-making; The micro-layer ingeniously maps the attack graph onto the event graph
and derives the evolution path of attack techniques based on the event graph to improve the explainability of the
evolution of threat events. The experiment’s results demonstrate that TL-TPM can completely depict the threat
development trend, and the early warning results are more precise and scientific, offering knowledge and guidance
for active defense.
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1 Introduction

Network attacks have caused irreparable economic losses to countries, companies, and individuals.
One of the most effective ways of dealing with cyber-attacks today is using cyber threat intelligence
(CTI). However, many CTIs are not categorized by domain, weakening the sharing effectiveness [1].
Moreover, the heterogeneity of the indicator of compromise (IOC) in CTI leads to severe fragmentation
of security information, which requires much time and effort to decipher the potential relationships
between them manually [2]. However, threat modeling enables the heterogeneous information in
CTI to be combined into a model to understand the cyber security situation better and to provide
supporting information for decision-making. At present, there has been a lot of research into threat
modeling. Xu et al. [3] modeled the review dataset as a reviewer projection graph to detect opinion
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spammer groups, who conducted malicious reviews aimed at misleading consumers. Zhao et al. [4]
modeled and analyzed the interdependencies between heterogeneous IOCs as well as the interactions
between different types of web objects in multi-source data. Their models could describe threat events
more comprehensively and effectively, capture the intrinsic interactions between cyber objects and
learn the evolutionary patterns of cyber threats. In addition, there are numerous threat modeling
researches based on ontology, which construct ontology models specific to the cybersecurity domain.
Ontology models can describe a wide range of information about cyber threats in concepts [5],
solving the problem that data from different security platforms can be challenging to understand
and utilize due to semantic heterogeneity. Wu et al. [6] created a security knowledge ontology that
used a standard language to represent assets, vulnerabilities, and attacks. However, the ontology did
not include defensive tactics, which resulted in an inadequate definition of the ontology’s classes.
Iannacone et al. [7] created an advanced ontology based on malware and the diamond model. Still,
the structure was unclear, and entities in multiple datasets remained isolated, making it impossible
to search or query for entities and inter-entity relationships. Syed et al. [8] developed the unified
cybersecurity ontology, characterized and articulated using the cybersecurity standard. However, the
instance data in this ontology model was inadequate and could not keep up with the knowledge base’s
continual upgrading. After summarizing the advantages and shortcomings of the previous work, the
multi-source threat element analysis ontology (MTEAO) in this paper is built from numerous aspects
utilizing data from various knowledge bases. The information in disparate knowledge bases can be
linked to minimizing semantic heterogeneity, allowing inference rules to be formed to accomplish
correct queries and prospective knowledge inference. At the same time, MTEAO can be regularly
updated and enhanced by acquiring threat information from the outside world.

Simultaneously, APT has moved into the mainstream of today’s network assaults. Traditional
passive defenses are no longer enough to meet today’s security requirements. Active defense can
be targeted by learning and analyzing the attacker’s attack preference [9]. In addition, attack path
prediction is a proactive defense approach against APT assault, and graph structures are increasingly
being applied to it by scholars. Knowledge graph maps the real world to the data world, which describes
concepts, entities, events, and their relationships in the objective world. Based on threat modeling,
the concept “attack” is described in the knowledge graph as a relation link between the attackers and
devices, changing the attack path prediction issue into the link prediction issue in the knowledge graph.
As a result, how to forecast the attack path correctly and effectively is an essential research topic in
cyberspace defense. Currently, previous research on attack paths is divided into two main layers: the
macro-layer and the micro-layer.

At the macro-layer: Hu et al. [10] proposed a multi-step attack path prediction method by mapping
the attack graph into an absorbing Markov chain, which not only ranked the threat levels of nodes but
also quantified the probability distribution of attack paths with different lengths, but their method was
not scientific for state transition probability calculation. Gong et al. [5] created a threat perspective
by simply concatenating the detected assaults without considering the pre-post connection between
devices and single-step attacks, which could only forecast the attack paths in simple circumstances.
Yuan et al. [11] employed the breadth-first traversal algorithm in the attack path creation approach.
The algorithmic model created all tracks in the attack scenario, resulting in path redundancy. A loop
elimination algorithm was developed by Zhang et al. [12], which effectively avoided path redundancy
and increased the effectiveness of threat path generation. However, they did not create inference
rules because their ontology was only based on a graph database’s search function, which could
not explore the implicit knowledge. At the micro-layer: Wang et al. [13] evaluated the attack success
likelihood. However, the attacker capability level was established without objective calculation findings
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as a foundation, which might influence the prediction outcomes. Wu et al. [6], Zhang et al. [14] and
Sun et al. [15] proposed the models can all predict and analyze attack paths from both macro and micro.
Wu et al. [6] and Zhang et al. [14] did not consider factors affecting threat propagation direction when
predicting paths, while Sun et al. [15] could not timely give defensive measures for the predicted threats.

In response to the above shortcomings of previous work, this paper proposes the two-layer model
TL-TPM to predict the development trend of threat events at both macro and micro-layers. The
macro-layer indicates the threat propagation path based on the knowledge graph. It examines both the
attack success probability and the threat degree of each device, as well as combining the pre-and post-
permissions to assess if the device is likely to be compromised. The micro-layer depicts the evolution
process of the attack techniques based on the prediction results of the macro-layer and the temporal
characteristics of the attack behavior, making the analysis more consistent with the actual situation of
the network attack. The following are this paper’s significant contributions:

1. Having studied the multi-source network security knowledge bases and integrated the infor-
mation elements in them, the multi-source threat element analysis ontology and the network
security knowledge inference method have been proposed to realize the association among
heterogeneous network security knowledge bases.

2. Using the absorbing Markov chain as a bridge, we have innovatively mapped the attack graph
to the event graph. At the same time, the Markov transition matrix is used to optimize the
calculation of the event transition probability, making the attack process described by the
attack graph can be more visually and accurately presented.

3. Proposing a two-layer attack prediction model, which combines the knowledge graph and event
graph. It provides a comprehensive analysis of the evolution path of an attack from both macro
and micro perspectives, visualizing the external trace and internal logic of the threat event
development, which provides information and decision support for active defense.

2 Threat Modeling
2.1 Multi-Source Network Security Knowledge Integration and Ontology Construction

Different network security knowledge bases contain different kinds of information about threat
events. To better integrate fragmented information for utilization, firstly, we collect, categorize, and
organize information about threat events from network security knowledge bases. Secondly, we de-
duplicate and fill in the gaps of the information to ensure the accuracy and completeness of them.
Finally, the integrated information is classified and graduated to construct a complete ontology that
enables fast and accurate access to relevant information for automated or semi-automated incident
handling. The following are the knowledge bases utilized to collect information in this paper and
Table 1 shows their specifics:

• Common Platform Enumeration (CPE) [16]
• Common Vulnerabilities and Exposures (CVE) [17]
• National Vulnerability Database (NVD) [18]
• Common Weakness Enumeration (CWE) [19]
• Common Attack Pattern Enumeration and Classification (CAPEC) [20]
• Adversarial Tactics, Techniques, and Common Knowledge Matrix (ATT&CK) [21]
• Detection, Denial, and Disruption Framework Empowering Network Defense (D3FEND) [22]



3996 CMC, 2023, vol.77, no.3

Table 1: Details of the knowledge bases

Knowledge
base

Information of
entries

Format of data Linkage First release
date

Operator

CPE Platform XML NVD 2007 NIST
CVE Vulnerability JSON NVD 1999 MITRE
NVD Vulnerability JSON, XML CVE, CWE, CPE 2005 NIST
CWE Weakness XML CVE, NVD,

CAPEC
2006 MITRE

CAPEC Attack pattern XML, CSV CWE, ATT&CK 2007 MITRE
ATT&CK Attack technique JSON CAPEC 2013 MITRE
D3FEND Defense

technique
CSV ATT&CK 2021 MITRE

Fig. 1 depicts the relationships between the knowledge bases mentioned above. From these
knowledge bases, we extract multi-source network security information and store it in a graph
database. In particular, the items in each knowledge base function as nodes in the graph database,
while the relational linkages across knowledge bases operate as edges. These edges are not bidirectional
between the knowledge bases mentioned above. However, they can be bi-directionally navigated when
incorporated into the graph structure. As a result, any node can be used to query the data in any
knowledge base.

