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ABSTRACT

Deep learning techniques have significantly improved image restoration tasks in recent years. As a crucial compo-
nent of deep learning, the loss function plays a key role in network optimization and performance enhancement.
However, the currently prevalent loss functions assign equal weight to each pixel point during loss calculation,
which hampers the ability to reflect the roles of different pixel points and fails to exploit the image’s characteristics
fully. To address this issue, this study proposes an asymmetric loss function based on the image and data
characteristics of the image recovery task. This novel loss function can adjust the weight of the reconstruction loss
based on the grey value of different pixel points, thereby effectively optimizing the network training by differentially
utilizing the grey information from the original image. Specifically, we calculate a weight factor for each pixel
point based on its grey value and combine it with the reconstruction loss to create a new loss function. This
ensures that pixel points with smaller grey values receive greater attention, improving network recovery. In order
to verify the effectiveness of the proposed asymmetric loss function, we conducted experimental tests in the image
super-resolution task. The experimental results show that the model with the introduction of asymmetric loss
weights improves all the indexes of the processing results without increasing the training time. In the typical super-
resolution network SRCNN, by introducing asymmetric weights, it is possible to improve the peak signal-to-noise
ratio (PSNR) by up to about 0.5%, the structural similarity index (SSIM) by up to about 0.3%, and reduce the root-
mean-square error (RMSE) by up to about 1.7% with essentially no increase in training time. In addition, we also
further tested the performance of the proposed method in the denoising task to verify the potential applicability of
the method in the image restoration task.

KEYWORDS
Deep learning; image restoration; loss function; image properties; super resolution; image denoising

1 Introduction

Artificial Intelligence (AI) technology has developed significantly in recent decades and achieved
success in many fields [1,2] (e.g., robotics, regression analysis, pattern recognition, etc.). Deep learning,
as one of the representative techniques of AI technology, has been rapidly developed in the field of
computer vision with the improvement of computational resources, especially in image processing
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tasks (e.g., denoising [3], super-resolution [4], segmentation [5], and style conversion [6], etc.), where
it has demonstrated good processing results. In order to further improve the accuracy of processing
results and the effectiveness of information expression in deep learning methods, a large number of
network processing models with promising results have been proposed by relevant researchers. In
order to optimize the design for specific problems, related researchers have developed new network
architectures [7,8]. Meanwhile, to enhance the interpretability of neural networks, a large number of
research works have explored understanding the internal mechanisms of neural networks and their
inherent limitations. For example, by developing reverse processing networks [9] or trying to spoof
networks with specific inputs [10].

The essential components of deep neural networks include forward propagation, backpropaga-
tion, optimization, activation function and loss function [11–14]. Forward propagation allows inputs
to be passed from one layer to the next until an output is produced. Backpropagation is an iterative
process that determines the contribution of each neuron to the output error based on a chain rule
and adjusts the weights of each neuron through the network. Optimization techniques are used to
reduce the errors generated during backpropagation, and algorithms such as gradient descent and
stochastic gradient descent can be used to optimize the network. The activation function converts
inputs into outputs that the neural network can recognize. The loss function is used to measure the
neural network’s performance after backpropagation and optimization. Combining these components
allows deep learning to accept complex inputs and generate accurate predictions for various tasks. The
loss function measures the predictive power of the network model based on the network-predicted
results. It is a crucial component of deep learning models as it quantifies the difference between the
model’s predictions and the actual values. The correct choice of the loss function is vital for achieving
effective optimization of deep learning models since it directly impacts the effectiveness of model
training [15].

Image recovery is a crucial area of research in computer vision. It involves restoring the original
image information from a damaged image, which is essential in various practical applications like
medical image processing, image enhancement, and video compression [16]. Traditional image recov-
ery methods rely on mathematical models but often struggle with noise and distortion in complex
scenes. In contrast, deep learning techniques can automatically learn advanced feature representations
through end-to-end models and have significantly improved image restoration tasks. However, for
delicate image recovery tasks, such as medical image processing, the credibility of deep learning
recovery results still limits its popularization and application [17]. When utilizing deep networks for
image restoration, a loss function quantifies the difference between a low-quality or corrupted image
and the original labeled image. A suitable loss function is vital in improving the network’s ability to
recover high-quality images from low-quality inputs [18]. Numerous studies have explored different
loss functions for image recovery using neural networks. Some commonly used loss functions include
Mean Square Error (MSE) and Mean Absolute Error (MAE). These loss functions have shown good
performance in various image-processing tasks. For instance, Wang et al. [19] and Zhang et al. [20]
employed MSE and MAE, respectively, for image super-resolution. However, these loss functions
also have limitations. For example, the MSE loss function may have a significant gap in measuring
human-perceived image quality when dealing with tasks related to image quality [21]. This is because
the MSE loss function assumes several factors, such as the independence of noise from local image
characteristics. Nevertheless, the human visual system (HVS) is sensitive to noise based on local
brightness, contrast, and structure [22]. Generally, selecting an appropriate loss function for a specific
deep learning task is challenging, and there is no universal selection scheme. The choice depends on
the nature of the task and the type of model being used. Using a conventional loss function for training
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imposes equal weight on each pixel point, making it difficult to distinguish edge parts. Consequently,
suppressing visual artifacts in the network’s output image without compromising the true details
becomes a key concern.

