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ABSTRACT

Intelligent fault diagnosis in modern mechanical equipment maintenance is increasingly adopting deep learning
technology. However, conventional bearing fault diagnosis models often suffer from low accuracy and unstable
performance in noisy environments due to their reliance on a single input data. Therefore, this paper proposes
a dual-channel convolutional neural network (DDCNN) model that leverages dual data inputs. The DDCNN
model introduces two key improvements. Firstly, one of the channels substitutes its convolution with a larger
kernel, simplifying the structure while addressing the lack of global information and shallow features. Secondly, the
feature layer combines data from different sensors based on their primary and secondary importance, extracting
details through small kernel convolution for primary data and obtaining global information through large kernel
convolution for secondary data. Extensive experiments conducted on two-bearing fault datasets demonstrate the
superiority of the two-channel convolution model, exhibiting high accuracy and robustness even in strong noise
environments. Notably, it achieved an impressive 98.84% accuracy at a Signal to Noise Ratio (SNR) of —4dB,
outperforming other advanced convolutional models.
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1 Introduction

With the rapid improvement of science and technology and the development of modern industry,
mechanical equipment is used in almost all daily production and life. Machinery tends to operate
in complex environments, which makes modern intelligent sensing and maintenance very difficult.
Although the speed and load equivalent can be artificially adjusted to keep the equipment in relatively
stable operating conditions. However, some unavoidable factors such as mechanical vibration, speed
fluctuation during operation, foreign body intrusion such as dust, insufficient lubrication, etc., will
cause the detected signal to contain a large amount of noise. Therefore, the intelligent fault diagnosis
of bearings must accurately extract important fault characteristic information from high-noise signals
to determine the location and category of faults.
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To enable the diagnosis of rolling bearing faults in complex environments, many methods have
been proposed and implemented to eliminate the effects of noise. These methods can be broadly
classified into two categories. One type removes noise from the signal by data pre-processing. One
category directly extracts features from the highly noisy signal using deep learning models.

It is common to use signal processing methods to remove noise. Li et al. [1] used spectrum fusion
to reconstruct the signal spectrum, which effectively reduces the noise interference in the resonant
band. Chegini et al. [2] proposed an empirical wavelet transform (EWT) based technique for vibration
signal denoising and bearing fault identification. Zheng et al. [3] proposed a denoising model for the
sparsity characteristics of bearing fault signals in the frequency domain. Li et al. [4] and Ge et al. [5]
decomposed bearing vibration signals to denoise and extract signal features by improving ensemble
empirical mode decomposition (EEMD). These denoising methods of utilizing signal processing
inevitably involve a great deal of expertise and experience, which leads to widely varying results in
the processing of data depending on the skills of experts.

The deep learning model overcomes the aforementioned drawbacks. It can automatically extract
data features and process complex data. Zhuang et al. [6] performed real-time bearing fault diagnosis
by a clever combination of dilated convolution, long short-term memory network (LSTM) input
gate structure, and residual network. Yan et al. [7] constructed an optimized stacked variational
denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Zou et al. [8] designed
an adversarial denoising convolutional neural network (ADCNN) by combining GAN and CNN.
Wang et al. [9] proposed a novel attention-guided joint learning convolutional neural network (JL-
CNN) for mechanical equipment condition monitoring. Su et al. [10] built deep convolutional neural
networks by stacking small convolutional kernels as the basic building blocks. To extract features from
high-noise signals, different network combinations or superposition deepening models are used. This
inevitably makes the structure of the model more complex. In addition, the input signals in the above
research are all from a single sensor. If there is a large amount of noise in the input signal, the detection
accuracy will be greatly reduced.

In fact, CNN has a satisfactory ability to capture and extract the rich features of the original
fault signal. Excellent results can be achieved by using only a few layers of CNN. This paper employs
a multi-sensor signal fusion strategy and leverages the remarkable capabilities of CNN to effectively
capture and extract valuable features from original fault signals. It proposes a novel parallel multi-
channel CNN architecture model. Xue et al. [11] proposed that the parallel multi-channel structure
of 1D-CNN and 2D-CNN could deeply extract features. Ozcan et al. [12] implemented and tested a
new bearing fault diagnosis system based on multi-channel 1D-CNN architecture that simultaneously
utilizes multi-channel sensor data. They all prove that the multi-channel structure can further enhance
the feature extraction ability of the model. However, the above multi-channel architecture only uses
the parallel computing power of computers to repeatedly extract features from the same signal for
fusion. The structure of multiple channels is uniform, complicated, and redundant. At the same time,
there is no clear signal fusion strategy for the features extracted from multiple channels. The simple
repetitive channel structure inevitably leads to single and redundant channels and is not suitable for
bearing fault diagnosis in high-noise environments.

