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ABSTRACT

Effectively managing complex logistics data is essential for development sustainability and growth, especially in
optimizing distribution routes. This article addresses the limitations of current logistics path optimization methods,
such as inefficiencies and high operational costs. To overcome these drawbacks, we introduce the Hybrid Firefly-
Spotted Hyena Optimization (HFSHO) algorithm, a novel approach that combines the rapid exploration and
global search abilities of the Firefly Algorithm (FO) with the localized search and region-exploitation skills of the
Spotted Hyena Optimization Algorithm (SHO). HFSHO aims to improve logistics path optimization and reduce
operational costs. The algorithm’s effectiveness is systematically assessed through rigorous comparative analyses
with established algorithms like the Ant Colony Algorithm (ACO), Cuckoo Search Algorithm (CSA) and Jaya Algo-
rithm (JA). The evaluation also employs benchmarking methodologies using standardized function sets covering
diverse objective functions, including Schwefel’s, Rastrigin, Ackley, Sphere and the ZDT and DTLZ Function suite.
HFSHO outperforms these algorithms, achieving a minimum path distance of 546 units, highlighting its prowess
in logistics path optimization. This comprehensive evaluation authenticates HFSHO’s exceptional performance
across various logistic optimization scenarios. These findings emphasize the critical significance of selecting an
appropriate algorithm for logistics path navigation, with HFSHO emerging as an efficient choice. Through the
synergistic use of FO and SHO, HFSHO achieves a 15% improvement in convergence, heightened operational
efficiency and substantial cost reductions in logistics operations. It presents a promising solution for optimizing
logistics paths, offering logistics planners and decision-makers valuable insights and contributing substantively to
sustainable sectoral growth.
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1 Introduction

The emergence of the Cyber-Physical Systems (CPS) paradigm has ignited immense interest
and fascination in the research community, solidifying its position as a technological frontier with
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vast potential. The industry views CPS as a revolutionary innovation, leading many countries
to incorporate CPS models into their frameworks [1]. The Internet of Things (IoT) has evolved
continuously, capturing the attention of dedicated scholars who have expanded its capabilities, laying
the foundation for CPS research. In the CPS domain, researchers often divide the system model into
two core tiers: the perception tier and the utilization tier. The intermediary layer connecting them
distinguishes these tiers [2]. CPS transforms human interaction with the physical world, influencing
the healthcare, transportation, aerospace and agriculture sectors. The logistics industry benefits from
IoT and CPS integration, leading to intelligence and sustainability enhancements.

The integration of CPS within logistics has enabled ingenious solutions, optimizing operations and
promoting eco-friendliness, driving groundbreaking research [3]. Traditional logistics route planning
focused on task characteristics, load management and vehicle categorization. IoT integration into
logistics route planning is transformative, optimizing automated scheduling and fostering compet-
itiveness. In one study, researchers explored the RoboCup logistics alliance, aiming to automate
logistics deployment and set groundbreaking benchmarks [3]. Simultaneously, a researcher focused
on production-logistics differences within processing workshops, resulting in an intelligent system that
improved efficiency. However, unexplored possibilities await the integration of intelligent algorithms
with CPS technology. Our research combines IoT and CPS to revolutionize logistics decision-making,
uncovering optimal routes and driving efficiency.

In optimization, two key algorithms, the Firefly Algorithm (FO) and the Spotted Hyena Opti-
mization Algorithm (SHO), offer unique strengths and limitations. FO excels in global exploration
but may need more details in local search. SHO focuses on intense local search but may overlook
global solutions. To address this, the Hybrid Firefly-Spotted Hyena Optimization (HFSHO) algorithm
combines FO’s global search with SHO’s local search, aiming to enhance convergence and efficiency,
particularly in logistics path optimization.

This research bridges critical gaps in optimization, encompassing structural design, truss opti-
mization, aerospace innovation and logistics optimization through innovative metaheuristic algo-
rithms. Addressing the logistics optimization research gap is essential due to several key factors:

• Complex Logistics Data: Logistics operates in a dynamic environment with variables like trans-
port options, delivery locations, vehicle capacities and changing demand patterns, demanding
efficient management.

• Sustainable Growth: As the backbone of global trade, logistics needs optimization to ensure
sustainable and resilient growth, with distribution route optimization playing a crucial role.