Figure 1: Linkages between knowledge bases

2.2 Classes and Attributes of MTEAO

We successfully linked multiple source knowledge bases and integrated the data from them as
a source of security knowledge for developing our ontology model, the multi-source threat element
analysis ontology (MTEAO). And we collectively call the entities in it, such as vulnerabilities, weak-
nesses, attack patterns, attack techniques, defense techniques, etc., as threat elements. The specifics of
the MTEAO’s classes are shown in Table 2.

The structure among classes is shown in Fig. 2a, while the logical links among the second-level
subclasses are shown in Fig. 2b.
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Table 2: The details of the classes

Top-level class Second-level
subclass

Attribute Source of
knowledge

Defend Artifact,
Defend_Technique

hasArtifact, beAgainst,
hasMitigation

D3FEND

Attack ATTCK_Technique,
AttackPattern,
Weakness,
Vulnerability

hasArtifact, beAffected,
beExploited, beUsed, belong_to,
hasCVSS, hasLevel,
useATechnology

ATT&CK,
CAPEC, CWE,
CVE, NVD

Attacker Attacker_Name useATechnology, beAgainst,
hasAccess, hasCompromised

ATT&CK

Device Device_Name,
Asset

beAffected, hasAsset, hasAccess,
hasPreRoute, hasCompromised
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subclass of
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Attacker Attack

Defend

Asset
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Figure 2: (a) The inclusion relationships among classes; (b) The logical links among the second-level
subclasses

2.3 Inference Rules of MTEAO

2.3.1 Design of Inference Rules

Using inference rules enables us to deduce possible knowledge based on existing information,
allowing us to discover new implicit correlations between threat elements. Protégé’s inference engine
can execute sequential multi-step inference and aids in comprehending the inferred findings via
inference interpretation. Table 3 shows how the seven inference rules in this paper are intended to
serve diverse purposes.
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Table 3: Inference rules and usages

R1 ATechnique(?t)∧hasArtifact(?t, ?a)∧Artifact(?a)∧hasMitigation(?a,
?d)→hasDefend(?t, ?d)

Usage The attack technique can be mapped to the defense technique by digital
artifact. If the security staff knows the attack technique employed by the
attacker, they may immediately receive the defense approach that matches it.

R2 Artifact(?f) ∧ DTechnique(?d) ∧ hasMitigation(?f, ?d) ∧ sameAs(?f,
EventLog)→sqwrl:select(?f, ?d)

Usage Each digital artifact is connected with its related defense technique, and various
digital artifacts may be at varying degrees of risk. Security staff can prioritize
query defense techniques for the most susceptible digital artifact.

R3 Asset(?p) ∧ beAffected(?p, ?v) ∧ CVE_ID(?v) ∧ hasCVSS(?v, ?s) ∧ CVSS(?s) ∧

hasLevel(?s, ?l) ∧ VulnerableLevel(?l) →hasSeverityLevel(?p, ?l)
Usage The identified asset has a vulnerability, and severity levels categorize different

types of vulnerabilities. The vulnerability level of the asset is determined by the
severity of the identified vulnerability. CVSS scores quantitatively assess the
severity of vulnerabilities, and they are divided into five levels: “Critical”,
“High”, “Low”, “Medium”, and “None”. According to the inference rule,
“Critical” and “High” are automatically assigned to the asset’s high
vulnerability level “HighLevel,” “Medium” is assigned to the asset’s medium
vulnerability level “MediumLevel,” and “Low” and “None” are assigned to the
asset’s low vulnerability level “LowLevel.”

R4 Asset(?p) ∧ VulnerableLevel(?l) ∧ hasSeverityLevel(?p, ?l) ∧

sameAs(?l,HighLevel)→ sqwrl:select(?p,?l)
Usage If the asset has a high vulnerability level, running the query will identify it.

Security staff can easily locate it and give it priority for maintenance.
R5 Asset(?t) ∧ beAffected(?t, ?y) ∧ Vulnerability(?y) ∧ beExploited(?y,?s) ∧

Weakness(?s) ∧ sameAs(?s, CWE-22)∧ AttackPattern(?n) ∧beUsed(?s, ?n) ∧

belong_to(?n, ?u) ∧ ATechnique(?u) ∧ sameAs(?u, T1027) → sqwrl:select (?t, ?u)
Usage The vulnerability in assets is often linked to a particular weakness, which in

turn is associated with an attack pattern, and that pattern is linked to a specific
attack technique. By running a query, one can identify the asset that has a
particular weakness and is affected by the specific attack technique. This
enables security personnel to isolate device that has specific weakness and is
under attack by specific attack technique.

R6 Device(?e) ∧hasAsset(?e,?t) ∧Asset(?t) ∧beAffected(?t,?y) ∧Vulnerability(?y)
∧beExploited(?y, ?w) ∧ Weakness(?s) ∧ beUsed(?s, ?n) ∧ AttackPattern(?n) ∧

belong_to(?n, ?u) ∧ ATechnique(?u) ∧ hasArtifact(?u, ?c) ∧ Artifact(?c) ∧

hasMitigation(?c, ?i)→ sqwrl:select(?e, ?t, ?y, ?s, ?n, ?u, ?c, ?i)

(Continued)
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Table 3 (continued)

Usage The device can sequentially identify the asset, vulnerability, weakness, attack
pattern, attack technique, digital artifact, and defense technique connected to
it. When the query is initiated, all relevant threat elements are presented.
Security personnel have the option to look through all the results or focus on
specific ones to address potential threats.

R7 Attacker(?r) ∧ Device(?e) ∧ Asset(?t) ∧ hasAsset(?e, ?t) ∧ Vulnerability(?y) ∧

beAffected(?t, ?y) ∧ sameAs(?yy, CVE-2021-31645) ∧ hasPreRoute(?t, FTPS) →
hasCompromised(?r, ?t) ∧ hasAccess(?r, ?e)

Usage If the device has an asset with a vulnerability and the previous neighboring
device is connected to it with a device access path, the attacker can compromise
the device and harm the asset. Additionally, by using inference rules R6 and R7
together, it becomes possible to track the vulnerability, weakness, attack
pattern, attack technique, and defense measure of the compromised device over
time.

2.3.2 Application of Inference Rules

Then, we will demonstrate the practical application of inference rules in combating security
threats. Below are two distinct scenarios that will showcase their effectiveness:

1. Determine the vulnerability level of the asset and whether the asset will be conquered

The asset “arch_newsworld” is stored in the email server and has a vulnerability known as “CVE-
2005-3435” with a severity level of “High”. In Fig. 3, the green box shows the vulnerability level of
“arch_newsworld” is “HighLevel” by executing inference rule “R3”. Additionally, the officer can use
the inference rule “R7” to determine if an attacker can conquer the asset. The red box shows that the
attacker can obtain complete control of the email server and compromise the “arch_newsworld” asset.

