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ABSTRACT

Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from
a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset,
most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore,
the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature
selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-
Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search in
the objective space. Secondly, an S-shaped transfer function is introduced to perform binary transformation on
SCChOA. Finally, the binary SCChOA is combined with the K-Nearest Neighbor (KNN) classifier to form a novel
binary hybrid wrapper feature selection method. To evaluate the performance of the proposed method, 16 datasets
from different dimensions of the UCI repository along with four evaluation metrics of average fitness value, average
classification accuracy, average feature selection number, and average running time are considered. Meanwhile,
seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.
Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving
the feature selection problem. It is capable of maximizing the reduction in the number of selected features while
maintaining a high classification accuracy. Furthermore, the results of statistical tests also confirm the significant
effectiveness of this method.
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1 Introduction

In various domains, such as machine learning and data mining, datasets frequently consist of a
multitude of features. However, it is important to note that not all of these features are relevant or
beneficial for the specific learning task at hand. Irrelevant features can negatively impact the model’s
performance. Additionally, as datasets grow, the dimensionality of the data also increases, resulting in
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higher demands on the efficiency of model training and prediction [1]. Consequently, Feature Selection
(FS) plays a crucial role in identifying the most pertinent and valuable features from the original
dataset [2]. This process reduces data dimensionality, improves model accuracy and generalization,
and reduces computational costs. Due to its numerous benefits, FS finds wide-ranging applications in
various fields [3]. As a result, it has gained significant attention as a vital research area in recent years.

In general, FS methods can be categorized into three categories based on their relationship
with the learning algorithm: filter approaches, wrapper approaches, and embedded approaches. Filter
approaches are considered to be the fastest FS methods as they do not require training models and have
lower computational costs [4]. However, in many cases, filter approaches may not identify the optimal
feature subset [5]. On the other hand, wrapper approaches consider FS and the learning algorithm as
a whole. They iteratively train the learning algorithm with different feature subsets to choose the best
subset for training the model. However, the quality of FS by wrapper methods is dependent on the
classifier, which results in wrapper methods getting better classification accuracy but being slower [6].
Additionally, embedded approaches integrate FS with the training process of the learning algorithm
[7]. They adapt the features during the training process to select the features that contribute the most
to the performance of the learning algorithm. Embedded approaches have relatively weaker modeling
performance compared to wrapper methods, but they offer better computational efficiency [8].

In order to improve FS, search methods for FS are continually evolving. Traditional search
methods like Sequential Forward/Backward Selection (SFS/SBS) were formerly popular [9]. Yet,
these methods possess several limitations, such as issues with hierarchy and high computational
costs. Consequently, Floating FS methods such as Sequential Forward/Backward Floating Selection
(SFFS/SBFS) were proposed as alternatives [10]. However, with the generation of large-scale high-
dimensional datasets, floating search techniques may not necessarily yield the optimal solution.

In recent years, Metaheuristic Algorithms (MAs) have gained significant popularity for solving a
wide range of optimization and FS problems. These algorithms have demonstrated success in quickly
finding the closest solutions, without the need for computing gradients or relying on specific problem
characteristics [11]. This inherent flexibility has contributed to their widespread adoption. MAs can
be categorized into four main types: Evolutionary Algorithms (EAs), Swarm Intelligence Algorithms
(SIs), Physics-Based Algorithms (PAs), and Human-Inspired Algorithms (HAs). EAs are inspired by
biological processes and simulate the process of natural evolution. One of the most commonly used
EAs is the Genetic Algorithm (GA) [12], which is based on Darwin’s theory of evolution. SIs are
inspired by collective intelligence behavior. Examples of SIs include Particle Swarm Optimization
(PSO) [13], Ant Colony Optimization (ACO) [14], and Whale Optimization Algorithm (WOA) [15].
Recently, some interesting SIs have been proposed, such as Beluga Whale Optimization (BWO) [16]
and Artificial Rabbits Optimization (ARO) [17]. PAs are based on physical principles and motion
laws. Examples include Simulated Annealing (SA) [18], Equilibrium Optimizer (EO) [19]. HAs mimic
human behavior and interaction. Examples include Teaching-Learning-Based Optimization (TLBO)
[20] and Imperialist Competitive Algorithm (ICA) [21], which are frequently cited techniques.

The Chimp Optimization Algorithm (ChOA) is a performance efficient SI algorithm proposed in
2020 by Khishe et al. [22]. This algorithm is inspired by the individual intelligence, sexual motivation,
and predatory behavior of chimps. It effectively replicates chimps’ driving, chasing, and attacking
patterns to develop an efficient optimization scheme. In recent years, the ChOA algorithm and its
variations have been successfully applied to various engineering problems, including gear transmission
design [23], multi-layer perceptron training [24], and the order reduction problem of Said-Ball
curves [25].
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The Sine Cosine Algorithm (SCA) is a PA method developed in 2016 [26]. By imitating the sine
and cosine functions’ oscillation, which mimics the motion of waves in nature, the SCA looks for the
best solution. As a result, it offers the advantages of fast convergence and easy implementation, and
it finds extensive application across diverse domains for addressing optimization challenges.