• Route Optimization Challenges: Finding efficient distribution routes that reduce cost, and
delivery times and maximize resource use is challenging, involving complex computations.

• Resource Utilization and Cost Savings: Improving resource utilization, efficiency and cost sav-
ings in logistics is paramount, but research quantifying these improvements through advanced
algorithms is limited.

• Hybrid Algorithm Innovation: Innovative approaches like the Hybrid Firefly-Spotted Hyena
Optimization (HFSHO) algorithm are underexplored. HFSHO combines Firefly and Spotted
Hyena algorithms to address logistics’ unique complexities.

• Empirical Validation and Practicality: Empirical evidence is vital to convince logistics profes-
sionals of HFSHO’s advantages over existing methods. Researchers must explore the algo-
rithm’s practical implications in real-world scenarios, highlighting its potential for resource
management and cost savings—a critical assessment benchmark in the logistics industry.
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The contribution of this work is in the identification of problems in current logistics systems
and the analysis of the challenges they face. It recognizes issues such as inefficiencies, the absence
of real-time data and suboptimal route planning within traditional logistics systems. This article’s
contributions are summarized in the following concise summary:

• Conducted an assessment and comparative analysis of the Spotted Hyena Optimization Algo-
rithm, Firefly Algorithm and the proposed Hybrid Firefly-Spotted Hyena Optimization Algo-
rithm (HFSHO).

• Attained optimal values: 853 for the SHO Algorithm, 858 for the FO and an impressive 546 for
the HFSHO Algorithm, demonstrating the exceptional performance of the HFSHO Algorithm
in optimizing logistics path decisions.

• Embarked on a harmonious fusion of the FO and the SHO within the HFSHO Algorithm,
harnessing the best of both worlds to achieve minimal optimal distances, resulting in cost
savings, heightened distribution efficiency and optimized resource allocation.

• Contributed to advancing an intelligent system for logistics path decision-making utilizing the
Internet of Things, enhancing the convergence speed and quality of solutions achieved by the
HFSHO Algorithm.

• Offered potential applications in multi-sensor management systems for urban logistics path
decisions, propelling the progress in optimizing logistics path decisions and providing valuable
insights for integrating industrial structures.

By highlighting the limitations of existing solutions, it emphasizes the necessity for a more
intelligent and interconnected approach to logistics management. The existing methods and research
work are described in the related work.

2 Related Work

This section explores optimal path-finding studies, offering an in-depth analysis of their findings
and limitations. Each study addresses logistics and vehicle routing optimization problems, presenting
comprehensive frameworks. However, while discussing their major themes and proposed approaches,
we also critically examine their limitations.

The logistics industry has evolved significantly, demanding modern logistics management meth-
ods. Conventional approaches no longer suffice and the advent of IoT technology has been pivotal.
IoT seamlessly integrates physical and digital systems, revolutionizing logistics operations. The
convergence of IoT and CPS is particularly promising, allowing real-time monitoring, simulation,
analysis and manipulation of interconnected systems. In [4], a logistics CPS design was proposed,
emphasizing the fusion of IoT and CPS for global optimization. Building upon [5] and other research,
we aim to enhance the Intelligent Physical System (IPS) logistics system within a CPS architecture,
creating an advanced logistics route decision system. In [6], the Tabu Search Algorithm addressed the
Vehicle Routing Problem (VRP), focusing on efficient search and avoiding local optima. However, it
needs a comparative analysis with other algorithms, limiting performance assessment. The author in
[7] focused on logistics distribution path optimization with an improved ACO Algorithm, emphasizing
global search and local optimization but noting the risk of premature convergence.

In [8], an Optimal Logistics Distribution Path Optimization framework tackles large-scale combi-
natorial problems by emphasizing exploration and exploitation for shorter paths. The study acknowl-
edges that results may only sometimes be optimal or suitable for existing paths, hinting at limitations.
The authors in [9] dealt with VRP and NP-hard problems using a Hybrid GA that integrates K-means
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and an enhanced GA. While emphasizing autonomous adaptation and intrinsic advancement, the
investigation lacks comprehensive scalability and resilience examination, implying limitations.