Figure 3: The result of determining the vulnerability level of the asset and whether the asset will be
conquered

2. Search for information on attack and defense
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The security officer can execute the “R6” inference rule to retrieve information on devices, assets,
vulnerabilities, weaknesses, attack patterns, attack techniques, digital artifacts, and defense techniques.
Displayed in the yellow box is the output of utilizing “R6”, as depicted in Fig. 4. The “R1” inference rule
can be used by the security officer to search defense techniques that relate to specific attack techniques
directly. The green box displays the defense techniques for the attack technique “T1211”.

Figure 4: The result of searching for information on attack and defense

3 Two-Layer Threat Prediction Model

In the event of a system threat, the top priority is to address and contain it promptly. As a result,
it is crucial to evaluate and forecast the potential progression of the threat. This paper proposes a
two-layer threat prediction model called TL-TPM, which aims to enhance the accuracy of predicting
attacks. The macro-layer of TL-TPM draws the propagation path of threat between devices and
associates these devices with the corresponding threat elements for threat alerting and response; The
micro-layer depicts the evolution process of attack techniques while warning of attack techniques with
a high probability of use, assisting security personnel to strengthen the prevention of specific attacks.
The workflow of this paper is shown in Fig. 5.

3.1 The Macro-Layer of Threat Prediction Based on Knowledge Graph

To accomplish his attack goal, the attacker will exploit weaknesses in the target network and
execute a series of consecutive attacks. The macro-layer of TL-TPM maps this set of attack sequences
as a propagation path of threat between devices. We describe the concept “attack” in the ontology as
a relation link between the attackers and devices, changing the attack path prediction issue into the
link prediction issue in the knowledge graph. To aid in the explanation of the below algorithm, the
appropriate definitions are provided:

• Core asset (cas): The target asset the attacker aims to seize or obliterate.
• Threat degree (thd): The level of risk to the core asset when the device is under attack. The

greater the threat level of a device, the more likely it is that an attacker will select that device for
the next attack, leading the threat to spread to the core asset. thd ∈ [0, 1].

• Threat degree interval (tdi): Security personnel determine the interval of threat degree to classify
the risk stages according to their needs.

• Topology layer (tl): The positioning layer of a device in the system topology. The device closer
to the core assets is defined as a higher layer.
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• Attack success probability (asp): The success probability of an attacker performing a single-step
attack.

• Device set (Devices): A set of all the devices in the system.
• Business access relationship (bar): The access and control relationship between two devices.

d0

bar1→ d1

bar2→ · · · barn→ dn expresses the business access relationships from device d0 to device dn.
And Bar denotes the set of business access relationships.

• Device access path(dpath): An acyclic series of devices connected by business access relation-
ships. The device access path from the specific device d0 to the core asset located device dn is
represented as dpath = {d0,d1,..., dn}.

• Threat propagation path (tpath): It is an ordered sequence of devices conquered by the attacker.
• Initial device (ind): The device initially attacked by the attacker.
• Pre-privilege: It is the pre-condition that a business access relationship exists between device dt

and the previous one dt−1.
• Post-privilege: It is the post-condition that there is a vulnerability in the device, leading the

attacker to gain complete control of the device dt by launching an attack.

Figure 5: Workflow of the system

3.1.1 Calculation of Threat Influence Elements

The role of the attacker’s psychology in the threat spread procedure is overlooked by most existing
attack prediction systems. We evaluate the threat degree of the device based on the attack success
probability to estimate the threat propagation path, considering that an attacker would always use the
most favorable methods to attack the most susceptible device.

1. Calculation of the Attack Success Probability

Attack success probability refers to the success probability of an attacker performing a single-step
attack. Specifically, there are two types of attacks: social engineering attacks and vulnerability exploit
attacks. Professional security staff can easily avoid social engineering attacks, so the probability of
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success is low at 0.2. While the probability of success for vulnerability exploit attacks is determined by
the Common Vulnerability Scoring System (CVSS) score [23].

The CVSS score has a base score (Base) that reflects the inherent characteristic of a vulnerability,
which remains unchanged over time and environment. The composition of the CVSS score is shown
in Table 4. And its calculation formulae are shown in Eqs. (1) and (2).

Table 4: Composition of the CVSS score

Score Sub-score Second-sub score Purpose

Base Exploitability subscore Attack vector (AV) Measuring the ease
(ESC) Attack complexity (AC) of vulnerability

Privilege required (PR) exploitation
User interaction (UI)

Impact subscore (ISC) Confidentiality impact (ImpactConf , IC) Measuring the harm
of a vulnerability

Integrity impact (ImpactInteg, II)
Availability impact (ImpactAvail, IA)

Base =
{

Roundup (Min [(ESC + ISC) , 10]) , else
0, ISC � 0

(1){
ESC = 8.22 ∗ AV ∗ AC ∗ PR ∗ UI
ISC = 1 − [(1 − ImpactConf ) × (1 − ImpactInteg) × (1 − ImpactAvail)]

(2)

when the vulnerability code is more mature, there is a greater chance that the vulnerability will be
successfully exploited. So, we add the code maturity (ExploitCodeMaturity) to optimize the score [15],
which is multiplied by 0.1 to represent the attack success probability. The attack success probability is
calculated as Eq. (3).

pos = 0.1 ∗ Roundup [(Base ∗ ExploitCodeMaturity)] (3)

2. Calculation of the Threat Degree

If device d0 in the device access path dpath is compromised, the threat degree to the core asset can
be calculated in the following way:

i. When dpath = {d0}, which means that the core asset is present in the initial device of the path,
and that device has been compromised, then the threat degree is computed as Eq. (4).

dht(d0, cas) = 1 (4)

ii. When dpath �= {d0}, the attacker can only spread the threat from one device to another by
conducting an attack. Therefore, the threat degree of the device can only be determined if the
threat propagation path tpath exists on the device access path dpath. If not, it signifies that



CMC, 2023, vol.77, no.3 4003

the threat cannot be disseminated to the core asset via the dpath by attack techniques. As a
consequence, the threat degree is 0.

To successfully compromise the high-topology layer device, the low-topology layer device must
first be compromised. Consider the ratio of topological layer numbers between the device and the core
asset as the weight. A higher weight indicates that device dt is closer to the core asset. In addition, the
attacker must take control of every device in the threat propagation path before device dt if he wishes
to compromise device dt. So, this weight is then multiplied by the multiplication of the attack success
probability of all devices on the threat propagation path passed from the initial device d0 to device dt.
In this case, the threat degree is calculated as Eq. (5).

thd(dt ,cas) =
⎧⎨
⎩

tldt

tlcas

∗ (∏
dεtpath asp (d)

)
, tpath �= ∅

0, tpath = ∅

(5)

If device dt has more than one adjacent device, and there is the tpath on the dpath between dt and
each adjacent device. Then, the device with the highest threat degree among the adjacent devices is
selected as the next target to attack and spread the threat.

3.1.2 Threat Propagation Path Prediction Algorithm

Next, this paper presents the threat propagation path prediction algorithm (TPPPA) based on
the knowledge graph. TPPPA not only sequentially strings the attacked device nodes into a path but
also associates them with the corresponding multi-source threats elements. It predicts the path while
outputting relevant threat information, giving security personnel an intuitive understanding of the
attacks being suffered and their countermeasures.

The core code of TPPPA is as follows:

Input: Devices, Bar, TDI , cas, ind, MTEAO
1) Initialize DPaths, tpath, Privileges, AS;
2) target=extractAss(cas,Decives); // Search for the device target

where the core asset cas is held
in the device set Devices.