While the ChOA algorithm exhibits good performance in solving specific problems, it faces
challenges such as slow convergence speed and a tendency to get trapped in local optima when dealing
with complex optimization problems [24]. Further research indicates that these limitations stem from
ChOA’s insufficient exploration capability. To tackle this issue, the present paper introduces a novel
approach that combines the ChOA with SCA. This proposed method synergistically combines the
exploration and exploitation capabilities of both algorithms by utilizing SCA to guide the ChOA for
enhanced exploration in the search space. On one hand, the exploration capability mainly comes from
SCA, and on the other hand, the exploitation part is handled by ChOA. The decision to combine the
ChOA and SCA is primarily motivated by the simplicity and effectiveness of the ChOA, as well as
the unique sine-cosine search capability of the SCA. The objective of combining these two heuristics
is to develop a hybrid algorithm that is simpler and more efficient for feature selection. The main
contributions of this paper are as follows:

• Proposing a novel hybrid sine-cosine chimp optimization algorithm for feature selection.
By combining the chimp optimization algorithm with the sine-cosine algorithm, the unique
characteristics of both algorithms are effectively utilized.

• Evaluating, classifying, and validating the efficiency of the selected feature subsets obtained
from the hybrid algorithm using the KNN classifier.

• Comparing the proposed hybrid feature selection method with seven advanced feature selection
methods on 16 datasets using well-known evaluation metrics such as average fitness value,
average classification accuracy, average number of selected features, and average runtime.

• In addition, the Wilcoxon rank-sum test is conducted to examine the significant differences
between the results obtained from the proposed hybrid feature selection technique and the
compared methods.

The paper is structured as follows: Section 2 presents a comprehensive review of previous related
work. Section 3 provides a detailed description of the proposed feature selection (FS) method.
Section 4 explains the experimental setup and presents the analysis and results of the conducted
experiments. Finally, Section 5 discusses the conclusions drawn from the study.

2 Literature Review

In recent years, there has been a growing trend among researchers to utilize MAs in order to
tackle a diverse array of FS problems. Among these algorithms, GA has gained popularity due to its
effectiveness in optimization problems. Yang et al. were pioneers in using GA to solve FS problems
[27]. Additionally, Kennedy et al. suggested the BPSO [28], a variant of the PSO, which is particularly
well-suited for binary optimization problems. Afterward, several variants of PSO emerged, such as
a three-phase hybrid FS algorithm based on correlation-guided clustering and PSO [29], bare-bones
PSO with mutual information [30], and multiobjective PSO with fuzzy cost [31]. These variants have
achieved remarkable results in the field of feature selection. More recently, Mafarja et al. introduced a
binary version of WOA specifically for FS and classification tasks [32]. Moreover, a novel FS method
based on the Marine Predators Algorithm was developed for three coronavirus disease (COVID-19)
datasets [33]. This demonstrates the increasing demand for innovative optimization methods and their
subsequent impact on the development of new FS techniques tailored to specific challenges.
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By combining the strengths of various MAs, it is possible to strike a balance between exploration
and exploitation, effectively mitigating the limitations associated with individual algorithms. As
a result, hybrid algorithms have received increasing attention in FS problems. For example, Al-
Tashi et al. presented a discrete version of hybrid PSO and GWO, named BGWOPSO [34]. The
experimental results demonstrated that BGWOPSO outperformed other methods in terms of both
accuracy and cost time. Similarly, Ling et al. proposed the NL-BGWOA [35] for FS, which combined
WOA and GOA to optimize the diversity in search. The results showed that this method had a high
accuracy of up to 0.9895 and superiority in solving FS problems on medical datasets. Recently, a
hybrid FS method that combined the Dipper Throated and Grey Wolf Optimization (DTO-GW) was
proposed [36]. This method utilized binary DTO-GW to identify the best subset of the aim dataset. A
comparative analysis, conducted on 8 life benchmark datasets, demonstrated the superior performance
of this method in solving the FS problem. In order to enhance the classification model’s overall
performance, researchers proposed two Stages of Local Search models for FS [37]. The two models
were based on the WOA and the Great Deluge (GD). The effectiveness of the proposed models in
searching the feature space and improving classification performance was evaluated using 15 standard
datasets. Moreover, a novel wrapper feature selection method called BWPLFS was introduced, which
combines the WOA, PSO, and Lévy Flight [38]. Experimental results demonstrated that BWPLFS
selects the most effective features, showing promise for integration with decision support systems
to enhance accuracy and efficiency. In order to improve the accuracy of cancer classification and
the efficiency of gene selection, researchers proposed a novel gene selection strategy called BCOOT-
CSA [39], which combined the binary COOT optimization algorithm with simulated annealing.
Experimental results demonstrated that BCOOT-CSA outperformed other techniques in terms of
prediction accuracy and the number of selected genes, making it a promising approach for cancer
classification. Therefore, it is crucial to carefully select appropriate hybrid algorithms based on specific
problem characteristics and conduct thorough experimental evaluations to validate their performance.
Furthermore, ongoing research and development efforts should focus on advancing the techniques and
methodologies of hybrid algorithms to further enhance their capabilities in FS and optimization tasks.