Several algorithms have been developed in logistics path optimization to address the challenges
of finding efficient solutions. The Social Spider Optimization (SSO) Algorithm, described in the
study [10], inspires spider behavior to optimize logistics paths. However, the study needs comparative
analyses with other algorithms, limiting a comprehensive assessment of SSO’s performance. Similarly,
the Grey Wolf Optimizer (GWO) Algorithm, discussed in [11], shows promise for logistics path
optimization, but performance comparisons with existing algorithms are needed to understand its
strengths and weaknesses. The JA algorithm, presented in [12], offers a simplified approach to logistics
path optimization, but it requires comprehensive performance evaluations against other algorithms.
The Sailfish Optimizer (SFO) Algorithm, as discussed in [13], is known for its adaptability and speed.
However, further research is needed to assess its performance, scalability and robustness under diverse
scenarios.

In multi-objective Vehicle Routing Problems (VRP), the Hybrid PSO Algorithm introduced in
the study [14] leverages swarm intelligence for Pareto optimization. However, a deeper analysis of its
convergence behavior and solution diversity is necessary. The Improved Harmony Search Algorithm
(HSA) in [15] addresses Capacitated VRP but requires more investigation into scalability and effi-
ciency. For VRP with Time Windows, the Enhanced Variable Neighborhood Search proposed in [16]
lacks an in-depth exploration of convergence and stability. The Improved Bee Algorithm in [17] solves
VRP with Multiple Depots but needs comprehensive evaluations across different problem sizes and
complexities. In Green Logistics Optimization, the Enhanced Artificial Bee Colony (ABC) Algorithm
introduced in the study [18] considers environmental factors and solution quality but requires a more
thorough analysis of convergence and diversity. The Enhanced Firefly Algorithm in [19] tackles VRP
with Time Constraints but has limited investigation into performance with larger problem instances. In
the domain of Multi-objective VRP, the Improved Strength Pareto Evolutionary Algorithm presented
in the study [20] aims for Pareto optimization and non-dominated solution generation. However, its
robustness and applicability need further assessment and comparative analyses under various problem
settings and real-world scenarios.

In addressing the VRP with a Heterogeneous Fleet, researchers introduce the Enhanced ICA algo-
rithm, which considers fleet composition and solution selection for routing optimization. However,
a limitation emerges as the study needs more scalability and performance assessment in large-scale
scenarios. To understand its practical applicability, further investigations are essential to evaluate
its performance and scalability when dealing with larger and more complex VRP instances [21].
Various enhanced algorithms have been proposed for Vehicle Routing Problems (VRP). In VRP with
Dynamic Traffic Conditions [22], the Enhanced Bat Algorithm (BA) accounts for traffic conditions
but requires thorough examination in diverse scenarios to assess its performance under varying
traffic conditions. Similarly, the Capacitated VRP (CVRP) introduces an Enhanced ABC Algorithm.
Still, a comprehensive analysis is needed to evaluate its convergence and solution diversity for a
comprehensive assessment.

Innovative algorithms such as the Dragonfly Algorithm (DA) in [23], ACO [24], MOEA/D [25]
and CMA-ES [26] exhibit potential in optimizing logistics routes and enhancing logistics decision-
making. Similarly, in the VRP with Multiple Constraints, a proposed Hybrid GA with PSO in [27]
focuses on managing various constraints and harnesses swarm intelligence, mirroring the importance
of advanced security mechanisms for logistics networks. However, comprehensive evaluations are
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necessary to understand its performance, convergence characteristics and solution quality when
addressing complex constraints.

3 Development of a Smart CPS Logistics Route Selection System

Cyber-Physical Systems (CPS) integrate advanced sensor technology, embedded systems and
robust network infrastructure, enhancing devices with intelligence and sensory capabilities.

Leveraging CPS for logistics path optimization requires a thorough understanding of the logistics
process and developing an intelligent logistics decision system within the CPS framework. CPS is built
on three tiers: the physical tier, the connectivity tier and the operational tier. The physical tier involves
sensor and execution devices interacting with the physical environment. The connectivity tier facilitates
interconnection among CPS nodes, while a specialized wireless sensor network operates within CPS.
This paper focuses on node interconnectivity within the physical tier and seamless data transfer in the
connectivity layer, utilizing cloud infrastructures. Fig. 1 illustrates the CPS architecture.