3) DPaths=Pathgenerate(ind,target,Devices,Bar); // String devices into device
access paths via business access
relation-ships.

4) prePrivileges,postPrivileges = attReason(ind,Bar,MTEAO); // Extract the pre-and
post-privileges from the
inference results and
respectively place them in the
prePrivileges and
postPrivileges.

5) function Iteration(ind): // The function of the iterative
attack.

6) tpath.append(ind);

(Continued)
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(continued)

7) Initialize degrees; // Initialize the set of threat
degrees for all adjacent devices
at the next layer.

8) localDevices = findLocal(ind,prePrivileges) // Find all adjacent devices at the
next layer based on the
prePrivileges.

9) for local in localDevices: // Find the next target device
local in the adjacent device set
localDevices.

10) if extractPost(local, postPrivileges) == true: // If the device’s post-privilege can
be found in the post-Privileges.

11) degree.append(calculateThd(local, tpath, target)) // Calculate the threat degree of
all adjacent devices.

12) end if;
13) else:
14) degree.append(0);
15) end else;
16) end for;
17) maxd = maxDevice(degree, localDevices) // Extract the device with the

highest threat degree among all
adjacent devices to be the next
target device.

18) if maxd != target:
19) Iteration(maxd);
20) end if;
21) end;
22) GeneratClusterGraph(Dpaths,tpath,TDI) // Cluster devices into

corresponding threat degree
intervals to construct a macro
risk state graph (MRS).

23) Iteration(ind);
24) for device in tpath:
25) tpath.append(attScenario(device)); // Query the threat elements for

all devices in tpath.
26) end for;
Output: macro risk state graph MRS; threat propagation path tpath

The algorithm described above follows a series of steps: Steps 1)∼4) involve initializing the
required sets and extracting required data. Steps 5)∼21) form the heart of the algorithm, predicting
the threat propagation path. Because to completely control the device dt, both requirements must
be simultaneously met: 1. The adjacent device dt−1 of device dt had been completely controlled by
the attacker. And a device access path exists between the dt−1 and dt. 2. The device dt contains a
vulnerability. As a result, the pre-privileges are extracted to establish the device access path and then
the post-privileges are extracted to determine whether the threat propagation paths exist. Then, select
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the device with the highest threat degree among the adjacent devices as the next target. Afterward,
create the directed edge to form the complete threat propagation path. Step 22) clusters devices into
corresponding threat degree intervals and produces the macro threat state graph. Steps 23) ∼26) extract
threat elements for all devices in the tpath and presents the result with the knowledge graph.

3.2 The Micro-Layer of Threat Prediction Based on Event Graph

The micro-layer of TL-TPM uses an absorbing Markov chain to map the attack graph to the event
graph, which depicts the evolution process of attack techniques. It can warn of attack techniques with
a high probability of use, assisting security personnel to strengthen the prevention of specific attacks.

3.2.1 Preliminary Knowledge and Theoretical Arguments

This section first explains the basic concepts of the attack graph and absorbing Markov chain,
then argues the rationality of mapping the attack graph to the event graph through the absorbing
Markov chain. Finally, the attack evolution path prediction algorithm is presented.

1. Attack graph

The attack graph (AG) is a visualization method to model the association of multi-step attack
behavior and represent the attack process [24]. It is a directed graph that portrays all possible
penetration paths of an attacker in the network. An example of an attack graph is shown in Fig. 6.

Figure 6: The example of an attack graph

AG is represented by a quadruple AG = (S, E, A, δ), where:

• S denotes the set of state nodes, S = {Si|i = 1, 2, · · · , j} denotes the set composed of j different
state nodes, and the state nodes can be divided into starting state nodes, transition state nodes,
and target state nodes. For example, in Fig. 6, S1 is the start state node, S2, S3, S4 are the
transition state nodes and S5 is the target state node;

• E denotes the set of directed edges between state nodes, em,n ∈ E, em,n represents the edge of the
state node Sm pointing to Sn, i.e., a state transfer has occurred from Sm to Sn;

• A denotes the set of atomic attack nodes, A = {ai|i = 1, 2, · · · , j}, ai is an atomic attack, with
each successful attack corresponding to a state transition em,n.

• δ denotes the set of state transition probabilities, δ(em,n) denotes the probability P(Sm|Sn) of the
attacker transferring from state Sm to state Sn, and δ(em,n) is equal to the probability P(a) of an
atomic attack a occurring.

2. Absorbing Markov chain

The main advantages of Markov processes are the ability to build prediction models in time based
on statistical information or the results of operational observations [25]. And the Markov chain (MC)
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is a Markov process in which both time and state are discrete [26]. For a discrete set S = {s1, s2, · · · , sn}
containing a finite number of states, each state is only related to the previous adjacent state, called
posteriority-free, i.e., P(si |si−1,si−2,···s1) = P(si |si−1). The probability P(si |si−1) is the transition probability of
the state si → si−1, and the transition probabilities between all state nodes form the state transition
probability matrix P.

The absorbing Markov chain (AMC) is an MC that contains at least one absorbing state and from
which any one of the states can eventually reach the absorbing state. If an AMC has r absorbing states,
t non-absorbing states, and all states are n, then n = r+ t. At this point, the state transition probability

matrix is expressed as P =
[

Q R
0 I

]
. Q is the t × t matrix representing the probabilities of transition

between transition states; 0 is the r × t zero matrix; R is the t × r non-zero matrix representing the
transition probabilities from transition states to absorbing states; and I is the r × r unit matrix.

3. Mapping of attack graph to the absorbing Markov chain

In AG, the transition of the current state si to the next state si+1 is only related to whether the state si

satisfies the vulnerability exploitation, independent of the previous states, at which point the transition
between states is precisely in line with the posteriority-free property of MC; The attacker will eventually
reach a stable termination state through a multi-step attack based on vulnerability exploitation, which
is consistent with the absorption state of AMC; A network attack has at least one termination state,
and an AMC has at least one absorbing state; And the successful probability of atomic attack in AG
can be regarded as the state transition probability in AMC. Therefore, AG can be mapped to AMC.

4. Mapping of absorbing Markov chain to event graph

The event graph (EG) represents events and their relationships as a logically directed graph. It
takes abstract and generalized events as nodes, connected to form directed edges that express the
evolution process between events. And this process can be considered as a transition between events,
then the transition probability on the directed edge represents the probability of the event’s evolution.
This probability can be calculated and expressed precisely in terms of the transition matrix of AMC.
Thus, AMC can be mapped to the EG. At the same time, we can optimize the Markov transition matrix
by considering multiple dimensions affecting the event transition and assigning different weights to
them. So far, we have achieved the mapping from AG to EG.

3.2.2 Attack Evolution Path Prediction Algorithm

Unlike the way of calculating event transition probability in general EG, this paper optimizes
it to reflect the event evolution process better. We propose an available method for measuring the
hazard of an attack technique. We calculate the hazard of attack techniques from three metrics: “Life
Cycle Stage”, “Likelihood of Attack”, and “Skills Required0”. The higher hazard means the higher
the probability that the attacker will use the attack technique, then the higher the likelihood that the
attack technique will transfer.

The ATT&CK matrix contains 14 attack strategies, and each attack strategy includes several
attack techniques. It represents a complete sequence of attack lifecycle stages in the form of a table
from left to right. The further back the attack technique is in the lifecycle stage, the closer it is to
complete an attack and the more harmful it is. Therefore, each attack technique is scored according
to the attack lifecycle stage it belongs to.