To reduce the effects of excessive noise, it is recommended to avoid relying solely on signals from a
single sensor. To improve accuracy, it is advisable to consider data from multiple sensors. The absolute
judgment of a single signal is avoided by comparing signals from different sensors. This reduces
the error caused by noise, improving fault diagnosis performance. Different sensor signals are input
through multiple channels. In the present multi-channel structure model, all channel configurations
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maintain high levels of consistency to ensure that the extracted features from each channel have the
same dimensions and can be readily fused with each other. The recurrent channel structure involves
extracting features from the input multiple times, with limited added benefits. To support the notion
of multi-sensor joint diagnosis, a novel efficient signal fusion strategy is presented alongside a nov
dual-channel structure.

The main idea of the parallel dual-channel model proposed in this paper is to integrate the detailed
and deep features of the primary sensor signal with the global information and shallow features of the
secondary sensor signal. The feature of the primary sensor signal is extracted by the small convolution
kernel, which is used to judge the fault signal. The feature of the secondary sensor signal is extracted
by the large convolution kernel to complement the defect feature. The problem of poor signal quality
obtained from a single sensor in a high-noise environment is avoided. At the same time, a large
convolution kernel is used to replace a multi-layer small convolution kernel in a channel to obtain
a larger receptive field, reduce the training parameters of the model, and avoid the redundancy of
channels.

The innovative contributions of this paper are as follows:

1. The novel dual-channel convolution model for bearing diagnosis under complex working
conditions is proposed. The redundant dual-channel structure is optimized, and excellent
denoising performance and fault diagnosis are obtained.

2. A new feature fusion method to improve the noise robustness of fault diagnosis models is
discussed. Not only the number of parameters in training is greatly reduced, but also the
stability performance of the model is enhanced.

3. The superiority of the novel dual-channel convolution model was demonstrated through a
multifaceted comparison of the dataset of Paderborn and Case Western Reserve University.
The validity and accuracy of the model are ensured in strong noise environments.

The remainder of the paper is organized as follows: Section 2 details the proposed feature fusion
strategy and the novel dual-channel model framework. Section 3 compares the performance of the
proposed model and provides a visual analysis. Section 4 further verifies the model with additional
datasets. Section 5 summarizes the work of this paper and looks forward to future research plans.

2 Feature Fusion Strategy and Proposed Framework
2.1 Proposed Feature Fusion Strategy

The general idea of the proposed feature fusion strategy is shown in Fig. 1. The detailed features
of the primary signal are gradually extracted by using deep small convolution as the main basis for
fault identification. To avoid the influence of high noise, shallow large convolution is used to quickly
extract the global information of secondary signals as a complement to the defect features. The multi-
sensor signals are fused at the feature level, and the features of the deep layer and shallow layer are
taken into account to ensure the accuracy and stability of fault diagnosis. Finally, fault diagnosis is
performed according to the fused feature information to classify the type and determine the cause of
bearing failure.

The proposed feature fusion strategy considers different types of signal features, including four
parts: detailed features, deep features, global information, and shallow features. Meanwhile, to enrich
the diversity of extracted features, four types of features are extracted from two signals each. Detailed
features and deep features come from primary signals, while global information and shallow features
come from secondary signals. Bearing vibration is very sensitive to bearing damage, such as spalling,
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indentation, rust, cracking, wear, etc., which will be reflected in bearing and vibration measurements.
Therefore, the vibration signal is used as the primary signal input. The selection of secondary signals is
relatively wide. They can be current, sound, images, temperature, or even vibration signals from other
places. The signal that can reflect the bearing change can be used as the secondary signal input. The
fused signal features can carry more information and are not susceptible to noise interference. It can
ensure the stability and robustness of the model in a complex environment.
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Figure 1: Feature fusion strategy diagram

2.2 Novel Dual-Channel Network Model

2.2.1 Construction of Dual-Channel Model

The proposed dual-channel network model is a 2D convolutional model that uses data from
different sensors as input. The main channel uses a multi-layer small convolution kernel to extract
the detailed features of the primary signal, while the supplementary channel uses a large convolution
kernel to optimize the model, avoid the redundancy of the channel, and extract the global information
of the secondary signal. After fusing the characteristic information of all channels, the output is
finally classified by the full connection layer. The establishment process of the dual-input dual-channel
convolutional neural network (DDCNN) model is shown in Fig. 2.