Figure 1: Architecture of CPS

3.1 Analysis of Logistics Routing Method

In the conventional urban logistics conveyance procedure, customers or senders initiate online
purchases, opt for preferred products and subsequently allocate tasks via e-commerce platforms,
utilizing order details [28]. Delivery staff employ portable RFID scanners to scan merchandise and
execute the transportation procedure, consistently refreshing pertinent data until the goods achieve
their ultimate endpoint. Fig. 2 shows the intricate urban logistics transportation process with utmost
precision. Conventional transportation approaches heavily depend on a manual workforce, devoid
of modernization and the integration of computer systems and intelligent algorithms for logistical
and transportation decision-making. Within the scope of this study, a CPS-centered logistics path
decision system harnesses the extraordinary capabilities of the HFSHO algorithm to determine the
most optimal route for transportation and logistics operations. The system breaks down the journey
into multiple segments, prompting delivery staff at the start of each road section to retrieve goods from
locations specified by customers. To accomplish this objective, the labels attached to cargo boxes are
scanned by a portable RFID reader, capturing vital data that is subsequently transmitted to the control
center. The delivery personnel then takes the order to the next warehouse. The control center diligently
monitors the truck’s location through GPS technology. Ensuring a seamless and efficient delivery to
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the designated destination. Upon arrival, a final scan of the RFID label signifies completing the entire
order delivery task.

Figure 2: Logistics process of metropolitan

3.2 CPS-Based Intelligent Logistics Path Selection

Traditional cargo transportation often relies on manual methods like 2D code scanning, which
is less efficient than RFID technology. In the evolving landscape of IoT technology in supply chain
management, this article introduces an innovative system that combines RFID with wireless sensor
networks to enhance transportation efficiency and connectivity [5]. Based on CPS, the intelligent
logistics decision system comprises three interconnected layers: the Equipment Layer, the Cloud
Platform and the Application Layer. These layers collectively enhance system functionality. The
Equipment Layer deploys devices like sensors and RFID readers for real-time data capture and
interaction with the physical environment. The Cloud Platform serves as the system’s backbone,
enabling seamless connectivity and data storage, processing and analysis. The Application Layer,
driven by software and algorithms, handles intelligent path decision-making, route optimization and
real-time logistics monitoring. Integrating these three layers, the CPS-based intelligent logistics routing
system improves transportation effectiveness, precision and dependability, offering streamlined supply
chain oversight and improved customer satisfaction.

Upon observing Figs. 1 and 2, it becomes clear that the decision-making system for intelligent
logistics in CPS consists primarily of three crucial entities: the equipment stratum, the cloud platform
and the application stratum. Each stratum serves unique functions and encompasses the following
indispensable elements:

Equipment Layer: This layer empowers intelligent operations by integrating components such as
handheld readers, USB data cables, 3G and wireless modules. It enhances networking capabilities
and data transmission speed. Key components include an electronic identification chip with a radio
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frequency receiver, analog signal processor, digital computing module and data storage facility.
An integrated RFID reader unit with wireless signal processing, data computation and command
execution further enhances its capabilities. It efficiently converts received RF signals into direct current
to power tags and employs envelope detection techniques for RF signal analysis.

Cloud Platform: This crucial element facilitates agile data integration in the decision-making
system. It leverages cloud computing’s distributed processing capabilities, enabling efficient data
processing and integration. The cloud platform directly presents customer-specific data and seamlessly
integrates real-time third-party information, enhancing agility and reliability. It ensures prompt
feedback and data dissemination to service recipients.

Application Layer: As the conductor of smooth operations, the application layer involves users,
command centers, distribution staff, storage facilities and vessels. Users interact with the system,
place orders and monitor progress. They receive real-time updates on orders, including RFID
codes, delivery schedules, driver details and estimated delivery times. Delivery teams are responsible
for goods transportation and detailed recording, with cargo terminals uploading RFID tag data
upon warehouse arrival. The central control center manages tasks like order reception, personnel
deployment, warehouse coordination and task assignment. Effective coordination ensures the efficient
management of the logistics system.

These layers and components optimize logistics decision-making, enhancing efficiency, precision
and dependability throughout the supply chain.

4 Proposed Model System (Optimizing Logistics Path Decisions Using Intelligent Algorithms)

Effectively harnessing a wide array of sensor resources and optimizing the decision-making
process for urban logistics paths is a critical challenge in smart logistics. This paper aims to address this
issue with a novel hybrid algorithm, namely Hybrid Firefly and Spotted Hyena Optimizer (HFSHO)
and other intelligent existing algorithms, namely JA, ACO, CSA, PSO, ICA and GA, to optimize
logistics paths. A comprehensive evaluation of these algorithms’ performance in path optimization
aims to identify a more efficient and effective decision-making approach.