With the development of deep learning, many researchers have constructed a variety of super-
resolution and denoising network models with different frameworks from the design of network
models, and these super-resolution and denoising models have achieved relatively good results in super-
resolution and denoising problems. However, in the process of network training and processing, in
addition to improving the effective utilization of features extracted in the middle of the network, the
network training process can be optimized based on the objective so that the information contained in
the labels can be fully utilized to improve the processing capability of the network after the completion
of training. Especially for different imaging modes in which the physical principles that cause image
degradation are different, it is difficult to utilize a single image recovery mode that is applicable to all
scenarios, especially for low-contrast images.

The use of asymmetric loss functions has been proposed by related researchers in multi-label
classification tasks, especially when the data in each category is not balanced [23,24]. In 2023,
Tang et al. [25] constructed a triple representation in the clustering problem, which was further
enhanced by different feature constraints for unbalanced data. The asymmetric loss function solves
this problem by giving different weights to the losses of different categories. Vogels et al. [26] proposed
a modular convolutional architecture for denoising rendered images. The functionality of the kernel
prediction network is extended by using a set of asymmetric loss. Liu et al. [27] proposed an asymmetric
exponential loss function to address the crack segmentation task sample bias and dataset bias.
Depending on the needs of the task, we can adjust the weights of the loss function to balance the
importance of different categories. Asymmetric loss function can overcome the drawbacks of the
original network to process information equally and improve the processing of the network.

In this paper, we design an asymmetric loss function based on the characteristics of image
processing tasks. The loss function considers the greyscale information of each pixel in the image
and balances the pixel information of different greyscale values by applying weights to the original
loss. Our method focuses on improving the learning process for pixel locations with poor prediction
results in the deep learning model. This is achieved by applying dynamic weights to individual pixel
points.

This paper uses the models obtained based on MAE and MSE loss functions as comparison
models. During processing, the loss function is further optimized according to the data characteristics
and features of the original image. In this paper, we change the asymmetry of the loss function by
imposing different weight values. We tested the proposed loss in different image processing tasks, and
the experimental results show that the asymmetric loss proposed in this paper can improve image
processing quality. At the same time, the loss proposed in this paper can be efficiently fused into other
network models.

The main innovations of this paper are as follows:

1) This paper designs an asymmetric loss function based on the characteristics of the image itself.
Assigning different weights to pixels effectively improves the network’s processing effect.

2) The method proposed in this paper allows for quick implementation of the asymmetric loss
function without complicated configuration and adjustment. It has the advantage of plug-and-play,
making it more convenient and efficient in practical applications.
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3) The method presented in this paper has been tested in various image-processing tasks. It has
consistently shown improvement in the network’s processing effect. The method demonstrates good
robustness and applicability.

2 Method

The different levels of greyscale information in an image reflect the brightness of various areas
within the image. In a greyscale image, each pixel has a unique greyscale value that indicates the
brightness level of that pixel’s location. A higher greyscale value corresponds to a lighter pixel in the
image. Therefore, analyzing the greyscale values in an image provides insight into its overall brightness
distribution and the differences in brightness between different regions. When training the output
image using a deep network with a conventional loss function, each pixel carries the same weight,
leading to similar deviations across pixels of different greyscale values. However, it is essential to
note that deviations among greyscale values of varying magnitudes are significantly different. The
optimization effect of individual pixels can be adjusted by assigning weights to address this issue. In
this study, we propose an asymmetric loss function that considers the different levels of greyscale.
By increasing the loss weights for pixels with large greyscale values, we aim to enhance the image
processing effect. These weight adjustments optimize the network parameters and improve the overall
performance of the image processing system.

Traditional loss treats each pixel point equally and each pixel point as having the same weight, i.e.,
a weight of 1 is imposed. The current loss applied in image processing treats each pixel point equally.
The total loss Err is the sum of the deviation values err of all the pixel points, Err = ∑N

1 erri. Here,
the deviation value erri is the product of the loss of each pixel point and the weight (in this case, 1)
of that pixel point. Under this assumption, the difference between the final output of the network
optimized based on this loss function and the label should be the minimum total loss Errmin herefore,
the bias value err for each pixel point can be calculated by dividing this minimum total loss by the

total number of pixels N, i.e., err = Errmin

N
. However, in an actual image, the greyscale values of the

different pixel points are not consistent. This leads to a significant difference in the performance of
these pixel points on the image after generating the same deviation value err. Specifically, this is since
different proportions of changes in pixel grey values can lead to changes in the visual perception of the
image, especially in low-contrast regions. This is because in these regions, small changes in grey scale
can have a significant impact, thus altering the overall visual appearance of the image.