Due to the uncontrollable influence of mixed dust, insufficient lubrication, mechanical resonance,
and so on, the bearing will inevitably be doped with a lot of noise in operation. The first thing to
consider is how to improve the performance of the model under heavy noise. The signal measured
by the vibration sensor is the primary signal. However, the original one-dimensional vibration signal
makes it difficult to achieve the ideal recognition effect due to the high noise. Given the stronger feature
extraction ability of two-dimensional convolution, the model input is converted from the original one-
dimensional vibration data to two-dimensional data. Then, multilayer convolution is used to extract
the features of the signal step by step. To make the signal features more detailed, the small convolution
kernel is used to focus the local features. The final main channel structure is shown in the dotted box
in Fig. 2.

Under stable conditions, the model has a good performance. However, the vibration signal
becomes significantly degraded due to the presence of high levels of noise pollution, resulting in a
decrease in diagnostic accuracy. Therefore, the secondary sensor signals are added to further verify the
discriminant results as a powerful supplement to the primary sensor signal. To avoid interfering with
the primary sensor’s feature extraction, other secondary signals are input on separate channels. Simply
repeating the original feature extraction module will inevitably lead to channel redundancy. Therefore,
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only one large convolutional layer is used to extract the signal features on the supplementary channel.
By using one large convolutional layer instead of several small convolutional layers, the number of
training parameters is greatly reduced. More importantly, it adds the shallow features and global
information that is missing in the main channel. Before classification, the features extracted from the
supplementary channel and the main channel are integrated to perform the final fault diagnosis.
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Figure 2: Establishment process of the dual-channel structure

2.2.2 Model Details

Based on the above ideas, we built the DDCNN model. The proposed DDCNN is a dual-channel
2D model with inputs from multiple sensors. The structure of the DDCNN model is shown in Fig. 3.
Inputl which uses two convolutional-pool layers is the primary sensor data, and the detailed features
are extracted using a 3 x 3 small convolution kernel with a step size of 1. Input2 which uses only one
convolution layer is the secondary sensor data, and the global information is obtained using a 7 x 7
large convolution kernel with a step size of 5. After fusing the convolved dual-channel data, different
bearing states are output using SoftMax classification through a global average pooling layer and a
fully connected layer. The specific parameter values of each layer are shown in Table 1.

3 x 3 is the smallest size that can capture information from eight neighborhoods of a pixel.
Stacking two layers of small convolutional kernels ensures that detailed features of the defect
information are extracted. At this point, the finite receptive field is equivalent to 5 x 5. Therefore,
we use a large convolutional kernel of 7 x 7 with a step size of 5 in the other channel. The receptive
field is expanded as much as possible without increasing parameters and running time. The larger the
receptive field, the more global features are extracted and the better the recognition performance.



3428 CMC, 2023, vol.77, no.3

1
A |

Pool2 Global Pool

Softmax

Dense

Convl Pooll Conv2

Figure 3: Architecture of the DDCNN model

Table 1: The specific parameter values of each layer

Layer type Kernel_size  Strides Filters Output size Parameter
Convl (3,3) (1,1) 32 (N, 30, 30, 32) 320
Pooling1 (2,2) (2,2) 32 (N, 15,15,32) 0

Conv2 (3,3) (1,1) 64 (N, 13, 13, 64) 18496
Pooling2 (2,2) (2,2) 64 (N, 6, 6, 64) 0

Conv (7,7) (5,5) 64 (N, 6, 6, 64) 3200
Concatenate (N, 6, 6, 128) 0

Global pooling (N, 128) 0

Dense (N, 32) 4128
Softmax (N, 10) 330

Gaussian Error Linear Unit (GELU) [13] is adopted as the activation function of the proposed
model. GELU incorporates the idea of dropout in the activation, which mainly introduces randomness
to the activation function and makes the model more robust in the training process. Compared to the
commonly used RELU activation function, GELU does not lose characteristic information when the
signal is less than 0. This allows the model to extract more detail from important sensor signals. It is
given below:

GELU (x) = x* ® (x) ~ 0.5(1 + tanh [\/% (x+ 0.044715x3)D (1

where ®(x) is cumulative distribution of the Gaussian normal distribution of x, and the final
calculation results are approximate.