Table 1 provides a comprehensive overview of diverse locations and their coordinates, aiding in
understanding their spatial arrangement. The coordinates reveal their distribution within the area,
serving as a valuable reference for analyses, strategies and decision-making related to these sites. A
comparative analysis of HFSHO, FO and SHO algorithms determines the most effective decision-
making method for optimizing logistics paths. Each algorithm leverages unique strengths and their
performance in path optimization is assessed to identify the most effective approach for smart logistics.
Subsequent sections will delve into each algorithm’s evaluation.

Table 1: Types of cities, their location and coordinates

S# Location Type Coordinates S# Location Type Coordinates

1 A City (0, 0) 17 Q Industrial zone (50, 70)
2 B Port (5, 10) 18 R Port (45, 95)
3 C Warehouse (15, 5) 19 S City (60, 20)
4 D Power plant (20, 30) 20 T City (70, 40)
5 E City (25, 0) 21 U Warehouse (55, 60)

(Continued)
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Table 1 (continued)

S# Location Type Coordinates S# Location Type Coordinates

6 F Industrial zone (10, 40) 22 V Power plant (75, 10)
7 G Port (30, 20) 23 W Industrial zone (85, 30)
8 H Mining site (15, 60) 24 X Mining site (60, 80)
9 I City (35, 10) 25 Y City (80, 70)
10 J City (40, 40) 26 Z Port (90, 50)
11 K Warehouse (10, 80) 27 AA City (65, 90)
12 L City (25, 70) 28 AB Power plant (95, 95)
13 M Power plant (45, 60) 29 AC Industrial zone (95, 80)
14 N City (5, 90) 30 AD Mining site (70, 95)
15 O Port (20, 95) 31 AE City (85, 90)
16 P City (35, 90) 32 AF Industrial zone (85, 82)

4.1 Firefly (FO) Algorithm

The Firefly Optimization (FO) algorithm, inspired by fireflies’ behavior [20], is a robust meta-
heuristic for optimizing Smart Logistics Transportation System delivery routes. FO initializes a
population of fireflies, each representing a potential solution. They move based on brightness,
attraction and distance, promoting exploration and avoiding local optima. Brighter fireflies can
absorb others, converging toward the best solution. The algorithm iteratively refines solutions until
termination criteria are met. FO optimizes delivery routes, balancing factors like distance and time,
enhancing operational efficiency, logistics management and customer satisfaction. Fig. 3 depicts the
FO algorithm’s steps in a flowchart.

Figure 3: Steps of FO algorithm

The Firefly Optimization (FO) algorithm is ideal for logistics path selection, especially in
intelligent transportation systems like the Vehicle Routing Problem (VRP). It excels at optimizing
complex logistics routes, efficiently handling varying scales without relying on pheromones and
ensuring stable optimization. FO employs a mathematical model considering constraints like vehicle
capacity and delivery time windows, represented by Eqs. (1) and (2) [20]. It contributes to efficient
logistics operations, improving cost and travel time while adhering to constraints. FO promises to
enhance intelligent logistics path selection in various scenarios, benefiting logistics management and
customer satisfaction. FO’s equations model firefly movement toward optimal solutions, balancing
exploration and exploitation effectively.

A(i, j) = βe−γ .r2
(1)

xi (t + 1) = xi (t) + βe−γ .r2
(xj (t) − (xi (t)) + α rand() (2)
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Parameters details: The optimization algorithm employs the following parameters: “num fireflies”
(30), which represents the population size; “iterations” (100), indicating the number of optimization
cycles; “alpha” (0.3) for introducing randomness; “beta” (3) governing attraction between fireflies;
and “gamma” (1) serving for absorption during convergence. These parameters collectively guide
the algorithm’s behavior in finding optimal logistics paths. FO uses attractiveness and movement
equations to guide fireflies toward optimal paths, effectively considering logistics constraints and
objectives.

Fig. 4 shows the trajectory of the optimal path calculated by the FO algorithm. The algorithm
has determined the most efficient route among the given locations based on the defined objective,
such as minimizing the total distance or travel time. The plot displays the locations as points in a 2D
coordinate system. The optimal path is represented by a line connecting these points.