According to the No Free Lunch theorem [40], no optimization algorithm can solve all opti-
mization problems, whether past, present, or future. While algorithms may perform well on specific
datasets, their performance may decline when applied to similar or different types of datasets.
Although the methods mentioned in the literature each have their own characteristics, none of them
can address all FS issues. Therefore, it is essential to improve existing methods or propose novel
approaches to enhance the resolution of FS problems. Following is a discussion of a hybrid wrapper-
based method for selection features.

3 Methodology

The proposed method is a hybrid algorithm that combines the Chimp Optimization Algorithm
and the Sine Cosine Algorithm. In this section, the fundamental knowledge of the proposed method
will be explained, as well as a demonstration and discussion of the proposed method.

3.1 Chimp Optimization Algorithm (ChOA)

ChOA is a novel intelligent algorithm, proposed by Khishe et al. in 2020, which is based on chimp
hunting behavior. Based on the behavior of group division of labor and cooperation, ChOA classifies
the leaders of chimp groups into four types: attacker, barrier, chaser, and driver. In this scenario,
the attacker is the role of the leader, and the others assist, with their level decreasing in order. The
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mathematical models of chimp driving, obstructing, and chasing prey are described as below:

d (t) = ∣∣c · Xprey (t) − m · Xchimp (t)
∣∣ (1)

Xchimp (t + 1) = Xprey (t) − a · d (t) (2)

here, d (t) represents the distance between the prey and the chimp at the current iteration t. The chaotic
vector m is generated by chaotic maps. Xprey (t) is the position vector of the prey, and Xchimp (t + 1) is
the position vector of the chimp. The coefficient vectors a and c are represented by Eqs. (3) and (4),
respectively.

a = 2 · f · r1 − f (3)

c = 2 · r2 (4)

where r1 and r2 are random numbers between 0 and 1. The parameter f is a decreasing factor that
nonlinearly decreases from 2.5 to 0 with increasing iteration number. Therefore, the parameter a takes
values between −f and f . When a is within the range of −1 to 1, the chimp launches an attack on the
prey, thus ending the hunting process. Otherwise, the next position of the chimp can be arbitrarily
selected from all chimp positions. Thus, the mathematical model of chimp attacking the prey is
described by Eqs. (5)–(7).

da (t) = |c1 · Xa (t) − m · X (t)| , db (t) = |c2 · Xb (t) − m · X (t)|
dc (t) = |c3 · Xc (t) − m · X (t)| , dd (t) = |c4 · Xd (t) − m · X (t)| (5)

X1 = Xa (t) − a1 · da (t) , X2 = Xb (t) − a2 · db (t)

X3 = Xc (t) − a3 · dc (t) , X4 = Xd (t) − a4 · dd (t)
(6)

X (t + 1) = (X1 + X2 + X3 + X4)/4 (7)

where X (t) represents the current position of the chimp agent, Xa (t), Xb (t), Xc (t) and Xd (t) represent
the positions of the current attacker, barrier, chaser, and driver, respectively, and da (t), db (t), dc (t) and
dd (t) represent the distance vectors between the corresponding chimp and the current chimp agent.
The next position of the chimp individual is randomly distributed within a circle determined by the
positions of these top four individuals. In other words, the positions of the other chimps are guided
by the positions of them.

In the final stage of hunting, when the chimps are satisfied with the prey, they are driven by
social motivation to release their nature. At this point, the chimps will try to obtain food in a forced
and chaotic way. Six deterministic chaotic maps [22] are used to describe this social behavior, with a
50% probability of choosing either the conventional position update way or the chaotic model. The
mathematical representation of social motivation behavior is shown in Eq. (8).

X (t + 1) = Chaotic_value (8)

where Chaotic_value is a chaotic map.

3.2 Sine Cosine Algorithm (SCA)

SCA is an efficient MA based on sine and cosine laws. The optimization process of SCA involves
two phases: exploration and exploitation, which are balanced by the sine and cosine functions. During
the exploration phase, the algorithm searches for promising areas with high randomness in a large
search space, while during the exploitation phase, it performs local search near previously explored
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points. For both phases, the position of the candidate solution in SCA is updated using the following
Eq. (9):

X t+1
i =

{
X t

i + r1 × sin (r2) × |r3X t
b − X t

i |, r4 < 0.5
X t

i + r1 × cos (r2) × |r3X t
b − X t

i |, r4 ≥ 0.5 (9)

here, X t
i represents the current position of the solution, while X t+1

i represents the position for the next
iteration. The i denotes the dimension, and t denotes the iteration number. The value of r1 linearly
decreases from a to 0 as the iteration number increases, and its expression can be seen in Eq. (10); r2 is a
random number between 0 and 2π , r3 is a random number between 0 and 2, and r4 is a random number
between 0 and 1. X t

b represents the position of the best individual found so far after t generations.

r1 = a − t
a
T

(10)

where a represents a constant, which is taken as 2.

3.3 The Proposed Hybrid SCChOA Algorithm

In this section, we introduce the proposed hybrid SCChOA algorithm. The proposed hybrid
method combines the ChOA with the SCA. While the ChOA algorithm is effective for simple
optimization problems, it tends to struggle with complex problems, such as high-dimensional feature
selection, because it often gets trapped in local optimal solutions rather than finding the global. This
is primarily attributed to the limited exploration capability of ChOA in handling complex tasks. On
the other hand, the SCA utilizes unique sine and cosine waves for spatial exploration and offers
advantages in terms of high convergence accuracy and strong exploration capability. Therefore, this
improvement aims to enhance the exploration capability of ChOA by incorporating SCA as the local
search component. Specifically, we propose integrating the SCA operator into the attack process of
chimps to address the limitations of the standard ChOA version.