In order to obtain more accurate defect information and better identify defect categories, one_hot
is used to label the data, categorical_crossentropy is used as the loss function, and Adam is used as
the optimizer. In addition, it is worth noting that given the relatively slow gradient descent of the two-
dimensional input, the learning rate takes on a function that decreases exponentially with the number
of iterations. The dynamic learning rate ensures that the model can achieve the best performance in
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every stage of training. This is as follows:
o, = 0.01 % 0.96' 2

The initial learning rate is 0.01 and t is the number of iterations. After 50 iterations, the learning
rate is about 0.0013. The advantage is that it can get a higher descent rate at the beginning of the
iteration and a better convergence with a smaller epoch. In the later stage of training, a small learning
rate can ensure the stability of the model and avoid parameters oscillating between two sides of the
optimal solution.

3 Model Comparative and Performance Test

The experimental data used in this section are from the rolling bearing database center of Case
Western Reserve University (CWRU) in the United States. The CWRU data is one of the most
commonly used data sets for bearing fault diagnosis [14], which sampling system is shown in Fig. 4.
One acceleration sensor is placed above the bearing housing at the Fan End (FE), and one above Drive
End (DE) of the motor to collect vibration acceleration signal of faulty bearing. The drive end-bearing
fault data measured by sensors at different locations were obtained at a 12 kHz sampling frequency.
The model performance test was conducted using FE data as the primary data and DE data as the
secondary data.

Motor 'I'dr_g trAnSciter Power measuring meter

»

Figure 4: The CWRU bearing data sampling system

3.1 Data Processing Procedures

Considering the difference in data processing, the final performance of the model will be affected.
Therefore, in order to obtain more accurate experimental results, the processing of data is clearly
explained Fig. 5 illustrates the specific data processing procedure. On the left is a diagram of the
data mixing. The data from all operating conditions are mixed in a certain proportion for training
to adapt to a variety of conditions. Meanwhile, the amount of fault data at different locations is also
reasonably distributed. The data pre-processing process is shown on the right. First, to cope with the
complex practical application environment, raw data from various sensors are noise-enhanced. The
data volume is then increased using data augmentation techniques. Finally, the data is reconstructed
into a two-dimensional data input.
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The CWRU-bearing data is relatively simple and stable. Therefore, in this paper, random noise is
added to the data in a way that simulates the noise signals that exist in practice. As noise increases, the
signal becomes more blurred, and the corresponding features are more difficult to extract. Signal-to-
Noise Ratio is used to measure the intensity of noise, which is expressed as:

SNR (dB) = 101log,, (ﬁ) (3)
Py

where Pg and Py represent the effective power of signal and noise respectively. In general, the stronger

the noise entrained in the vibration signal, the smaller the SNR. When the SNR is 0, it means that the

noise power is the same as the signal power. At this time, the signal reliability is extremely low, and

the correct signal cannot be judged basically. As the noise continues to increase, SNR will be less than

0. This indicates that the noise power is greater than the signal power. It is very difficult to extract
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features from the signal due to the influence of a large amount of noise. When the noise exceeds a
certain proportion, the collected signal will almost lose its function, and no useful characteristics can
be obtained from it. To highlight the intense noise environment, the test was conducted with an SNR
of —4.

For one-dimensional bearing fault vibration signals, data enhancement is usually performed by
overlapping sampling with a sliding window. Suppose there is a window of sample length, and each
time the sample interval is shifted by a certain amount. Then two sets of data obtained will have
overlapping parts. This can be expressed as:

D—-L
N=— @
where N is the number of samples obtained, D is the length of the original data, L is the length of each
training sample collected, and S is shift. To obtain more training data, the experiment uses an L value
of 1024 and an s value of 128.

Two-dimensional image signals contain more in-depth and high-dimensional features compared
to one-dimensional vibration time series signals, which are suitable for model generalization. There-
fore, a one-dimensional original signal can be transformed into a two-dimensional signal as input in
a superposition manner. First, every N point of the one-dimensional signal after maximum-minimum
normalization is taken out as one of the rows of data in a two-dimensional signal; then the N rows of
data are superimposed to form an N x N two-dimensional signal. The N value is 32 for the experiment.