The two metrics in CAPEC are: “Likelihood of Attack” and “Skills Required”. Both metrics
measure the probability of an attack occurring and are graded as “High”, “Medium”, and “Low”.
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As shown in Table 5, we converted them into scores “9,” “6”, and “3” to quantify the probability
of using the attack technique. The higher the probability that an attack technique is used, the more
harmful it is.

Table 5: Grade and score

Metrics Grade Score

1) Likelihood of Attack High 9
2) Skills Required Medium 6

Low 3

Each attack technique is scored on the above three metrics, and the three scores are summed and
averaged for the final attack technique hazard score. Based on the method of attack technique hazard
metric, we propose the attack evolution path prediction algorithm (AEPPA). AEPPA normalizes the
attack technique hazard score to realize the mapping from AG to AMC and finally constructs the EG
with the Markov transition matrix. The core code of AEPPA is as follows:

Input: the set of attack techniques hazard ATH, threat propagation path tpath

1) Initialize att_amc; // Initialize the list for transition probability matric of
AMC.

2) dt_s = getScore(tpath, DT); // Get hazard scores for all attack techniques.
3) att_m = createAttM(dt_s) // Generate an n×n dimensional attack technique

hazard scores matrix.
4) for row in att_m.get_rows(): // Iterate over each row in the matrix.
5) r_total= row.totals() // Sum the values of the elements in row i.
6) r_new = [ ] // Generate a new row.
7) for num in row: // Iterate over each element in row i.
8) r_new.append(num / r_total) // Calculate the element’s value in row i, column j, and

put it in the new position of row i, column j.
9) att_amc.append(r_new) // Generate transition probability matrix.
10) generateEventicGraph(att_amc); // Obtain the EG based on the transition probability

matrix.
Output: hazard score for each attack technique; transition probability matrix; attack technique
evolution event graph

The algorithm described above follows a series of steps: Step (1) initializes the list for transition
probability matric of AMC. Step (2) uses the method of attack technique hazard metric to obtain the
hazard scores for all attack techniques based on the set of attack techniques hazards. Step (3) generates
an n × n dimensional matrix using the hazard scores of all attack techniques. If the attacker and the
attack techniques are considered state nodes, then n represents the number of state nodes, and the
values of rowi represents the score from the statenodei to all state nodes. Steps (4) ∼ Step (9) calculate
and obtain the transition probability of each attack technique to itself and any other attack technique,
and put them into the matrix list in Step (1). At this point, we obtain the transition probability matrix
of AMC. Step (10) gets the EG based on the transition probability matrix.
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AEPPA finally outputs the hazard score for each attack technique and the transition probability
matrix of the attack techniques, enabling the subsequent analysis of the evolution process to depend on
accurate data. At the same time, the visualization of EG enhances the understanding of the evolution
process of threat events.

4 Experiment
4.1 Scene of the Experiment

The experiment scene is shown in Fig. 7. The system consists of three subnets, with a firewall
and the intrusion detection systems (IDS) deployed to achieve access control and intrusion detection.
The firewall allows only the workstation and web server in the demilitarized zone (DMZ) to interact
with the outside world, and the network line of the workstation1 is connected from the router; Subnet
1 deploys an administration station, a web server, and a file transfer protocol server. And the router
also connects with the administration station, which can interact with workstation1 and access the web
server2 and file transfer protocol server; Subnet 2 deploys a workstation and a data server. Web server1
and workstation2 have user accounts of the data server and can access the data server. Tables 6 and
7 present the corresponding information and the business access relationships of the devices in the
system.

Figure 7: Scene of the experiment

Table 6: Instance details

Device Topology
hierarchy

Asset Vulnerability CVSS Vulnerability type

Firewall 1 wordfence_
security

CVE-2022-3144 4.8 Cross-site
scripting

Router 2 rv_110 w CVE-2022-20923 9.8 Bypass a
restriction or
similar

Web server1 2 phpBB CVE-2005-0603 5.0 Obtain
information

(Continued)
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Table 6 (continued)

Device Topology
hierarchy

Asset Vulnerability CVSS Vulnerability type

Workstation1 3 vcenter_server CVE-2021-21972 9.8 Execute code
directory traversal

Data server 3 SQL CVE-2004-0366 7.5 SQL injection
Workstation2 3 matrix_screen_

saver
CVE-1999-1454 4.6 Bypass a

restriction or
similar

Admin station 4 WeCube CVE-2022-37785 7.5 Privilege
escalation

Web server2 5 mac_os_x CVE- 5.8 Privilege
escalation

FTP server 5 glFTPd CVE-2021-31645 7.5 Denial of service

Table 7: Business access relationships

From To Object relationship

Firewall Router (rv_110 w) hasRoute (FW, rv_110 w)
Firewall Web server1 (phpBB) hasRoute (FW, phpBB)
Router Workstation1 (vcenter_server) hasRoute (Router, vcenter_server)
Router Admin station (google_chrome) hasRoute (Router, google_chrome)
Web server1 WS_2 (matrix_screen_saver) hasRoute (Web_1,

matrix_screen_saver)
Workstation1 Admin station (google_chrome) hasRoute (WS_1, google_chrome)
Workstation2 Data server (SQL) hasRoute (WS_2, SQL)
Admin station Web server2 (mac_os_x) hasRoute (AS, mac_os_x)
Admin station FTP server (glFTPd) hasRoute (AS, glFTPd)
Web server2 FTP server (glFTPd) hasRoute (Web_2, glFTPd)
Data server FTP server (glFTPd) hasRoute (DS, glFTPd)
FTP server — —

4.2 Threat Prediction

The following initial conditions are given in Table 8 according to the experiment scene. In this
section, predictions are respectively made at the macro-layer and micro-layer.

Table 8: Initial conditions

From Attack device Device vulnerability Has core asset

Attacker Firewall CVE-2022-3144 FTP Server



4010 CMC, 2023, vol.77, no.3

4.2.1 Macro Threat Prediction Experiment Based on Knowledge Graph

Based on the threat degrees of the devices, users can set the appropriate threat degree intervals
according to their needs to divide the threat status stages and cluster devices with the same threat
degree in the same interval. Assume that the enterprise stipulates that the threat degree does not exceed
0.15 is low-risk status, 0.15 to 0.20 is medium-risk status, and over 0.20 is high-risk status. And the
three risk states of low, medium, and high are respectively marked with blue, yellow, and red colors.
Executing the TPPPA based on the initial conditions, the macro risk state graph is constructed as
shown in Fig. 8. The circles in Fig. 8 represent the devices under attack; the dotted links constitute
the device access paths; and the solid links form the threat propagation path, indicating the actual
trajectory of the threat as it moves from the low threat degree devices to the high threat degree devices.
The threat degree and vulnerability type of each device is shown in the rectangular box. For simplicity
of expression, the devices are replaced by abbreviations, e.g., the firewall is written as FW.

Figure 8: Macro risk state graph

At the same time, TPPPA calculates the devices most likely to be compromised by the attacker
at each step, links them sequentially into the path, and connects them to the associated multi-source
threat elements for a complete threat propagation path graph. The threat propagation path is marked
with black arrows in Fig. 9, and the different colored circles represent different threat elements.
Security personnel can rely on the graph to quickly grasp the threat and take appropriate defensive
measures for each attack to contain the spread of the threat.

Based on the experiment results, the attacker’s intent was analyzed as follows:

1. The attacker conquered Firewall (FW) by attacking the vulnerability “CVE-2022-3144” in the
software “Wordfence_Security”, which caused FW to be injected malicious web scripts into
the settings and to be compromised completely.

2. Then, the attacker attacked the Router by exploiting the vulnerability “CVE-2022-20923” in
hardware “rv_110w”, which allowed the unauthenticated attacker to bypass authentication.