To enhance the reliability of information in the low-contrast region, asymmetric weights can be
used. During the calculation process, weights are added to the low-contrast region. In this way, even a
tiny attenuation produces a more significant loss. As a result, in the final result, the magnitude of the
information difference of the pixel points with small grey values decreases, enhancing the low-contrast
region’s information reliability. Specifically, introducing asymmetric weights changes the degree of
deviation of each pixel point, making the degree of deviation of the grey values of different pixel points
closer to each other instead of being numerically similar. In this way, we can optimize the whole image
more effectively. Fig. 1 illustrates the associated asymmetric loss weight making flowchart.

To solve this problem, an asymmetric loss function can be introduced to adjust the optimization
effect for pixel points with different grey value sizes. The asymmetric loss function can be designed
based on the degree of deviation between the output value and the actual value. Their corresponding
loss weight can be increased for pixel points with smaller grey values. Conversely, their corresponding
loss weight can be decreased for pixel points with larger grey values. This approach better reflects the
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difference in importance of pixel points with different grey value sizes and thus improves the optimiza-
tion of network parameters. Fig. 2 shows the flowchart of asymmetric loss weight computation based
on a specific image.

Figure 1: The flowchart of the proposed scheme

First, for the given images Iinput and Ilabel with the resolution of H×W ×3, grey value normalization
is performed to normalize the grey range to the [0,1] range.

In = (I − Imin)

Imax − Imin

. (1)

We have designed an asymmetric weight mask based on the normalized label image, Il−n, to fully
utilize the valid information in the truthful labels. This weight mask converts the original loss into
an asymmetric weighted loss by multiplying it with a weighting variable function, M. This pixel-level
mapping, M ∈ RH×W×1, is constructed based on the greyscale information of the truth image. Each
element of M (i, j) represents the weights applied to the corresponding pixel coordinate points. In
calculating the weight mask for the normalized label image, we specifically focus on pixel points with
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smaller grey values. These points tend to impact the results more, so we assign them higher weights in
calculating the loss weights. Conversely, we reduce their respective loss weights for pixel points with
larger grey values. This modification allows the network to prioritize pixel points that have a greater
impact on the results.

Figure 2: Flowchart of asymmetric loss weight generation

We use the reciprocal of each pixel point of Il−n as a weighting benchmark. Since some pixel points
have zero grey values, a direct operation of taking the reciprocal may result in a divide-by-zero error.
To avoid this, we add a minimal value (1 × e−10) to each pixel point’s corresponding labelled image
data before calculating its loss weight. This tiny increment ensures that no divide-by-zero error occurs
during the computation and maintains the computation’s accuracy and stability. Due to the large value
of grey scale values close to zero after taking the reciprocal, directly using this value as a weighting
factor for calculating the loss value may cause the network to pay too much attention to these pixel
points. To solve this problem, we used a hyperbolic tangent function (Tanh ()) to correct the value
after taking the reciprocal. The Tanh () function is a commonly used nonlinear function centred at the
origin and can compress larger values into a range between −1 and 1. By processing the values after
taking the inverse through the Tanh () function, we can make these values more numerically compact,
thus better reflecting the importance of the pixel points.

M = 0.5 × Tanh
(
1/

(
Il−n + 1 × e−10

)) + 0.5 (2)

We input the normalized Ii−n into the model to get the output F (Ii−n) after network processing.
Next, we calculate the MSE or MAE between the output and actual values as the basic loss function.

The expression for the MSE loss function is:

LMSE (F (Ii−n) , Il−n) = (F (Ii−n) − Il−n)
2 (3)

The expression for the MAE loss function is:

LMAE (F (Ii−n) , Il−n) = |F (Ii−n) − Il−n| (4)
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Finally, the corrected weight mask is applied to the original loss to obtain the result of the loss
calculation after applying the weight mask.

LAsy (F (Ii−n) , Il−n) = M ◦ Lloss (5)

Based on the above description, Table 1 gives the pseudo-code of the method of this paper.

Table 1: Pseudo-code of the method

Pseudo-code for asymmetric weight calculation:

//Input: label image
//Output: asymmetric weight values
1: Weight_Mask = Q1 / (label+ 1e-10)
//Calculate weight mask (Weight_Mask), 1e-10 prevents division by 0. Q1 denotes the

smaller quartile, which is equal to the 25th percentile of all grey-scale value values in the labeled
image in descending order.