In the SCA, the value of r2 in the sine and cosine formulas is randomly chosen from the range 0 to
2π [26], resulting in sine and cosine values ranging from −1 to 1. However, the pseudo-random nature
of r2 leads to non-uniform and unpredictable values. This can result in extreme situations, such as very
small values for sine or cosine in the early iterations, and very large values later on. In this case, the
SCA exhibits a weak search capability in early phases and poor exploitation capability later. Therefore,
in order to better combine the SCA operator with ChOA, we propose a multi-cycle iteration strategy
to address the shortcomings caused by this pseudo-randomness. This strategy is achieved by designing
multi-cycle iteration factor λ, and its mathematical model is as follows:

λ = 2kπ ·
(

t
T

)
(11)

where k represents the number of cycles, and different values can be chosen based on the characteristics
of the feature space. In this paper, k is determined to be 16. Therefore, the mathematical model for the
position update of ChOA combined with the SCA operator is as follows:

X1 =
{

Xa (t) + sin (λ) × a1 · da (t) , rand1 < 0.5
Xa (t) + cos (λ) × a1 · da (t) , rand1 ≥ 0.5 (12)

X2 =
{

Xb (t) + sin (λ) × a2 · db (t) , rand2 < 0.5
Xb (t) + cos (λ) × a2 · db (t) , rand2 ≥ 0.5 (13)
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X3 =
{

Xc (t) + sin (λ) × a3 · dc (t) , rand3 < 0.5
Xc (t) + cos (λ) × a3 · dc (t) , rand3 ≥ 0.5 (14)

X4 =
{

Xd (t) + sin (λ) × a4 · dd (t) , rand4 < 0.5
Xd (t) + cos (λ) × a4 · dd (t) , rand4 ≥ 0.5 (15)

X (t + 1) = (X1 + X2 + X3 + X4)/4 (16)

By embedding the SCA operator during the chimp attack phase, the individual chimps in the
proposed algorithm exhibit stronger search capabilities compared to the original ChOA algorithm.
This is mainly attributed to the SCA operator providing a wider search space for the chimps through
cosine and sine oscillations, enabling them to overlook local optima and quickly capture global optima.
Specifically, when a chimp individual is satisfied with its current food source (local optima), the SCA
operator drives it to explore the vicinity of the current solution with cosine and sine oscillations. This
is effective for all four leaders among the chimps, and other chimps update their positions based on
the locations of these four leaders. Additionally, the introduction of the multi-cycle factor ensures that
during the iteration process, the search range becomes more specific, allowing individuals to continue
exploring nearby small spaces while maintaining their cosine and sine oscillation states. As a result,
the proposed algorithm can not only perform global search through chimp attacks but also conduct
more precise local search with the probing abilities of SCA, thereby better discovering global optimal
solutions. Algorithm 1 presents the pseudocode for SCChOA.

Algorithm 1: Pseudo-code of proposed SCChOA for feature selection
1 Inputs: The population size N and maximum number of iterations T
2 Initialize population Xi (i = 1, 2, 3, . . . , N)
3 Initialize f , m, a and c
4 Calculate the fitness of each chimp using KNN
5 Xa = the best search agent
6 Xb = the second best search agent
7 Xc = the third best search agent
8 Xd = the fourth best search agent
9 while t < T do
10 for each chimp do
11 Use its group strategy to update f , m and c
12 Use f , m and c to calculate a and then d
13 end for
14 for each search chimp do
15 if u < 0.5 then
16 Update the position of the current search chimp by Eqs. (12)–(16)
17 else if u ≥ 0.5 then
18 Update the position of the current search chimp by Eq. (8)
19 end if
20 end for
21 Update f , m, a and c
22 Update Xa, Xb, Xc and Xd

23 t + 1
(Continued)



3064 CMC, 2023, vol.77, no.3

Algorithm 1 (continued)
24 end while
25 Return Xa

3.4 The Proposed Feature Selection Method

In this section, we introduce the proposed feature selection method. A binary process is involved
in feature selection, which relies on whether a particular feature is chosen to solve a problem or
not. In order for the hybrid SCChOA algorithm to be applicable for feature selection, it needs to be
converted into binary format. Subsequently, the classifier KNN is combined with the binary SCChOA
algorithm to form a binary hybrid wrapper feature selection algorithm. The resulting optimal solution
is converted to binary 0 or 1 to select the best subset. Typically, a sigmoid function is employed for
this conversion, as depicted in the following equation, where Xbest represents the optimal position at
iteration number t.

X (t + 1) =
{

0
1

, if sigmoid (Xbest) < 0.5
, otherwise (17)

sigmoid (x) = 1
1 + e−10(x−0.5)

(18)

The quality of the candidate solutions obtained by the proposed algorithm is evaluated using a
fitness function. The fitness function is designed to minimize the size of the selected feature subset and
maximize the classification accuracy of the selected learning algorithm [32]. Its calculation method is
as follows:

fFS = α × (err) + β × |R|
|Num| (19)

The α and β are parameters that control the contribution weights of selecting the feature subset
size and the classification accuracy of the selected learning algorithm. The sum of their weights is 1.
err represents the classification error of the classifier used, and R represents the number of selected
features out of the total number of features (Num) in the dataset.