Most of the diagnostic methods proposed so far are performed under the same operating
conditions. In CWRU data, operating conditions refer to different workloads. However, the working
load varies with the equipment products under complex running environments. Moreover, issues such
as environmental noise and equipment aging can cause load to differ from the actual settings. As a
result, traditional methods based on the same workload may not achieve original results in practical
applications, and may even fail to identify faults [15].

In order to attenuate the impact of load as much as possible, the data from all different loads are
mixed for training to extract features of fault data. With a certain amount of training data guaranteed,
data are allocated by the structure: number of each type of load (500) x ten types of faults (10) % four
types of loads (4). Total number of samples is 20,000. The ratio of training samples, validation samples,
and test samples is 7:2:1, all of which are randomly selected without repetition from the samples after
data enhancement, and the numbers are 14000, 4000, and 2000, respectively.

3.2 Noise-Resistant Test

In this paper, four CNN models with good performance and strong generality are used as
comparison experiments. The WDCNN [16] is composed of five 1D convolution layers in alternating
order with pooling layers. It mainly uses a wide kernel of the first convolutional layer to extract features
and suppress high-frequency noise. The WKCNN [17] has a similar structure to the WDCNN, and
the core idea is to widen the convolutional kernel and combine deep learning with other optimization
algorithms. Both models are 1D-CNN networks. Wen et al. [18] proposed a New CNN based on
LeNet-5, which has good potential in the field of fault diagnosis. AlexNet [19] is a classical network
for processing images. The basic model is kept unchanged, and the size of the CNN layer and pooling
layer is appropriately reduced so that it can handle small image data. Both models use two-dimensional
image input. The DDCNN is a two-dimensional dual-input model proposed in this paper. In addition,
we tested the model’s performance with only a single input, and the experimental results are denoted
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as DDCNN-. The DDCNN- and DDCNN models are identical. The difference is that the inputs of
both channels of the DDCNN- are DE data.

A certain amount of noise is added to data for comparison experiments. The results with SNR of
0,—2,—4,—6,—8,and —10dB are shown in Fig. 6. The accuracy of each model decreases significantly
as the noise increases. The accuracy of 2D-CNN begins to exceed that of ID-CNN. When the SNR is
—4dB, all models’ accuracy can still be maintained above 90%. And then accuracy starts to decrease
rapidly with the increase of noise. Especially, 1D-CNN is seriously disturbed by noise. When the SNR
reaches —10 dB, the WKCNN accuracy is 51.84%, and the WDCNN does not even exceed 50%, with
only 46.52% accuracy. At this time, the New CNN accuracy is 78.85%, while the AlexNet effect is
relatively poor, which can also reach 74.79%. It can be inferred that the two-dimensional model carries
richer feature information and is less affected by noise interference than the one-dimensional model.
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Figure 6: Comparison of the accuracy of each model under different SNRs

The proposed DDCNN model is much less affected by noise than other models. With a SNR of
—4dB, the accuracy is as high as 98.84%, and when the SNR reaches —10dB, the accuracy is still
92.65%. Compared with other models, the recognition effect of DDCNN becomes more and more
obvious with the increase in noise. It is well illustrated that the method of using FE and DE dual-data
input for mutual verification can increase the noise-resistance interference ability of data, improve the
robustness of the model, and ensure very high accuracy under the complex environment of strong noise.
In addition, the DDCNN- model, which uses only DE as input, originally had slightly worse accuracy
than other 2D models. However, after the SNR is less than —6 dB, the accuracy starts to significantly
exceed the other models. This indicates that the dual-channel convolution has a strong anti-interference
ability in a strong noise environment. The fusion of features extracted by dual-channel separately can
enhance the feature extraction ability of the network and improve the stability and accuracy of the
model.