3. Since Work Station 1 (WS_1) was connected from the Router and its server management soft-
ware “vcenter_server” contained a remote code execution vulnerability “CVE-2021-21972”.
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The attacker used CVE-2021-21972 to execute commands with unrestricted privileges and thus
gained complete control of WS_1.

4. There was a business access path between WS_1 and the Admin Station (AS), and the attacker
attacked the AS along the network. AS owned the software “WeCube”, which contained
the vulnerability “CVE-2022-37785” that caused plaintext passwords to be displayed in the
terminal plug-in configuration. The attacker then exploited the vulnerability to steal passwords
and gain complete control of AS.

5. Via AS, the attacker accessed the FTP Server (FTPS), where the core asset is located. The FTPS
contained the software “glFTPd” with the vulnerability “CVE-2021-31645”. By breaking the
link limit with CVE-2021-31645, the attacker triggered a threat of denial service.

Figure 9: Threat propagation path and threat elements

Combined with the macro risk state graph, the experiment results were compiled to present the
corresponding prediction information, as shown in Table 9.

Table 9: Prediction of the threat propagation path

Device Risk
state

Threat
degree

Be the next
target
device

The next
target
device

Current threat propagation
path

FW Low 0.12 Yes Router Attacker→FW
Router High 0.24 Yes WS_1 Attacker→FW→Router
Web_1 Low 0.12 No — —
WS_1 Medium 0.18 Yes AS Attacker→FW→Router→

WS_1

(Continued)
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Table 9 (continued)

Device Risk
state

Threat
degree

Be the next
target
device

The next
target
device

Current threat propagation
path

WS_2 Low 0.10 No — —
DS Medium 0.15 No — —
AS High 0.26 Yes FTPS Attacker→FW→Router→

WS_1→AS
Web_2 Medium 0.20 No — —
FTPS High 0.26 — — Attacker→FW→Router→

WS_1→AS→FTPS

Through the above analysis, the attack steps can be visualized, and the predicted threat prop-
agation path can be used to contain the threat spread in time, which proves the effectiveness and
practicality of TPPPA. While TPPPA is based on the ontology model MTEAO, this ontology model
extends and improves the modeling knowledge of the security domain compared to the previous work.
In Table 10, the MTEAO is compared to other ontology models, and the results are presented below:

Table 10: Comparison among the network security ontology models

Ontology Asset Vulner-
ability

Weakness Attack pattern Attack
technique

Defend
technique

Support
inference

Wu et al. [6]
√ √ × × √ × √

Iannacone
et al. [7]

× √ × × √ × ×

Syed et al. [8]
√ √ × √ √ × √

Yuan et al. [11] × √ × × × × ×
Zhang et al. [12] × √ × × × × ×
Sun et al. [15]

√ √ × × √ × √
MTEAO

√ √ √ √ √ √ √

4.2.2 Micro Threat Prediction Experiment Based on Event Graph

Based on the prediction results of the threat propagation path in Experiment 4.2.1 and executing
AEPPA, the attack technique hazard scores of the devices, the Markov transition probability matrix,
and the attack technique evolution event graph are obtained to deepen the prediction.

AEPPA first takes the path predicted by TPPPA as input and outputs the state transition matrices
P and Q, then calculates the matrix N according to the formula N = (I−Q)−1. The matrix N represents
the expected number distribution of state node visits. The values in the first row of it are the number
of visits from the state node S1 to each remaining state node. In the context of the experiment in this
paper, the values in the first row of the matrix N can be interpreted as the number of times the attacker
uses each attack technique. And the higher the number of times the attack technique is used, the higher
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the probability of its use. Matrices P, Q, and N are shown below. Tables 11 and 12 give information
about the attack techniques based on the results returned by TEPPA.

Table 11: The hazard scores of attack techniques

Device State Attack
technique

Life cycle stage Likelihood of
attack

Skills
required

Hazard
score

FW S2 T1082 Discovery Low Low 5.00
S3 T1592 Reconnaissance High Low 4.33
S4 T1595 Reconnaissance High Low 4.33
S5 T1217 Discovery High Low 7.00

Router S6 T1040 Credential access,
discovery

Medium Medium 5.83

S7 T1548 Privilege
escalation,
Defense evasion

Medium Medium 6.17

S8 T1550 Defense evasion,
Lateral movement

High Low 6.83

S9 T1185 Collection High Low 7.67
S10 T1557 Credential access,

Collection
High Medium 8.17

WS_1 S11 T1027 Defense evasion High Medium 7.33
S12 T1134 Defense evasion,

Privilege
escalation

High Low 6.17

S13 T1528 Credential access High Low 6.67
AS_2 S14 T1005 Collection High High 8.67

S15 T1552 Credential access High Medium 7.67
FTPS S16 T1498 Impact Low Low 6.67

S17 T1499 Impact Low Low 6.67

Table 12: The transition probabilities of attack techniques

State
transition

Attack transition Transition
probability

State
transition

Attack
transition

Transition
probability

State
transition

Attack
transition

Transition
probability

S1 → S2 Attacker→T1082 0.242 S4 → S9 T1595→T1185 0.245 S9 → S12 T1185→T1134 0.222
S1 → S3 Attacker→T1592 0.210 S4 → S10 T1595→T1557 0.261 S9 → S13 T1185→T1528 0.240
S1 → S4 Attacker→T1592 0.210 S5 → S6 T1217→T1040 0.140 S10 → S11 T1557→T1027 0.259
S1 → S5 Attacker→T1592 0.339 S5 → S7 T1217→T1548 0.148 S10 → S12 T1557→T1134 0.281
S2 → S6 T1082→T1040 0.147 S5 → S8 T1217→T1550 0.164 S10 → S13 T1557→T1528 0.235
S2 → S7 T1082→T1548 0.155 S5 → S9 T1217→T1185 0.184 S11 → S14 T1027→T1005 0.366
S2 → S8 T1082→T1550 0.172 S5 → S10 T1217→T1557 0.196 S11 → S15 T1027→T1552 0.324
S2 → S9 T1082→T1185 0.193 S6 → S11 T1040→T1027 0.306 S12 → S14 T1134→T1005 0.385
S2 → S10 T1082→T1557 0.206 S6 → S12 T1040→T1134 0.257 S12 → S15 T1134→T1552 0.341
S3 → S6 T1592→T1040 0.150 S6 → S13 T1040→T1528 0.278 S13 → S14 T1528→T1005 0.377

(Continued)
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Table 12 (continued)
State
transition

Attack transition Transition
probability

State
transition

Attack
transition

Transition
probability

State
transition

Attack
transition

Transition
probability

S3 → S7 T1592→T1548 0.188 S7 → S11 T1548→T1027 0.276 S13 → S15 T1528→T1552 0.333
S3 → S8 T1592→T1550 0.175 S7 → S12 T1548→T1134 0.234 S14 → S16 T1005→T1498 0.303
S3 → S9 T1592→T1185 0.197 S7 → S13 T1548→T1528 0.253 S14 → S17 T1005→T1499 0.303
S3 → S10 T1592→T1557 0.209 S8 → S11 T1550→T1027 0.272 S15 → S16 T1552→T1498 0.317
S4 → S6 T1595→T1040 0.186 S8 → S12 T1550→T1134 0.228 S15 → S17 T1552→T1499 0.317
S4 → S7 T1595→T1548 0.197 S8 → S13 T1550→T1528 0.250
S4 → S8 T1595→T1550 0.218 S9 → S11 T1185→T1027 0.263