Hence, the flowchart of the proposed feature selection method is shown as Fig. 1.

4 Experimental Results

In this section, we discussed the experimental setup and presented and discussed the experimental
results.

4.1 Description of the Datasets

To analyze the performance of SCChOA, we conducted experiments using 16 standard UCI
datasets [41]. These datasets are sourced from various domains, which demonstrates the versatility
of the proposed method. Table 1 presents fundamental details about the datasets. The inclusion of
datasets with varying numbers of features and instances enables us to assess the effectiveness of the
proposed approach.
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Figure 1: The flowchart of proposed feature selection method

Table 1: 16 standard UCI datasets

No. Dataset name No. of samples No. of features No. of classes

DS1 Glass 214 9 6
DS2 HeartEW 270 13 2
DS3 Lymphography 148 18 8
DS4 Segmentation 2310 19 7
DS5 WDBC 569 30 2
DS6 IonosphereEW 351 34 2
DS7 Soybean-small 47 35 4
DS8 WaveformEW 5000 40 3
DS9 Sonar 208 60 2
DS10 Hill-valley 1212 100 2
DS11 MUSK1-Clean1 476 166 2
DS12 Isolet5 1559 617 26
DS13 Raisin 899 7 2
DS14 WineEW 178 13 3
DS15 Parkinson-P1 1040 26 2
DS16 Parkinson-P2 240 46 2

4.2 Experimental Configurations

The proposed SCChOA method is compared with seven advanced metaheuristic methods men-
tioned in the literature. These methods include BPSO [28], BChOA [22], BSCA [26], BHHO [42],
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BWOA [32], CCSA [43], and BGWOPSO [34]. The parameters of the comparison algorithms can
be found in Table 2. To ensure a fair evaluation, the population size and number of iterations are
consistently set to 20 and 100, respectively. To assess the quality of the generated solutions, the KNN
classifier is used as the wrapper framework, configured with K = 5. To further enhance the reliability
of the results, k-fold cross-validation with k = 10 is employed to train and test the classifier. For
each optimizer, twenty independent runs are conducted to account for variability. The simulation
experiments are performed on a computer equipped with an Intel(R) Core(TM) i5-7200U CPU
operating at a frequency of 2.50 GHz and 12 GB of memory. Meanwhile, MATLAB 2019b is utilized
as the software platform for conducting the experiments.

Table 2: The configuration parameters of different methods

Methods Parameters Values

SCChOA r1, r2, m, f [0,1], [0,1], Chaotic, [2.5,0]
BPSO Maximum velocity, c1, c2, Inertia weight 6, 2, 2, [0.4, 0.9]
BChOA r1, r2, m, f [0, 1], [0, 1], Chaotic, [2.5, 0]
BSCA r1, r2, r3, r4 [−2, 2], [0, 2π ], [0, 1], [0, 1]
BHHO E0, λ [−1, 1], [0, 1]
BWOA C, A [0,2], [−2, 2]
CCSA AP, FL 0.1, 2
BGWOPSO c1, c2, c3 0.5

4.3 Evaluation Criteria

In this paper, four well-known metrics are used to evaluate the proposed method. These four
metrics are as follows:

(1) Average fitness value: The average fitness value represents the average of the fitness values over
all the runs.

Average fitness = 1
tmax

tmax∑
i=1

Fiti (20)

here tmax denotes the maximum number of runs and Fiti denotes the value of the best fitness of the i-th
individual. The calculation of Fiti can be referred to as Eq. (19).

(2) Average classification accuracy: The average classification accuracy represents the average of
the classification accuracies over all the runs.

Average accuracy = 1
tmax

tmax∑
i=1

Acci (21)

where Acci represents the classification accuracy of the classifier in the i-th iteration.

(3) Average feature selection number: The average number of selected features represents the
average of the number of selected features over all the runs.

Average feature number (FN) = 1
tmax

tmax∑
i=1

len (BSi) (22)
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where len (BSi) represents the number of selected features in the best solution of the i-th feature
selection. The smaller the value of FN, the more capable the algorithm is in reducing the number
of features in the dataset.

(4) Average running time (seconds): The average running time is calculated by taking the average
of the running times of all the runs.

Average running time = 1
tmax

tmax∑
i=1

timei (23)

here, timei represents the running time of the i-th feature selection run.

4.4 Evaluation Results

In this section, we compare and analyze the proposed method and other methods based on the
four metrics mentioned above. Moreover, we conduct a detailed analysis of the results and perform
statistical analysis using the Wilcoxon’s rank-sum test.

Table 3 displays the average fitness values of SCChOA and other competing methods for each
selected dataset. It is evident that SCChOA achieves the best average fitness values for 14 datasets.
While CCSA and BGWOPSO obtain the best fitness values for DS5 and DS10, respectively, their
performance on other datasets is generally poor. In summary, SCChOA exhibits the lowest overall
average fitness value of 0.1313 across all methods and datasets. Furthermore, Fig. 2 illustrates that
SCChOA has the best Friedman average fitness ranking at 1.47, indicating its competitiveness in
minimizing the fitness value. In other words, the SCChOA can effectively streamline the number of
features to be selected while minimizing the classification error.