3.3 Model Comparison

The accuracy of every model is above 90% when the SNR is —4 dB. Therefore, the specific training
of each model at this time was examined. Accuracy curves and loss curves of the test are shown in
Fig. 7.
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Figure 7: Variation curves when SNR is —4 dB

The accuracy and loss changes of WDCNN and WKCNN are generally similar. As a ID-CNN
model, the overall recognition effect is relatively stable and does not fluctuate much as the training
of the network deepens. However, the accuracy is not as good as 2D-CNN under the strong noise
environment. It is worth noting that loss functions of two 1D-CNN models tend to increase slightly
after the epoch is greater than 10, and accuracy decreases slightly, showing signs of overfitting. New
CNN and AlexNet, as 2D-CNN models, outperform 1D-CNN in accuracy when SNR is —4 dB.
Although the fluctuations during the training process are relatively large, the overall trend is in line
with expected results. And 2D-CNN can carry richer signal features by itself, so there is no overfitting
within 50 epochs. Moreover, New CNN has a better recognition effect compared to AlexNet.

Due to the dual-channel mutual verification, DDCNN- has higher recognition accuracy, less
overall fluctuation, and is more stable than other two-dimensional models. DDCNN with the addition
of dual-data inputs further improves performance. It not only has a high feature extraction ability and
recognition accuracy in a strong noise environment but also has excellent stability and robustness with
no obvious fluctuation in verification results.

In addition, the number of parameters and the running time of an epoch for each model are
recorded in Table 2. The proposed DDCNN model takes advantage of the optimized dual channel to
avoid a large stacking of modules. The number of parameters and the running time are much smaller
than other 2D-CNNs. Compared with 1D-CNN, the training speed is significantly slower, although
the difference in the number of parameters is not large. This is the defect of the 2D model itself, which
is difficult to enhance.

Table 2: Comparison of parameters and running time

Model Parameter  Runtime (s) Category
DDCNN 26,474 11~12 2D-CNN
AlexNet 9,342,826 58~61 2D-CNN
New CNN 520,842 14~15 2D-CNN
WKCNN 26,050 1~2 1D-CNN

WDCNN 41,990 1~2 I1D-CNN
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3.4 Workload Test

In order to avoid the situation that the accuracy of the model is greatly reduced by cross-loads,
all workload data are mixed during data processing. So that the model can ignore the effects of load
as much as possible and extract more fault characteristics. To verify the feasibility of this method, the
trained models are tested separately with data from different loads. Fig. 8 exhibits the variation of
model accuracy with load when SNR is —4 dB.

The accuracy of each model varies under different loads, but the absolute difference does not
exceed 4%. Due to the fluctuation of model accuracy itself increases in a high noise environment, the
overall results are still within an acceptable range. In addition, the average accuracy of the model under
all loads remains highly consistent with experimental results in previous sections. It indicates that it is
feasible to mix the data of different loads together for training.

The proposed DDCNN model has an accuracy difference of only 1.65% between loads. It is the
smallest variation among all models. It shows that the DDCNN is better than other models in ignoring
the differences brought by load and focusing on the characteristic information of the fault itself.

3.5 Inputs Comparison

Each of the bearing fault diagnosis datasets of Western Reserve University contains the fault data
of DE and FE sensors that have not been fully utilized in other studies. An idea of feature fusion is
proposed based on this, which focuses on detailed features of data measured by the key sensor and
simply obtains global information of the other sensor for the supplement. The results of comparing
different data as inputs are shown in Fig. 9, which proves the feasibility of this idea. The accuracy of
“FE, FE” as input reaches 96.93%, which is 2.92% higher than the accuracy of “DE, DE” as input.
This indicates that FE data is better overall and carries more information than DE data.
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The accuracy of using only DE data or FE data is not as good as using both. In addition, the
results of both using DE and FE data as input have much less fluctuation, which obviously increases
the stability of the model. In comparison, the best results can be obtained by processing FE data with
the small convolutional kernel while processing DE data with the large, which also verifies that FE
data has more advantages than DE data, and the features are relatively more obvious.

In summary, the proposed model uses dual data as input: the small convolutional kernels are used
to extract detailed features of FE data, and the large convolutional kernel is used to obtain global
information on DE. The model has a better recognition effect and higher accuracy compared with
single data input, and the output results fluctuate less and have strong stability and robustness.

3.6 Visual Analysis

3.6.1 Confusion Matrix

Confusion matrix is a kind of visual method to evaluate the accuracy of classification models.
The X-axis represents the prediction label and the Y-axis represents the real label. A confusion matrix
usually fills the matrix with the number of categories. However, the data of the experiment in this paper
is divided randomly, and each type of fault number is around 200, which is not the same. In order to
make the visualization results more intuitive, the confusion matrices are normalized.