2: Weight_Mask = TH(Weight_Mask)
//Calculate weight_mask non-linearly, here TH() is a function to judge and process

according to the value of weight_mask.
3: W_out = mul(Weight_Mask, out)
//Multiply the output (out) with the weight mask (Weight_Mask) to get the weighted output

(W_out_train).
4: W_label = mul(Weight_Mask, label)
//Multiply the label value (label) with the weight mask (Weight_Mask) to get the weighted

label (W_label).
5: loss = criterion_loss(W_out, W_label)

//Calculate the loss (loss) between the weighted output (W_out_train) and the weighted target
(W_target_train).

3 Results
3.1 Evaluation Metrics

In this paper, the numerical variability between the processed and ideal reference images is used to
evaluate the image quality quantitatively. To quantitatively analyze the corrected image quality of the
proposed method in this paper, Peak Signal Noise Ratio (PSNR), Structural Similarity Index Measure,
SSIM), and Root Mean Square Errors (RMSE) to measure the accuracy of the output results. The
expressions for PSNR, SSIM and RMSE are given below:

PSNR = 10 log10

(
MAX 2 (f )

1
N

∑N

i=1

∣∣fRef (i) − f (i)
∣∣2

)
(6)

SSIM
(
fRef , f

) = [
l
(
fRef , f

)]α · [
c
(
fRef , f

)]β · [
s
(
fRef , f

)]γ

(7)

l
(
fRef , f

) = 2ufRef
uf + C1

u2
fRef

+ u2
f + C1

, c
(
fRef , f

) = 2σfRef
σf + C2

σ 2
fRef

σ 2
f + C2

, s
(
fRef , f

) = σfRef f + C3

σfRef
σf + C3

(8)
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RMSE =
√∑N

i=1

∣∣fRef (i) − f (i)
∣∣2

N
(9)

Here fRef denotes the ideal reference image, f denotes the result image after processing by different
methods, i denotes the index value of each pixel in the image, and N denotes the total number of pixels
in the image. α > 0, β > 0, and γ > 0 represent the weights of luminance l

(
fRef , f

)
, contrast c

(
fRef , f

)
,

and structural information s
(
fRef , f

)
in the SSIM calculation, respectively. ufRef

and uf are the mean
values of the ideal reference image fRef and the result image f after processing by different methods,
respectively, which are used to reflect the brightness information of the image; σfRef

and σf are the
standard deviation of the ideal reference image fRef and the resultant image f processed by different
methods, respectively, which are used to reflect the contrast information of the image; σfRef f is the
correlation coefficient of the ideal reference image fRef and the resultant image f processed by different
methods, which is used to reflect the similarity of structural information. C1, C2, and C3, all of which
are constant quantities greater than zero, are used to prevent the results from appearing unstable due
to a very small or zero denominator.

The closer the RMSE is to zero, the less the numerical variability of the processing result from
the ideal labelled image. When the signal-to-noise ratio of the processing result is higher, the larger the
PSNR and SSIM value is.

3.2 Super-Resolution Task

Firstly, we verify the effectiveness and applicability of the proposed method in this paper on the
super-resolution problem in deep learning-based image restoration tasks. SRCNN [28] and EDSR
[29] are choose as the baseline models for the super-resolution task, respectively. MAE and MSE
are the baseline losses during the network training process. The network training is completed and
tested by introducing asymmetric loss weights designed in this paper based on MAE and MSE losses,
respectively. The test dataset is shown in Fig. 3. All these images involved in the test are not included
in the training dataset.

Figure 3: The ground-truth of the image used for super-resolution task testing

3.2.1 SRCNN

Referring to the parameter settings in the literature [28], we set up the network and selected the
BSD300 [30] dataset as the training dataset. The images of the test dataset were obtained after four sets
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of trained networks with corresponding super-resolution results. We evaluated the test results based
on PSNR, SSIM and RMSE metrics and calculated the corresponding metric values. The obtained
results are shown in Table 2. The corresponding metric values show that adding the weights proposed
in this paper, the asymmetric loss optimization improves the super-resolution of the network.

Table 2: Quantitative results (PSNR/SSIM/RMSE) of the test dataset processing results based on
SRCNN with different losses

Method No. MAE MSE Asy_MAE Asy_MSE

1 28.92492/0.83519/0.05455 28.70239/0.82921/0.055968 29.03716/0.83566/0.05385 28.78823/0.82996/0.05542
2 29.22410/0.84854/0.05361 28.97919/0.84070/0.055147 29.23325/0.84855/0.05356 29.00308/0.84246/0.05499
3 24.58361/0.80891/0.09628 24.26785/0.80113/0.09984 24.60460/0.80942/0.09605 24.26807/0.80231/0.09984
4 29.34065/0.90189/0.05256 29.07492/0.89560/0.054195 29.46290/0.90274/0.05183 29.14211/0.89596/0.05378
5 25.27809/0.84832/0.08318 24.97863/0.84177/0.08610 25.34343/0.84879/0.08256 25.04442/0.84301/0.08545
6 29.41628/0.82028/0.05070 29.32586/0.81562/0.05123 29.49005/0.82034/0.05028 29.36769/0.81574/0.05099
7 29.06536/0.88302/0.05294 28.90163/0.87721/0.05395 29.18247/0.88353/0.05224 28.94714/0.87785/0.05367
8 31.98799/0.89101/0.03878 31.81156/0.88441/0.03957 32.13706/0.89109/0.03812 31.87569/0.88583/0.03928
9 23.43703/0.77886/0.10162 23.18690/0.77127/0.10459 23.46459/0.77923/0.10130 23.24645/0.77292/0.10387
10 26.07676/0.86434/0.07734 25.84178/0.85817/0.07946 26.17776/0.86487/0.07645 25.87347/0.85863/0.07917