Table 3: The average fitness values

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO BCCSA

DS1 0.2469 0.2707 0.2984 0.2846 0.3060 0.2866 0.2940 0.2879
DS2 0.0413 0.1258 0.1353 0.1328 0.1502 0.1472 0.1258 0.1100
DS3 0.3959 0.4061 0.4362 0.4225 0.4541 0.4623 0.4225 0.4382
DS4 0.0728 0.0758 0.0772 0.0730 0.0820 0.0800 0.0736 0.0912
DS5 0.0503 0.0531 0.0538 0.0524 0.0521 0.0497 0.0508 0.0493
DS6 0.0508 0.0809 0.0816 0.0661 0.0922 0.0828 0.0633 0.0539
DS7 0.0006 0.0012 0.0007 0.0006 0.0014 0.0006 0.0007 0.0011
DS8 0.1547 0.1679 0.1788 0.1822 0.1786 0.1797 0.1968 0.1862
DS9 0.0179 0.0468 0.0809 0.0619 0.0781 0.1020 0.0428 0.0727
DS10 0.3495 0.3086 0.3563 0.3291 0.3598 0.3554 0.2811 0.4031
DS11 0.0455 0.0613 0.0831 0.0647 0.0863 0.0923 0.0536 0.0670
DS12 0.1275 0.1350 0.1716 0.1538 0.1742 0.1530 0.1560 0.1610
DS13 0.1356 0.1378 0.1378 0.1356 0.1359 0.1356 0.1356 0.1411
DS14 0.0417 0.0565 0.0537 0.0528 0.0535 0.0639 0.0419 0.0592
DS15 0.2705 0.2708 0.2729 0.2713 0.2932 0.2999 0.2708 0.2826
DS16 0.0989 0.1162 0.1238 0.1162 0.1259 0.1347 0.0994 0.0994
Average 0.1313 0.1447 0.1589 0.1500 0.1640 0.1641 0.1443 0.1565
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Figure 2: The friedman average fitness value ranking

Table 4 presents a comparison of the SCChOA method with other methods in terms of clas-
sification accuracy. Among the 16 datasets analyzed, SCChOA achieves the highest classification
accuracy in 14 of them. In contrast, the BGWOPSO and CCSA methods only obtain the highest
classification accuracy in 2 datasets, while others obtain worse classification accuracy. Notably, all
methods achieve 100% classification accuracy on dataset DS7, which can be attributed to the smaller
number of individuals in that dataset, making the classification task less challenging. However,
as the number of features and instances increases, the performance of most algorithms tends to
decline. When considering more complex high-dimensional datasets, it is evident that SCChOA
consistently maintains a high level of classification accuracy, surpassing other algorithms and securing
the top ranking in classification accuracy for multiple high-dimensional datasets. This underscores
the strong competitiveness of SCChOA in addressing complex high-dimensional feature selection
classification problems. Upon evaluating the classification accuracy results from the 16 datasets, the
average classification accuracy for all algorithms is computed. SCChOA achieves the highest average
classification accuracy of 0.8767. The following three algorithms, namely BPSO, BPSOGWO, and
BSCA, closely follow with average classification accuracies of 0.8598, 0.8574, and 0.8519, respectively.
Furthermore, the Friedman average ranking of classification accuracy as Fig. 3 reveals that SCChOA
has an average ranking of 1.47, placing it in the first position. This further emphasizes the effectiveness
of SCChOA in feature selection for classification tasks.

Table 4: The average classification accuracy

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO BCCSA

DS1 0.7560 0.7310 0.7024 0.7167 0.6952 0.7143 0.7071 0.7476
DS2 0.9630 0.8759 0.8667 0.8685 0.8519 0.8537 0.8759 0.8935
DS3 0.6017 0.5931 0.5655 0.5759 0.5448 0.5345 0.5759 0.5603
DS4 0.9348 0.9262 0.9262 0.9286 0.9214 0.9214 0.9286 0.9107
DS5 0.9512 0.9478 0.9469 0.9478 0.9487 0.9504 0.9496 0.9513
DS6 0.9714 0.9214 0.9186 0.9343 0.9086 0.9171 0.9371 0.9464
DS7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DS8 0.8503 0.8336 0.8344 0.8192 0.8289 0.8205 0.8076 0.8213
DS9 0.9734 0.9707 0.9341 0.9634 0.9488 0.9220 0.9735 0.9390
DS10 0.7234 0.6926 0.6421 0.6686 0.6397 0.6413 0.7182 0.5950
DS11 0.9500 0.9421 0.9179 0.9358 0.9147 0.9074 0.9347 0.9342

(Continued)
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Table 4 (continued)

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO BCCSA

DS12 0.8762 0.8685 0.8302 0.8460 0.8283 0.8466 0.8655 0.8408
DS13 0.8659 0.8637 0.8637 0.8659 0.8637 0.8659 0.8659 0.8603
DS14 0.9714 0.9686 0.9486 0.9657 0.9486 0.9371 0.9600 0.9429
DS15 0.7365 0.7365 0.7303 0.7288 0.7096 0.6995 0.7303 0.7188
DS16 0.9022 0.8854 0.8771 0.8654 0.8750 0.8646 0.8883 0.9010
Average 0.8767 0.8598 0.8440 0.8519 0.8392 0.8373 0.8574 0.8477