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.242 0.210 0.210 0.339 0 0 0 0 0 0 0 0 0 0 0 0
0 0.126 0 0 0 0.147 0.155 0.172 0.193 0.206 0 0 0 0 0 0 0
0 0 0.111 0 0 0.150 0.158 0.175 0.197 0.209 0 0 0 0 0 0 0
0 0 0 0.138 0 0.186 0.197 0.218 0.245 0.261 0 0 0 0 0 0 0
0 0 0 0 0.168 0.140 0.148 0.164 0.184 0.196 0 0 0 0 0 0 0
0 0 0 0 0 0.224 0 0 0 0 0.306 0.257 0.278 0 0 0 0
0 0 0 0 0 0 0.234 0 0 0 0.278 0.234 0.253 0 0 0 0
0 0 0 0 0 0 0 0.253 0 0 0.272 0.228 0.250 0 0 0 0
0 0 0 0 0 0 0 0 0.275 0 0.263 0.222 0.240 0 0 0 0
0 0 0 0 0 0 0 0 0 0.288 0.259 0.218 0.235 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.310 0 0 0.366 0.324 0 0
0 0 0 0 0 0 0 0 0 0 0 0.274 0 0.385 0.341 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.290 0.377 0.333 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.394 0 0.303 0.303
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.365 0.317 0.317
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.242 0.210 0.210 0.339 0 0 0 0 0 0 0 0 0 0
0 0.126 0 0 0 0.147 0.155 0.172 0.193 0.206 0 0 0 0 0
0 0 0.111 0 0 0.150 0.158 0.175 0.197 0.209 0 0 0 0 0
0 0 0 0.138 0 0.186 0.197 0.218 0.245 0.261 0 0 0 0 0
0 0 0 0 0.168 0.140 0.148 0.164 0.184 0.196 0 0 0 0 0
0 0 0 0 0 0.224 0 0 0 0 0.306 0.257 0.278 0 0
0 0 0 0 0 0 0.234 0 0 0 0.278 0.234 0.253 0 0
0 0 0 0 0 0 0 0.253 0 0 0.272 0.228 0.250 0 0
0 0 0 0 0 0 0 0 0.275 0 0.263 0.222 0.240 0 0
0 0 0 0 0 0 0 0 0 0.288 0.259 0.218 0.235 0 0
0 0 0 0 0 0 0 0 0 0 0.310 0 0 0.366 0.324
0 0 0 0 0 0 0 0 0 0 0 0.274 0 0.385 0.341
0 0 0 0 0 0 0 0 0 0 0 0 0.290 0.377 0.333
0 0 0 0 0 0 0 0 0 0 0 0 0 0.394 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.365

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 0.277 0.236 0.244 0.407 0.230 0.246 0.280 0.324 0.351 0.566 0.453 0.502 0.942 0.795
0 1.144 0 0 0 0.217 0.232 0.263 0.305 0.331 0.534 0.427 0.473 0.887 0.749
0 0 1.125 0 0 0.217 0.232 0.264 0.306 0.330 0.534 0.427 0.473 0.888 0.750
0 0 0 1.16 0 0.278 0.298 0.339 0.392 0.425 0.686 0.548 0.608 1.141 0.963
0 0 0 0 1.202 0.217 0.232 0.264 0.305 0.331 0.534 0.427 0.473 0.888 0.750
0 0 0 0 0 1.289 0 0 0 0 0.571 0.456 0.505 0.949 0.801
0 0 0 0 0 0 1.305 0 0 0 0.526 0.421 0.465 0.874 0.738
0 0 0 0 0 0 0 1.339 0 0 0.528 0.420 0.471 0.879 0.742
0 0 0 0 0 0 0 0 1.379 0 0.526 0.422 0.466 0.876 0.739
0 0 0 0 0 0 0 0 0 1.404 0.527 0.422 0.466 0.876 0.739
0 0 0 0 0 0 0 0 0 0 1.449 0 0 0.875 0.739
0 0 0 0 0 0 0 0 0 0 0 1.377 0 0.875 0.740
0 0 0 0 0 0 0 0 0 0 0 0 1.408 0.876 0.739
0 0 0 0 0 0 0 0 0 0 0 0 0 1.650 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.575

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TEPPA first links the attack techniques into the AG, constructs the AMC based on the AG, and
then maps the AMC to the EG. Fig. 10 shows the AG and the mapped attack technique evolution
event graph, where the state transition probabilities on the edges have been normalized.

Figure 10: Mapping of attack graph to attack technique evolution event graph

In Fig. 11, the red circles indicate the attack techniques with the highest probability of being used
to compromise each device. They are connected by red lines to form the attack technique evolution
path with the highest probability. Finally, we integrate the prediction results from the macro and micro-
layer, which enables the mapping of the attacked devices to the attack techniques. Security personnel
can visualize the most likely attack paths and techniques attackers use to protect critical devices and
prevent specific attack techniques better.

A device can be attacked by more than one attack technique, so when the probabilities of all
possible attack techniques are summed, the higher the value, the higher the probability of the device
being attacked. We regard this probability as the hazard degree of the device and determine the
protection sequence of the device according to the hazard degree. In summary, the protection sequence
of the device in the threat propagation path can be predicted based on the matrix N. As seen in Fig. 12,
FW, Router, WS_1, and AS are the devices in the threat propagation path predicted by TPPPA. S2–S15,
respectively, correspond to an attack technique, clustered according to the attacked device FW, Router,
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WS_1, and AS. The bar chart shows the number of visits to each attack technique, which represents
the use probability of it. The line in the graph shows the sum of the use probabilities of all attack
techniques for each device, i.e., the risk degree of the device.

Figure 11: TL-TPM combines macro and micro-layer

t0

Figure 12: Expected number distribution of using each attack technique

The higher the risk degree of the device, the higher the priority to protect it. Therefore, from
the line in Fig. 12, we can see that the sequence of device protection in the threat propagation path
predicted by AEPPA is: AS>WS_1>Router>FW. Meanwhile, the attack technique T1005, represented
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by the state node S14, has the highest number of node visits. It indicates that the attacker will most likely
use T1005, so AS should be strengthened to defend T1005.

4.3 Contrast Analysis

In this section, to illustrate the effectiveness of TL-TPM, this paper compares it with Hu et al.’s [10]
model. Specifically, TL-TPM compares the prediction results of the device repair sequence and threat
propagation path, and the time complexity. Finally, it compares with several previous models in a
comprehensive way.

1. Prediction of Device Repair Sequence

We use Hu Hao’s method to obtain his device repair sequence for this experiment scene. The
topology of the experiment scenario is shown in Fig. 13. Similarly, his method needs to derive the
state transition probability matrices P’ and N’, and the values in the first row of the matrix N ′ are used
to determine the sequence of repair. The matrices P’ and N’ are shown below.

To illustrate the effectiveness and superiority of TL-TPM, we compare the predicted outcomes
of device repair sequences of TL-TPM with Hu Hao’s method. Table 13 illustrates the device repair
sequences, and it can be observed that Hu Hao’s method indicates that DS should be prioritized for
repair when adopting network security measures, but TL-TPM indicates that AS should be prioritized
for repair.