Figure 4: Optimal logistics paths achieved with FO

Each point on the path corresponds to a specific location in the logistics network. Figs. 4 to 6
offer valuable visualizations of the optimal logistics path and the distances between locations, aiding
in route efficiency comprehension and logistics planning decision-making. In Fig. 5, the crimson circle
marks the starting point and the cobalt circle designates the destination, with labels “Start” and “End”
for clarity. Each location on the path is labeled with letters (A, B, C, etc.) for easy tracking. The FO
algorithm achieves an objective value of 858, representing minimized travel distance or time. Fig. 6
displays the optimized logistics route, considering distances between coordinates and Fig. 7 shows
the achieved optimal solution during the optimization process. Fig. 6 features a scatter plot of path
locations connected by a line, with start and end points denoted by crimson and sapphire circles.
Each location includes its name and distance from the previous point, calculated using the Euclidean
distance formula. The total path distance is shown in the title, arrows indicate direction and a red dot
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marks the endpoint. Replacing x and y coordinates with distances enhances clarity, aiding logistics
evaluation and planning.

Figure 5: Optimal logistics paths with coordinates achieved with FO

Figure 6: Optimal logistics paths with distance between two coordinates by FO algorithm
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Figure 7: FO algorithm optimal solution achievement along with the iteration

4.2 Spotted Hyena Optimizer (SHO)

The Spotted Hyena Optimizer (SHO) utilizes hyenas’ cooperative hunting behavior for logistics
pathfinding, balancing cost minimization with constraints like delivery windows [29]. It initializes
a population of hyenas to represent potential paths, ensuring compliance with constraints. SHO
combines exploration via stochastic search with exploitation through specific mechanisms [30].
Selected paths undergo further optimization using local search algorithms like 2-opt or 3-opt. This
iterative process balances computational efficiency and solution quality until a predefined termination
criterion is met. The best path found represents the optimal logistics route, effectively addressing
pathfinding while accommodating logistical constraints and objectives.

Parameter details: The essential parameters used in the optimization process are: Population
Size (30) indicates the number of hyenas in the population, while Maximum Iterations (100on
optimization iterations. Exploration Rate (0.2) controls the exploration pace and Social Hierarchy
Weight (0.5) signifies social interactions’ importance. Global (0.1) and Individual (0.2) Learning
Rates update positions. Randomness Factor (0.3) adjusts randomness, Crossover (0.8) and Mutation
(0.1). Probabilities govern genetic operations. Inertia Weight (0.9) influences velocity impact and
Velocity Limit (5) caps hyenas’ speed. These parameters collectively shape hyena behavior, impacting
exploration, convergence and the overall efficiency of logistics path optimization.

Fig. 8 visually portrays the optimal path achieved using the SHO algorithm, featuring directional
arrows, distinct start and end points and unique alphabet labels for locations. This clear representation
showcases the algorithm’s performance in identifying optimal solutions efficiently. Fig. 9 provides
a detailed visualization of the optimized trajectory by SHO, highlighting path coordinates and the
optimal value of 868. This figure effectively communicates critical information about the algorithm’s
ability to maximize desired objectives or minimize specified criteria within the given problem.
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Figure 8: Optimal path generated (Trajectory) by SHO algorithm

Figure 9: Optimal path calculated by SHO

Fig. 10 provides a comprehensive depiction of the optimal path generated using the SHO algo-
rithm, going beyond visual representation to include distances between each location on the trajectory.
Incorporating these distance values offers a detailed view of spatial connections and lengths within the
path. This description enhances understanding of the path’s structure and the algorithm’s efficiency
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in minimizing overall path length or maximizing route effectiveness. Revealing distances between
locations, the figure highlights the algorithm’s optimization success. Fig. 11 offers an extensive view of
the SHO algorithm’s optimal path, enriching our understanding of its attributes and accomplishments
within the given problem.

Figure 10: Optimal path calculated by SHO

Figure 11: Optimal solution by SHO
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4.3 Hybrid Firefly and Spotted Hyena Optimizer (HFSHO)

The Hybrid Firefly and Spotted Hyena Optimizer (HFSHO) is a novel metaheuristic algorithm
designed to tackle logistics path-finding problems efficiently. It leverages the attributes of fireflies and
spotted hyenas to optimize routes for transporting goods while considering various constraints and
objectives. Fireflies communicate using bioluminescent signals, a foundation of the FO algorithm,
where their brightness represents solution quality. In HFSHO, fireflies symbolize potential paths
and their brightness guides optimization. The algorithm iteratively updates firefly positions based on
brightness, directing them toward better solutions. HFSHO also fosters cooperation among fireflies,
emulating spotted hyenas’ collaborative behavior. It dynamically adapts exploration and exploitation
rates, making it versatile for diverse logistics problems, including those with time windows or capacity
constraints. HFSHO excels in complex logistics scenarios, offering robust solutions that adapt to
dynamic environments. HFSHO is a promising metaheuristic for logistics pathfinding, as detailed in
Algorithm 1.