Figure 3: The Friedman average classification accuracy ranking

In terms of the number of selected features, Table 5 presents a comparison of different methods on
16 selected UCI datasets. From the results in Table 5, it can be observed that the proposed algorithm
has an average number of selected features of 19.6 and ranks second among the evaluated algorithms.
Additionally, SCChOA achieved the minimum number of selected features in 5 datasets, which is not
the best among the methods. BChOA and BSCA achieved the minimum number of selected features
in 7 and 8 datasets, respectively. However, both of these methods did not perform well in terms of
classification accuracy and fitness value ranking. This indicates that the primary objective of feature
selection is to ensure higher classification accuracy, followed by reducing the number of features.
Based on this observation, SCChOA demonstrates strong competitiveness in solving feature selection
problems as it is able to maintain high classification accuracy while effectively reducing the number of
features.

Table 5: The average feature selection number

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO BCCSA

DS1 3.9 3.9 3.4 3.7 3.9 3.4 3.7 3.3
DS2 4.1 3.9 4.3 3.4 4.6 3.1 3.8 6.0
DS3 3.6 5.9 10.9 4.6 6.3 2.6 4.6 5.3
DS4 3.8 5.1 7.9 4.3 8.0 4.3 5.5 5.3
DS5 2.1 4.3 3.7 2.1 4.0 3.0 2.7 3.3
DS6 2.5 10.5 3.4 3.6 5.6 2.5 3.8 3.0

(Continued)
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Table 5 (continued)

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO BCCSA

DS7 2.1 4.2 2.5 2.1 4.9 2.1 2.3 4.0
DS8 13.7 14.9 18.6 11.1 18.7 11.3 13.3 13.3
DS9 19.4 19.4 17.0 9.3 21.5 5.3 10.7 13.3
DS10 23.5 42.4 19.9 20.1 31.1 53.1 21.2 22.3
DS11 32.5 65.9 30.3 19.0 30.9 49.3 35.4 30.5
DS12 182.1 297.4 219.0 141.1 260.6 171.0 273.9 213.0
DS13 2.2 2.3 2.3 2.2 2.6 2.3 2.2 2.4
DS14 3.3 3.4 3.6 3.6 3.4 3.1 3.0 3.4
DS15 7.8 10.8 15.4 7.5 14.9 7.2 9.8 10.8
DS16 7.4 12.4 9.7 5.1 9.7 5.8 7.5 6.5
Average 19.6 31.7 23.2 15.2 26.9 20.6 25.2 21.6

On the other hand, Table 6 presents a comparison of the actual running times of different
methods on all datasets. It can be observed that SCChOA shows comparable average time costs
to BSCA and BChOA, without exhibiting higher time expenses. Overall, in comparison to other
methods, SCChOA also demonstrates a relatively faster running speed compared to the majority of
the compared algorithms. This suggests that SCChOA can achieve satisfactory performance in feature
selection while also offering certain advantages in terms of time costs.

Table 6: The average running times

Dataset SCChOA BPSO BWOA BSCA BHHO BChOA BGWOPSO CCSA

DS1 15.97 55.41 62.63 16.84 80.47 47.87 15.27 10.56
DS2 14.47 17.03 12.93 13.60 22.46 11.88 17.25 13.03
DS3 18.51 17.56 18.69 21.01 34.48 16.26 44.23 17.89
DS4 17.06 17.18 14.11 17.09 30.10 18.50 16.36 9.97
DS5 15.53 24.57 26.24 28.82 49.65 27.82 38.82 13.28
DS6 13.70 28.81 26.98 28.67 52.74 26.36 40.57 13.27
DS7 12.91 28.18 24.95 26.15 45.32 25.67 33.61 11.76
DS8 79.98 166.63 181.46 115.29 302.36 110.15 15.73 46.19
DS9 19.63 24.15 18.38 19.80 31.92 20.44 24.29 18.56
DS10 16.72 18.28 18.72 15.85 28.23 14.95 25.76 22.21
DS11 17.56 18.02 17.83 15.32 23.04 17.23 29.87 18.22
DS12 162.85 202.38 295.32 72.56 278.04 50.51 177.40 95.47
DS13 20.35 19.11 21.52 20.97 29.22 20.44 17.21 20.70
DS14 13.42 16.98 13.87 13.16 22.68 13.44 14.00 12.44
DS15 8.65 8.30 8.08 8.78 12.71 8.75 9.02 10.49
DS16 9.41 10.37 9.81 9.70 14.99 8.69 11.51 12.79
Average 28.55 42.06 48.22 27.73 66.15 27.43 33.18 21.68
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Based on the aforementioned four indicators, the proposed method outperforms all other
compared methods in terms of average fitness value and average classification accuracy, which are
the two most important indicators. Moreover, the proposed method also exhibits certain advantages
in terms of average number of the selected features and the average runtime. These results can be
attributed to the embedded SCA operator, which provides additional search possibilities for individual
gorillas during the search process. In situations where a chimp individual becomes trapped in a local
optimum, the SCA operator assists in escaping from this local value, enabling the chimp to further
explore superior solutions by avoiding complacency with the current food source. Furthermore, the
proposed hybrid algorithm showcases a similar average runtime compared to the original ChOA and
SCA without incurring any additional time overhead. This is due to the fact that the embedded SCA
operator does not introduce any additional time complexity, thereby ensuring simplicity and efficiency
in the algorithm.