To comprehensively assess the effectiveness of the asymmetric loss weights proposed in this paper
in terms of network processing effect enhancement, we processed the calculated indicator values.
Firstly, we use the metric values of the network output results based on MAE and MSE loss as
the benchmark. We plotted a radar chart to visualize the numerical results of the processing results
for the 10 images. In Fig. 4, the light blue and orange lines represent the evaluation values of the
network models trained based on MAE and MSE loss for the super-resolution results of 10 images
in the test set, respectively. The red line represents the improvement part of the evaluation values of
the network models trained based on asymmetric weighted MAE loss compared to those trained
based on MAE loss after the super-resolution processing of 10 images in the test set. The green
line represents the improvement part of the evaluation values of the network models trained based
on asymmetric weighted MAE loss compared to those trained based on MAE loss after the super-
resolution processing of 10 images in the test set.

From Fig. 4, we can see that the model introducing asymmetric weights can improve the metrics
performance of the images after super-resolution when super-resolution the images in the test set.
By using asymmetric weights, different weights can be assigned to different regions during the
super-resolution process, thus better preserving the image’s detail information and texture features.
Compared to the traditional uniform weight assignment method, asymmetric weighting can capture
important details in the image more effectively and reduce noise and distortion. This results in a more
metrics performance of the super-resolution image.

Fig. 5 shows the output results after the training is completed. To facilitate the comparison of
the output results after adding asymmetric weights with the original loss, we place the results based
on the same loss in neighboring columns. By comparing the entire image, we can find that the super-
resolution results of the network with asymmetric gradient weights are visually closer to the label
image. To better understand this result, we enlarged the region of interest marked in red in Fig. 6.
In Fig. 6, we have marked the locations where the different results are inconsistent with red arrows.
Through this comparison, we can find that after adding asymmetric gradient weights, the network
has a certain improvement effect on the edge clarity of super-resolution images. This means that the
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network can better capture the detailed information in the image, thereby improving the contrast of
the restored image.
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Figure 4: Quantitative difference of the results of the test dataset processing by SRCNN based on
different losses. The light blue and orange bar charts represent the metric values of the results of 10
images after super-resolution the MAE loss-based and MSE loss-based network models, respectively.
The red and green line graphs represent the difference between the metric values of the super-resolution
results of the model after testing of the 10 images with the introduction of asymmetric weights for the
MAE loss and the introduction of asymmetric weights for the MSE loss, respectively

By introducing asymmetric gradient weights during network training, we successfully improved
the super-resolution performance of the network. This makes the output visually closer to the label
image and improves the edge clarity and contrast of the image. These improvements are significant for
image processing tasks as they can help improve image quality and application value.
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Label MAE Asy_MAE MSE Asy_MSE

Figure 5: The output images generated by SRCNN models based on different loss function

Label MAE Asy_MAE MSE Asy_MSE

Figure 6: The corresponding magnified images of the region of interest by the red marked locations in
Fig. 5

3.2.2 EDSR

Referring to the parameter settings in the literature [29], we set up the network and selected the
BSD300 dataset as the training dataset. The images of the test dataset were obtained after four sets of
trained networks with corresponding super-resolution results. We evaluated the test results based on
PSNR, SSIM and RMSE metrics and calculated the corresponding metric values. The obtained results
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are shown in Table 3. In order to better analyze and interpret the impact of the method proposed in
this paper on the network performance, we visualized the data in Table 3.

Table 3: Quantitative results (PSNR/SSIM/RMSE) of the test dataset processing results based on
EDSR with different losses