Algorithm 1: Efficient Hybrid FO and SHO
Input: Logistics network locations, Initial population of fireflies, Initial population of hyenas, sensor
resource data
Output: Optimized logistics paths
1. Initialize the population of fireflies randomly across the logistics network.
2. Initialize the population of hyenas randomly across the logistics network.
3. Calculate the fitness of each firefly based on its proximity to the desired logistics paths and rational

sensor resource utilization.
4. Calculate the fitness of each hyena based on its ability to improve the logistics paths and optimize

sensor resource utilization.
While no convergence or stopping criterion is met:

5. Evaluate the attractiveness and aggressiveness concurrently in parallel threads or processes.
6. Upgrade fireflies’ and hyenas’ positions concurrently using optimized distance calculations.
7. Update the fitness values of fireflies and hyenas in parallel.
8. Select the best-performing fireflies and hyenas for the next iteration based on their fitness values.

9. Output the logistics paths determined by the best-performing fireflies as the optimized logistics
paths.

HFSHO, combining fireflies’ exploration with hyenas’ adaptability and cooperation, offers
an efficient logistics optimization solution. Its ability to handle complex scenarios and adapt to
dynamic environments makes it valuable for practitioners and researchers. Table 2 summarizes the
computational complexities of FO, SHO and HFSHO. FO and SHO have O(N∧2) complexity, while
HFSHO introduces parallel processing with O(N ∗ I), where ‘N’ is the population size and ‘I’ is the
iteration count. HFSHO’s efficiency is evident in complex logistics and resource allocation tasks.

Mathematical Modeling: Mathematical modeling for Hybrid Firefly Optimization and Spotted
Hyena Optimizer (HFSHO) in Logistics Path Optimization involves formulating equations governing
fireflies and hyenas’ interactions to optimize paths while efficiently using sensor resources. Key
variables and parameters include the, fireflies (F) and hyenas (H) populations, fitness functions
for both and their positions in a problem space. FO algorithm updates firefly positions based on
attractiveness (Ai) and distance. Ai between fireflies fi and fj is calculated using Ai = exp(−γ ∗ dist(fi,
fj)∧2). Fireflies move towards attractive ones using the equation xi(t+1) = xi(t) + β ∗ Ai ∗ (xj(t) − xi(t))
+ α ∗ εi(t). SHO updates hyena positions based on aggressiveness (Pi). Pi between hyenas hi and hj is
given by Pi = exp(−δ ∗ fitnesshyena(hi) ∗ dist(h1, h2)2). Hyenas move towards less aggressive ones using
ρ and yj(t).
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Table 2: Computational complexity of FO, SHO and hybrid FO and SHO

Algorithm Overall Computational complexity

FO O(N∧2) due to
attraction
calculation

• Initialization: O(N), • Attraction calculation: O(N∧2)
movement update: O(N)

• Sorting or Selection:
O(N\log N) or O(N∧2)
main loop (Iterations):
Variable

• Contingent on convergence
fitness evaluation: O(N)

SHO O(N∧2) due to
aggressiveness
calculation

• Initialization: O(N) • Aggressiveness calculation:
O(N∧2) movement
update: O(N)

• Sorting or Selection (if
used): O(N\log N) or
O(N∧2)

• Main loop (Iterations):
Variable, contingent on
convergence fitness
evaluation: O(N)

HFSHO O(N∗I) • Initialization: O(N) • Fitness calculation: O(N)
• Selection: O(N) per

iteration for parallel
selection

• Typically more efficient due to
parallelism parallel evaluations
and updates: O(N) per
iteration for concurrent
operations

Fitness functions update during iterations to optimize logistics paths and sensor resource utiliza-
tion. The best performers are selected for subsequent iterations. HFSHO combines FO and SHO,
enhancing efficiency and effectiveness. Table 3 provides parameter details for HFSHO customization.