To provide a more intuitive demonstration of SCChOA’s effectiveness in tackling the feature
selection problem, Fig. 4 shows a visualized comparison showcasing the objective function fitness
values obtained by various methods across a set of representative datasets. Notably, SCChOA
consistently achieves the best results when compared to other methods, thereby emphasizing its
superiority and effectiveness in addressing the feature selection problem.

Figure 4: The visualized comparison of fitness values

To determine the statistical significance of the previously obtained results, a Wilcoxon’s rank-sum
test is conducted on the experimental data. The significance level chosen for the test is 5%. The results
of the test are displayed in Table 7. This particular test evaluates the hypothesis for two independent
samples and produces a p-value as the outcome. The null hypothesis states that there is no significant
difference between the two samples, and if the p-value is greater than 0.05, it raises doubts about
the validity of the null hypothesis. The statistical test results reveal that for almost all datasets, the
p-values are below 5%. Overall, the performance of SCChOA demonstrates significant distinctions
when compared to the other seven algorithms, suggesting that SCChOA is more effective than the
other comparison methods.
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Table 7: Wilcoxon’s rank-sum test results

SCChOA vs BPSO BWOA BSCA BHHO BChOA BGWOPSO CCSA

DS1 3.13E-02 1.95E-03 5.00E-01 1.22E-04 1.22E-04 4.46E-04 3.13E-02
DS2 9.62E-02 1.88E-04 4.06E-02 1.96E-04 8.65E-05 1.59E-03 5.75E-04
DS3 4.97E-03 4.46E-04 4.42E-04 8.81E-05 8.65E-05 3.57E-03 1.91E-04
DS4 7.81E-03 1.89E-04 1.95E-03 1.91E-04 6.94E-05 4.88E-04 1.94E-04
DS5 1.91E-04 2.96E-02 7.03E-02 1.16E-03 9.77E-03 5.64E-02 1.91E-04
DS6 8.79E-05 7.16E-03 8.67E-05 1.71E-03 4.46E-04 6.25E-04 1.94E-04
DS7 4.23E-04 4.46E-04 5.83E-03 6.24E-02 1.22E-04 3.91E-03 2.55E-01
DS8 1.16E-03 8.79E-05 8.83E-05 2.52E-04 8.83E-05 8.79E-05 8.79E-05
DS9 6.78E-04 8.66E-05 3.32E-02 8.81E-05 8.79E-05 4.78E-02 1.39E-04
DS10 4.46E-04 8.81E-05 4.48E-04 8.76E-05 8.83E-05 8.71E-05 8.81E-05
DS11 7.99E-03 1.40E-04 3.32E-02 1.39E-04 1.40E-04 8.73E-05 2.53E-04
DS12 6.27E-01 8.84E-05 8.83E-05 8.86E-05 4.78E-02 1.71E-03 8.86E-05
DS13 1.91E-04 8.79E-05 4.46E-04 3.57E-03 6.94E-05 1.16E-03 2.52E-04
DS14 1.14E-03 5.83E-03 1.89E-04 4.88E-04 9.77E-03 1.71E-03 6.24E-02
DS15 1.95E-03 8.83E-05 2.36E-02 7.16E-03 8.67E-05 6.25E-04 2.72E-04
DS16 8.79E-05 8.74E-05 8.83E-05 1.16E-03 8.79E-05 3.62E-02 8.41E-05

5 Conclusions

This paper presents the SCChOA, a novel hybrid algorithm for feature selection problems. This
method combines the characteristics of the SCA and ChOA to effectively address feature selection
challenges. In order to assess the performance of the proposed method, it is evaluated on 16 UCI
datasets using four evaluation metrics: average fitness value, average classification accuracy, average
feature selection number, and average running time. The SCChOA is compared with seven state-
of-the-art metaheuristic-based feature selection methods, including BPSO, BWOA, BSCA, BHHO,
BChOA, BGWOPSO, and CCSA. The results indicate that SCChOA achieves the best results in
terms of average fitness value and average classification accuracy. The average fitness value and
average classification accuracy are 0.1313 and 0.8767, respectively. Furthermore, this method exhibits
satisfactory performance with regards to average feature selection count and average running time.
These results demonstrate the high competitiveness of SCChOA in addressing feature selection
problems. Additionally, statistical tests confirmed the algorithm’s significant effectiveness.

In our future research, we aim to explore the potential of SCChOA in feature selection problems
across diverse domains, such as surface defect classification in industrial steel belts and feature
selection in real medical datasets like breast cancer datasets. This exploration holds the promise of
improving quality control processes in industrial environments and contributing to disease diagnosis
and treatment in the medical field. Additionally, investigating the potential of SCChOA in workshop
scheduling and wind power prediction is also a promising direction. These research endeavors are
expected to uncover practical applications of SCChOA in various domains or problems.
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