P′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.000 0 0 0 0 0 0 0 0
0 0.109 0.641 0 0 0 0.250 0 0 0
0 0 0.418 0.163 0.418 0 0 0 0 0
0 0 0 0.280 0.719 0 0 0 0 0
0 0 0 0 0.719 0 0 0 0 0.280
0 0 0 0 0 0.333 0.333 0.333 0 0
0 0 0 0 0 0 0.238 0 0.524 0.238
0 0 0 0 0 0 0.500 0.500 0 0
0 0 0 0 0 0 0 0 0.688 0.312
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 1.122 1.236 0.280 2.555 0.421 0.368 0.280 0.617
0 1.122 1.236 0.280 2.555 0.421 0.368 0.280 0.617
0 0 1.718 0.389 3.551 0 0 0 0
0 0 0 1.389 3.554 0 0 0 0
0 0 0 0 3.559 0 0 0 0
0 0 0 0 0 1.499 1.31 0.999 2.201
0 0 0 0 0 0 1.312 0 2.204
0 0 0 0 0 0 1.312 2 2.204
0 0 0 0 0 0 0 0 3.205

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 13: The topology of the experiment scenario

Table 13: The sequence of device repair in the threat propagation path

Hu Hao’s method DS>Web_1>FW>Web_2>Router>AS>WS_1=WS_2

TL-TPM AS>Router>Web_2>WS_1>DS>FW>Web_1>WS_2

For this discrepancy, we analyze the effect of device node repair. Repairing a device node, i.e.,
deleting it and all edges associated with it in the topology graph, and then counting the number of
remaining attack paths, the results are shown in Fig. 14. And from Fig. 13, it can be found that there
are six attack paths that can attack FTPS. It is clear that when priority is given to protecting AS, i.e.,
the device node is removed from the graph, and the remaining attack paths are two. While the DS is
removed, the remaining attack paths are four. Therefore, the result of TL-TPM is more scientific and
accurate. If the device nodes are repaired sequentially according to the repair sequence in Table 13, it
can be seen from Fig. 15 that both Hu Hao’s method and TL-TPM leave only two attack paths after
repairing the device for the third time, and leave no attack paths after repairing the device for the
fourth time. But TL-TPM overall outperforms Hu Hao’s approach by intercepting more attack paths
earlier.

Figure 14: The number of remaining paths after node repair
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Figure 15: The remaining attack paths after repairing devices in sequence

2. Prediction of Threat Propagation Path

Next, we compare the threat propagation path predicted by TL-TPM and Hu Hao’s method. Hu
Hao’s model first obtains the state transition probability of each device node according to P′, then
the state transition probabilities of the device nodes in each attack path are cumulatively multiplied to
calculate the probability of success in compromising the core asset along that path. The path with the
highest probability of success is used as the final predicted threat propagation path. The lengths of all
threat propagation paths and their success probabilities are shown in Table 14.

Table 14: Threat propagation path lengths and their probability distributions

Route Threat propagation path Route length Cumulative success
probability

Route1 Attacker→FW→Router→WS_1→AS→FTPS 5 0.0433
Route2 Attacker→FW→Router→WS_1→AS→

Web_2 →FTPS
6 0.0137

Route3 Attacker→FW→Web_1→WS_2→DS→FTPS 5 0.0277
Route4 Attacker→FW→Web_1→DS→FTPS 4 0.0553

The results in the Table 14 show that Route4 has the highest probability of success. Therefore,
the path predicted by Hu Hao’s algorithm is Route4. And as seen from the previous section, the path
predicted by TL-TPM is Route1, which differs significantly from the path Route4 indicated by Hu
Hao. This is because Hu Hao’s method multiplied cumulatively the transition probabilities between
all devices in the path and simply chose the path with the highest cumulative success probability value,
not considering that the attacker penetrated gradually. When the attacker is faced with two attackable
devices, he always selects the device that is more favorable to him, i.e., the one with the higher risk
degree, to attack. As shown in Table 14, although Route4 has a higher cumulative success probability
than Route1, the risk degree of Router in Route1 is higher than that of Web_1 in Route4. As a result,
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the attacker is more likely to choose Router to attack and follow the Route1. Overall, TL-TPM takes
a comprehensive view from the attacker’s point to reflect the actual situation more accurately.

3. Comparison of Time Complexity

Then, we compare the time complexity of TL-TPM with that of Hu Hao’s model. TL-TPM
includes two layers, each containing one main algorithm.

Firstly, the time complexity of TPPPA in the macro-layer is analyzed. According to the algorithm
logic, assuming that there are n devices between the initial device ind and the device target where the
core asset is located. And the average number of adjacent devices at the next layer for each device is m.
Then a total of (n − 1)m devices need to be calculated for the threat degree from the ind to the target.
So, the time complexity of execution from ind to target is O((n−1)m). Because m is constant, the time
complexity of the algorithm is O(n).

Secondly, the time complexity of AEPPA in the micro-layer is analyzed. Executing AEPPA is
based on the result of TPPPA. Assuming a total of n attack techniques are extracted from the result,
calculating their state transition probabilities requires the generation of two matrices with a time
complexity of O(n2). Therefore, the time complexity of TL-TPM to obtain the final prediction result is
O(n2) + O(n), i.e., O(n2), while the time complexity of Hao Hu’s model is O(n3). As a result, TL-TPM
is superior in terms of time complexity.

4. Comparison of Other Prediction Models

Comparing TL-TPM with other attack prediction models, the results in Table 15 show that TL-
TPM is more advanced with considering both macro and micro-layers to predict threat development.
It considers the threat impact elements (attack success probability, threat degree) and avoids path
redundancy. Furthermore, only this paper’s research has the capability of predicting the threat prop-
agation path while correlating the attacked devices with their respective threat elements, broadening
the range of predictions. Moreover, TL-TPM can accurately predict the attack techniques, not only
letting security personnel know which devices should be protected in priority but also which attack
techniques should be strengthened against.

Table 15: Comparison of attack prediction models

Model Macro Micro No
redundant
paths

Take threat
impact elements
into account

Correlate the
threat elements

Gong et al. [5]
√ × × × ×

Wu et al. [6]
√ √ × × ×

Hu et al. [10]
√ × × √ ×

Yuan et al. [11]
√ × × × ×

Wang et al. [13] × √ × √ ×
Zhang et al. [14]

√ √ × × ×
Sun et al. [15]

√ √ √ √ ×
TL-TPM

√ √ √ √ √
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5 Conclusion

Unlike most previous works that predict the attack based on only one layer, this paper proposes
a two-layer model TL-TPM that predicts the development trend of threat events from both macro
and micro-layers. The macro-layer proposes the threat propagation path prediction algorithm TPPPA
based on the knowledge graph. TPPPA measures the device threat degree by combining system
topology and attack success probability. Based on the device threat degree, it predicts the devices
under attack, then links them sequentially into threat propagation path and correlates each device
with relevant threat elements, which provides decision support for defense response. The micro-layer
proposes the attack evolution path prediction algorithm AEPPA based on the event graph. AEPPA
combines the prediction results of the macro-layer with the temporal characteristics of the attack
behaviors and innovatively maps the attack graph to the event graph using the absorbing Markov
chain as a bridge, which accurately portrays the evolution of the attack techniques used in threat events.
Finally, the macro-layer and micro-layer prediction results are integrated to visualize the external path
and internal logic of threat event development, enabling security personnel to quickly grasp the threat
status of system devices and focus on defense.

However, TL-TPM does not consider zero-day vulnerabilities when predicting threats, and the
current algorithms and inference rules only work with known vulnerabilities. For future work, we will
use the relationship paths linking attacker entities to target entities in the knowledge graph as features
and construct attack samples using historical attack data for the given system. Then, we use machine
learning to learn the path features in the attack samples to distinguish the zero-day vulnerabilities from
the known vulnerabilities. Meanwhile, TL-TPL does not consider the vulnerability lifecycle, which may
affect the calculation of the attack success probability. As a result, we will take the vulnerability lifecycle
into account, quantitatively analyze the change in vulnerability exploitability over time, optimizing the
calculation of the state transition matrix.
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