Method No. MAE MSE Asy_MAE Asy_MSE

1 26.51871/0.82646/0.07196 13.42654/0.53437/0.32489 28.58646/0.84265/0.05672 16.52055/0.61927/0.22753
2 26.12353/0.85759/0.07661 13.49726/0.59760/0.32781 28.80974/0.86317/0.05623 18.72635/0.70140/0.17954
3 24.37370/0.82594/0.09863 12.80365/0.51736/0.37371 25.15233/0.82774/0.09018 17.11179/0.61507/0.22757
4 26.39623/0.88009/0.07377 13.42304/0.55654/0.32851 28.72694/0.90457/0.05641 17.27729/0.64743/0.21078
5 24.78057/0.85987/0.08809 13.11221/0.50552/0.33755 25.86106/0.86268/0.07778 16.23997/0.61721/0.23548
6 26.32489/0.78169/0.07238 13.52573/0.50731/0.31591 28.39762/0.81880/0.05701 15.46339/0.58417/0.25275
7 26.15808/0.87147/0.07399 13.38455/0.60064/0.32200 28.42011/0.89070/0.05703 16.96121/0.68008/0.21332
8 27.23225/0.88793/0.06704 13.54082/0.59661/0.32427 30.38947/0.89705/0.04661 17.78649/0.68617/0.19890
9 23.21293/0.78917/0.10427 13.02648/0.50109/0.33690 23.95918/0.79568/0.09569 16.95150/0.59956/0.21441
10 24.94953/0.85841/0.08806 13.22688/0.55174/0.33956 26.23638/0.86952/0.07594 17.19596/0.65075/0.21501

In Fig. 7, the light blue lines represent the measurement values of the results of 10 images after
super-resolution of the network model based on MAE loss. The organ line represents the difference
between the measurement values of the super-resolution results of the network model with asymmetric
weights and the measurement values of the super-resolution results obtained based on MAE losses
after testing 10 images. The red lines represent the measurement values of the results of 10 images after
super-resolution of the network model based on MAE loss. The green line represents the difference
between the measurement values of the super-resolution results of the network model with asymmetric
weights and the measurement values of the super-resolution results obtained based on MAE losses
after testing 10 images.

In the PSNR, SSIM and RMSE subplots of Fig. 7, by introducing asymmetric weights, we can see
that the output outcome metrics are evaluated better, i.e., the obtained values are higher than the mean
values in PSNR and SSIM, while in RMSE, the obtained values are lower than the mean values. This
result shows that by using asymmetric loss weights, the model can be guided to pay more attention to
grey scale information, which helps to improve the performance of the model.

3.3 Denoising Task

In order to verify the applicability of the method proposed in this paper to the image restoration
problem, the paper is further tested on a deep learning-based denoising model. The denoising problem
was addressed using the DnCNN [31] and DPHSIR [32] models as baseline models. The baseline losses
were measured using MAE and MSE during the network training process. The network training was
completed and tested by incorporating the asymmetric loss weights introduced in this paper. The test
dataset is shown in Fig. 8. All these images involved in the test are not included in the training dataset.

3.3.1 DnCNN

Referring to the parameter settings in the literature [31], we set up the network and selected the
DIV2K [33] dataset as the training dataset. The DIV2K dataset is a newly proposed high-quality (2K
resolution) image dataset for image restoration tasks.
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Figure 7: Quantitative difference of the results of the test dataset processing by EDSR based on
different losses. The light blue and orange bar charts represent the metric values of the results of 10
images after super-resolution the MAE loss-based and MSE loss-based network models, respectively.
The red and green line graphs represent the difference between the metric values of the super-resolution
results of the model after testing of the 10 images with the introduction of asymmetric weights for the
MAE loss and the introduction of asymmetric weights for the MSE loss, respectively

The images of the test dataset were obtained after four sets of trained networks with corresponding
denoising results. We evaluated the test results based on PSNR, SSIM and RMSE metrics and
calculated the corresponding metric values. The obtained results are shown in Table 4.

For the convenience of observation and analysis, we further processed and visualized the obtained
indicator values. We plotted a radar chart to visually display the numerical results of the processing
results of 10 images. In Fig. 9, the light blue and orange lines represent the evaluation values of the
network models trained based on MAE loss for the super-resolution results of 10 images in the test set.
The red line represents the improvement part of the evaluation values of the network models trained
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based on asymmetric weighted MAE loss compared to those trained based on MAE loss after the
super-resolution processing of 10 images in the test set. The green line represents the improvement
part of the evaluation values of the network models trained based on asymmetric weighted MAE loss
compared to those trained based on MAE loss after the super-resolution processing of 10 images in
the test set.

Figure 8: The ground-truth of the image used for denoising task testing

Table 4: Quantitative results (PSNR/SSIM/RMSE) of the test dataset processing results based on
DnCNN with different losses