It shows the confusion matrix of the proposed model without noise in Fig. 10a. The classification
accuracy basically reached a hundred percent at this time. Only in the case of the OR014 fault can it
be classified as a B014 fault with a small probability. The confusion matrix when adding noise with an
SNR of —4 is shown in Fig. 10b. It is obvious that fault classification errors are concentrated between
the outer ring fault and the ball fault. Among them, OR014 and B007 faults and OR014 and B014
faults are mainly confused. The overall phenomenon is similar to the confusion matrix without adding
noise.
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(a) Confusion matrices under normal conditions. (b) Confusion matrices when SNR is -4.

Figure 10: Classification results of the DDCNN
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In general, The DDCNN model has high fault classification accuracy and good recognition ability
even in strong noise environments. Moreover, fault classification errors are mainly between OR014 and
B007 or BO14, which can be improved to further enhance the performance of the DDCNN model.

3.6.2 T-SNE-Based Visualization

T-distributed Stochastic Neighbor Embedding (T-SNE) was proposed by Van der Maaten et al. in
2008 [20]. It is the most effective data dimension reduction and visualization method at present. The
distributions of the 10 feature data are mapped onto a two-dimensional plane through T-SNE, and
the classification visualization results of key layers are drawn in the DDCNN model when the SNR is
—4, as shown in Fig. 11.
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Figure 11: Feature visualization of the DDCNN model based on T-SNE

The original input is disorganized, with the highest degree of confusion. The data of DE go
through a layer of large convolution, clustering for only part of the fault feature. After two layers of
small convolution and pooling, the confusion degree of FE data is greatly reduced, but some faults still
exist mixing phenomenon. The boundary of mixed fault signals is clearer after signal features of both
ends are fused. In the global average pooling layer, signal features are basically clustered into small
pieces with a certain degree of mixing. Finally, each fault feature is further aggregated and separated
significantly between groups by classifying output through the full connection layer.

It can be inferred that the mixing degree between different features is small after the combined
efforts of dual data and dual channels. Therefore, it has proved useful for the model to converge more
easily and classify better. In addition, observing the final T-SNE visualization clustering results, it can
be seen that the most confusion occurred when green (B007) and light blue (B014) were clustered into
purple (OR014). This is consistent with the conclusion of the confusion matrix in the previous section.
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4 Further Validation

The CWRU dataset consists of fault data collected under stable conditions with minimal opera-
tional noise, including speed, load, and other factors. In previous experiments, adding random noise
to the dataset was used to simulate complex operating environments, resulting in relatively good
experimental results. This section describes further experiments using the bearing dataset from the
University of Paderborn in Germany. Fig. 12 is an illustration of the test platform. The data collected
from it is more complex and can better represent the actual operating conditions.

ehring module ! flygheel
“emm— i<

Figure 12: The Paderborn dataset test platform

The Paderborn Condition Monitoring (CM) dataset contains vibration and motor current signals.
The vibration signal is used as the primary data, and the motor current signal as the secondary data
for further validation.

The data collected is more complex and representative of actual operating conditions, with key
parameters such as speed, radial force and load torque artificially set during operation. In experiments,
these parameters were varied to simulate different operating conditions. Uncontrollable factors such
as run-in time, extent of damage, and damage method were treated as ambient noise. The focus was
solely on damage location classification. Table 3 provides data for various normal categories, while
Table 4 provides specific information on failure data. To increase the class balance and reflect real-
world scenarios, the number of outer ring defects was slightly higher than other categories.

Table 3: Operating parameter of healthy (undamaged) bearings during the run-in period

Bearing code Run-in period (h)  Radial load (N)  Speed (min™') Label

K001 >50 1000-3000 1500-2000 0
K002 19 3000 2900 0
K003 1 3000 3000 0
K004 5 3000 3000 0
K005 10 3000 3000 0
K006 16 3000 2900 0

Table 4: Specific information about the fault data (OR: outer ring; IR: inner ring)

Bearing code Component  Extent of damage Damage method  Label

KAO1 OR 1 EDM 1
(Continued)
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Table 4 (continued)

Bearing code Component  Extent of damage Damage method Label
KAO03 OR 2 electric engraver 1
KA04 OR 1 fatigue: pitting 1
KAO05 OR 1 electric engraver 1
KA06 OR 2 electric engraver 1
KAO07 OR | drilling 1
KAO08 OR 2 drilling 1
KA09 OR 2 drilling 1
K101 IR 1 EDM 2
KI03 IR 1 electric engraver 2
K104 IR 1 fatigue: pitting 2
K105 IR 1 electric engraver 2
KI07 IR 2 electric engraver 2
KI08 IR 2 electric engraver 2

4.1 Noise Immunity Comparison

In this experiment, 250 data points were collected for each of the 20 different Bearing Codes,
resulting in a total of 5000 data points per category of operating conditions. The data was then mixed
together for all running conditions and only fault categories were classified. The data processing and
model parameters remained unchanged from previous experiments.