Method No. MAE MSE Asy_MAE Asy_MSE

1 30.47316/0.87933/0.05695 30.61518/0.88183/0.05603 30.6225/0.88008/0.05598 30.72817/0.88155/0.05530
2 29.17037/0.87025/0.06402 29.27422/0.87332/0.06326 29.28291/0.87298/0.06320 29.41482/0.87496/0.06225
3 30.16740/0.91865/0.06341 30.21514/0.92076/0.06306 30.24078/0.91975/0.06287 30.33662/0.92085/0.06218
4 28.82701/0.86976/0.05009 28.90846/0.87148/0.04962 28.99701/0.87119/0.04912 29.08492/0.87199/0.04862
5 29.05744/0.85938/0.06981 29.13556/0.86136/0.06918 29.18413/0.86168/0.06880 29.27727/0.86272/0.06806
6 32.04077/0.86530/0.04809 32.11249/0.86745/0.04769 32.1864/0.86596/0.04729 32.33421/0.86769/0.04649
7 29.48723/0.86928/0.06607 29.65442/0.87550/0.06481 29.60887/0.87121/0.06515 29.82157/0.87626/0.06357
8 29.85495/0.80191/0.05948 29.94678/0.80684/0.05886 29.95633/0.80506/0.05879 30.08425/0.80834/0.05793
9 29.78228/0.81200/0.06812 29.83843/0.81615/0.06769 29.88065/0.81476/0.06736 29.95206/0.81777/0.06681
10 29.73983/0.81943/0.06452 29.81981/0.82456/0.06393 29.82160/0.82182/0.06392 29.95705/0.82650/0.06293

By analyzing the radar charts, introducing the asymmetric loss weights proposed in this paper can
significantly improve the index values of the processing results compared to the results of MAE and
MSE. By processing the calculated index values and analyzing them by drawing radar plots, we can
see the effectiveness of asymmetric loss weights in improving the processing results of the network.
This indicates that asymmetric loss weighting significantly improves the network processing effect.

3.3.2 DPHSIR

Referring to the parameter settings in the literature [32], we set up the network and selected the
DIV2K dataset as the training dataset. We have performed the same processing operation on the test
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results of the DPHSIR network with reference to the processing of the output results of the DnCNN
network in Section 3.3.1. The calculated PSNR, SSIM, and RMSE results are shown in Table 5.
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Figure 9: Quantitative result enhancement values of the test dataset processing results based on
DnCNN with different losses. The light blue and orange bar charts represent the metric values of the
results of 10 images after super-resolution the MAE loss-based and MSE loss-based network models,
respectively. The red and green line graphs represent the difference between the metric values of the
super-resolution results of the model after testing of the 10 images with the introduction of asymmetric
weights for the MAE loss and the introduction of asymmetric weights for the MSE loss, respectively

Fig. 10 gives the resultant radar plots of PSNR, SSIM and RMSE metrics for the test results of
the test data. In Fig. 10, the light blue and orange lines represent the evaluation values of the network
models trained based on MAE loss for the super-resolution results of 10 images in the test set. The
red line represents the improvement part of the evaluation values of the network models trained based
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on asymmetric weighted MAE loss compared to those trained based on MAE loss after the super-
resolution processing of 10 images in the test set. The green line represents the improvement part of the
evaluation values of the network models trained based on asymmetric weighted MAE loss compared
to those trained based on MAE loss after the super-resolution processing of 10 images in the test set.

Table 5: Quantitative results (PSNR/SSIM/RMSE) of the test dataset processing results based on
DPHSIR with different losses

Method No. MAE MSE Asy_MAE Asy_MSE

1 33.20231/0.85755/0.04807 33.29210/0.86228/0.04758 33.40817/0.86133/0.04695 33.51136/0.86291/0.04639
2 32.84947/0.89071/0.05936 32.87506/0.89098/0.05918 32.95750/0.89188/0.05862 32.98421/0.89102/0.05844
3 33.50950/0.93315/0.06314 33.64608/0.93252/0.06215 33.72094/0.93448/0.06162 33.84090/0.93323/0.06077
4 29.40432/0.82005/0.06823 29.43716/0.82345/0.06797 29.51269/0.82365/0.06738 29.59553/0.82600/0.06674
5 30.56785/0.84959/0.07763 30.58365/0.85225/0.07749 30.64805/0.85161/0.07692 30.72238/0.85345/0.07626
6 32.94595/0.87258/0.03721 33.08510/0.87443/0.03662 33.12574/0.87364/0.03645 33.08978/0.87563/0.03660
7 32.83670/0.86446/0.06611 32.87069/0.86539/0.06585 32.94704/0.86531/0.06527 33.04465/0.86670/0.06454
8 31.71205/0.82028/0.03576 31.87406/0.82429/0.03510 32.02742/0.82319/0.03448 32.11616/0.82540/0.03413
9 31.30851/0.80959/0.04633 31.36823/0.81272/0.04601 31.44448/0.81205/0.04561 31.44078/0.81362/0.04563
10 30.76400/0.85245/0.07317 30.78315/0.85461/0.07301 30.83683/0.85422/0.07256 30.89497/0.85463/0.07208

In the PSNR, SSIM and RMSE subgraphs of Fig. 10, we observed that the measurement of loss
training results was better than the results processed by the network without introducing asymmetric
weights. This result indicates that the asymmetric loss weight proposed in this article will positively
impact loss calculation and network optimization processes.

Asymmetric weights can also help networks better understand the importance of different pixels
with different greyscale values. In traditional loss functions, it is usually assumed that the greyscale
values of all pixels are the same, but this is not the case in reality. Therefore, introducing asymmetric
weights can help the network distinguish pixels of different greyscale values, thereby achieving better
network optimization after training.

Precisely, the introduction of asymmetric weights adjusts the attention level of the network to
different pixel points during the training process, enabling the network to better focus on essential areas
in the image, thereby improving the learning efficiency of the network. Meanwhile, due to the design of
asymmetric weights, the network can better adapt to various image processing tasks, including super-
resolution, denoising, etc.

25

30

35
1

2

3

4

5

6

7

8

9

1
0

PSNR

0.20586

0.10803

0.21143

0.10837

0.0802

0.17979

0.11034
0.31537

0.13597
0.07283

25

30

35
1

2

3

4

5

6

7

8

9

1
0

PSNR

0

0.21926

0.10915

0.19482

0.15837

0.13873

0.00468

0.17397

0.2421

0.07255

0.11182

Figure 10: (Continued)
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Figure 10: Quantitative result enhancement values of the test dataset processing results based on
DPHSIR with different losses. The light blue and orange bar charts represent the metric values of the
results of 10 images after super-resolution the MAE loss-based and MSE loss-based network models,
respectively. The red and green line graphs represent the difference between the metric values of the
super-resolution results of the model after testing of the 10 images with the introduction of asymmetric
weights for the MAE loss and the introduction of asymmetric weights for the MSE loss, respectively

4 Discussion

This paper’s asymmetric loss function is designed for deep network-based image regression
problems. Image regression is a problem of predicting the corresponding value of an image by
processing it, which is widely used in the fields of image super-resolution, image denoising and so
on. The asymmetric loss function is a loss function that improves the network processing effect by
setting different weight values for different pixel points. In the traditional uniform loss function, all
pixel points are given the same weight, which often fails to utilize the image information fully. Because
each pixel point in an image contains unequal information, pixel points with more critical information
should be given more weight.

A deep network is a multilayer neural network with strong expressive ability and generalization
performance, which is increasingly widely used in image processing. Deep networks can recover the
information of the image better. However, the subsequent processing tasks have a higher and higher
demand for the recovery accuracy and detailed information of the image. The rich information
contained in the truth label can improve the training effect of the network, but the current widely
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used loss function has the same weight for each pixel point, which makes it difficult to mention the
role of different pixel points.

To solve this problem, this paper proposes an asymmetric loss function. The asymmetric loss
function differentiates the weight settings for different pixel points according to the truth labels’
characteristics and the processing task’s needs, which better achieves the training optimization of the
network. Specifically, the asymmetric loss function weights the loss of each pixel point so that the pixel
points with more important information occupy a more significant weight in the loss calculation. This
can induce the network to pay more attention to the pixel points with more critical information in the
image during the training process, thus improving the processing effect of the network.

5 Conclusion

This paper uses an asymmetric loss function to solve the deep network-based image regression
problem. In image processing, the image regression problem is an important task that aims to predict
the corresponding output values based on a given image. However, the traditional loss function has
some limitations in dealing with such problems and cannot fully explore the image information.

The emergence of asymmetric loss function provides a new way to solve these problems. The
asymmetric loss function is a loss function that differentiates different pixel points by setting different
weight values. In the specific implementation, the asymmetric loss function assigns different weights
to each pixel point according to the importance of the pixel point. In the network training process,
the asymmetric loss function can make better use of the image information and improve the network’s
processing effect and training optimization.

In order to verify the effectiveness of the asymmetric loss function, we conducted experimental
tests in image super-resolution and image denoising tasks. The experimental results show that the
deep network model based on the asymmetric loss function exhibits significant advantages in these
tasks. The asymmetric loss function can better highlight the image’s detailed information, improve the
image’s visual effect, and make it easier to analyze and process the subsequent tasks.

In addition, the asymmetric loss function proposed in this paper is mainly realized by setting
the weight values. This design idea makes combining with other loss functions easy to form a more
powerful loss function. This design idea is essential for designing loss functions in other tasks and can
be extended to other image-processing or non-image-processing tasks.

In the future, we can further study more complex and diverse image properties and explore other
effective asymmetric loss function design methods. For example, in computer vision, we can introduce
more feature extraction methods and deep learning models to improve the quality of image recovery.
In addition, we can design and optimize different asymmetric loss functions for different tasks and
datasets to adapt to the needs of different scenarios. In addition to the field of computer vision,
asymmetric loss functions can also be applied to other fields, such as natural language processing,
speech recognition, etc. Of course, applying asymmetric loss function to other fields also needs to
consider its applicability and feasibility. We need to choose the appropriate asymmetric loss function
according to the specific task and the characteristics of the dataset and conduct the corresponding
experiments and verification. At the same time, we also need to pay attention to issues such as the
interpretability and robustness of the model to ensure the stability and reliability of the model.
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