Fig. 13 depicts the experimental results of the model on Paderborn data, which show that
classification accuracy substantially decreases with the inclusion of a relatively large amount of useless
information. The overall results remain consistent with previous experiments involving the addition
of random noise to the data. Both 1D-CNN models perform significantly worse than the 2D-CNN
model. The proposed DDCNN model achieves an accuracy of 91.85%, outperforming all other models
by utilizing a dual data feature fusion approach and dual-channel input. Compared to other models,
the DDCNN model exhibits a smaller overall error range and more stable experimental results.

4.2 Operating Conditions Comparison

During model training, data from all running conditions were mixed together. Table 5 shows the
four running conditions, with T4 as the baseline condition. Data for different running conditions were
obtained by separately varying the speed, load, and radial force based on the T4 condition.

Fig. 14 depicts the results of testing the trained model under different running conditions,
evaluated using the F1 score. The overall evaluation of the five models in the T4 running condition
is consistent with previous results. However, as running conditions changed, the recognition accuracy
showed some fluctuations. Reduction of load led to improved model performance while reduction of
radial force resulted in worse performance. Nevertheless, the overall changes were insignificant and
within acceptable limits. Changes in rotational speed had the greatest impact on model performance
due to temporal compression or stretching of data, which reduced the amount of data collected per
unit time. Despite using the same input data length of 1024, a change in rotational speed represented
a completely different data segment, resulting in rapid degradation of model performance.
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Figure 13: Comparison of models

Table 5: Description of operating conditions

Speed Load (Nm)  Radial force (N)  Name Component
900 0.7 1000 N09_MO7_F10 T1
1500 0.1 1000 NI15_MO1_F10 T2
1500 0.7 400 NI15_MO07_F04 T3
1500 0.7 1000 NI15_MO07_F10 T4
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Figure 14: The results obtained by the model under different operating conditions

4.3 Inputs Comparison

Vibration and motor current signals are used in the Paderborn dataset. Experiments with
different input channels show the advantages of the proposed multi-data feature fusion strategy. The
experimental results are shown in Fig. 15. The darker the color, the higher the accuracy, and the larger
the area, the more stable the results.
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Figure 15: Multi-data fusion test

The detailed features of the vibration signal were extracted from the main channel, and the global
features of the current signal were obtained from the supplementary channel. The best diagnostic
results were obtained after the fusion of the two features. Not only the recognition accuracy is the
highest, but also the fluctuation is the lowest, and the model is the most stable. It fits our strategy
perfectly. In addition, when only the current signal is input, the diagnostic accuracy is less than 50%. If
it is added as a secondary signal, it can greatly improve the diagnostic ability of the model. The results
of the experiment with the current signal as the key signal and the vibration signal as the auxiliary
signal are better than expected, even better than the results of the two channels with the vibration
signal. The reason may be that the difference between the convolution layers of the two channels
is not large enough. With one layer of large 7 x 7 convolution instead of two layers of small 3 x 3
convolution, the overall depth change is small. Of course, this also proves the superiority of multiple
data input.

5 Conclusion

This paper proposes a primary and secondary fusion strategy for fault diagnosis using data
obtained from different sensors. The DDCNN model is based on this method and optimizes the
original two-channel structure to enhance feature extraction abilities. Experiments on two bearing
fault datasets show that the model maintains high accuracy and recognition performance even in
noisy environments. However, the proposed method only fuses two types of sensor data, and further
investigation is required to verify the advantages of multi-data fusion for fault diagnosis. Additionally,
the channel structure optimization is only suitable for inputs smaller than 64 x 64, and the model may
fail for the larger two-dimensional inputs due to dimensional mismatch. Future work will optimize
the channel structure to better adapt to inputs of varying dimensions.
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