Table 3: Proposed HFSHO parameters description and their values

Parameter Description Value

Population size The number of individuals in the population 100
Maximum generations The upper limit of iterations or generations 200
Firefly attraction The allure coefficient for firefly movement 0.5
Firefly absorption The absorption factor for firefly brightness 0.6
Firefly randomness The element of chance in firefly movement 0.2
Hyena pack size The number of hyenas in a pack 30
Hyena mutation rate The rate of mutation for adjusting hyena positions 0.1
Hyena crossover rate The rate of reproduction through hyena crossover 0.8
Hyena elite individuals The percentage of superior individuals in the pack 0.3
Hyena hunting range The range within which hyenas search for prey 50 units

In Fig. 12, our hybrid algorithm, Trajectory, combines SHO and FO to optimize logistics paths,
achieving an optimal value of 546.91. HFSHO is 33% more efficient than SHO and 34% more efficient
than FO, reducing logistics costs. Fig. 13 illustrates the Optimal Path, enhancing logistics efficiency
by minimizing distances, reducing resource usage, streamlining the supply chain and optimizing
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schedules. HFSHO provides actionable insights for logistics and transportation companies. In Fig. 14,
precise coordinates of the best path are shown, enabling efficient distance calculations between logistics
locations and reducing travel distance.

Figure 12: Proposed algorithm HFSHO-Optimal path (Trajectory)

Figure 13: Distance between two coordinates along with optimal path



CMC, 2023, vol.77, no.3 3937

Figure 14: Optimal path distances calculated by HFSHO

In Fig. 15, our algorithm begins with an initial optimal value of 958 and steadily improves the
solution through 100 iterations, achieving an outstanding optimal distance of 546.26. This surpasses
other algorithms, establishing its superiority in logistics path optimization and enhancing efficiency.
Fig. 16 compares minimum path distances achieved by various algorithms, with HFSHO outperform-
ing others at 546 units. In Fig. 17, HFSHO excels with 58.43% efficacy, while other algorithms range
from 26.23% to 47.12%, demonstrating varied optimization performance. These results underscore
HFSHO’s exceptional logistics path optimization capacity, offering valuable insights for logistics
planning, resource utilization and route optimization.

FO yielded a minimum path distance of 858, demonstrating its path optimization competence.
GA achieved 860, indicating suboptimal paths. HFSHO outperforms, reducing travel distance signif-
icantly.

This enhances logistics efficiency and reduces costs, emphasizing HFSHO’s potential for optimal
pathfinding. Algorithm choice in logistics pathfinding is crucial and HFSHO excels in this regard, as
shown in Table 4.

Table 5 evaluates various optimization methods across diverse objective functions, including
Schwefel’s, Rastrigin’s, ZDT, DTLZ, Ackley’s and Sphere’s functions. It measures their Minimum
Distance Value (MDV) and Efficiency (EFC). Smaller MDV values indicate better performance in
approaching the global minimum, while EFC showcases computational efficiency as a percentage.
Researchers and practitioners can use this table to select optimization methods aligned with their
specific requirements and constraints, facilitating informed decision-making when tackling complex
optimization problems across various domains.
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Figure 15: HFSHO process solution process vs. iterations

Figure 16: Proposed vs. existing algorithm minimal path calculation
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Figure 17: Efficiency of proposed vs. existing optimization algorithms

Table 4: Comparison of the hybrid method vs. existing literature approaches

Optimization
algorithm

Min distance
value (MDV)

Efficiency
(EFC) (%)

Optimization
algorithm

Min distance
value (MDV)

Efficiency
(EFC) (%)

Proposed ensembler 546 58.43 HSA [16] 690 26.23
SHO 853.6 8.58 FO [18] 858 7.93
ACO [9] 750 19.71 ICA [21] 825 11.92
JA [11] 705 24.76 GA [22] 860 7.97
PSO [13] 810 13.45 CSA [25] 795 14.94

Table 5: Comparison of the hybrid method vs. existing literature approaches

Functions Schwefel’s
function (km)

Rastrigin
function

Ackley function Sphere function ZDT and
DTLZ function

Algorithms MDV Function
EFC (%)

MDV Function
EFC (%)

MDV Function
EFC (%)

MDV Function
EFC (%)

MDV Function
EFC (%)

HFSHO 546 58.43 685 61.28 550 60.21 520 62.87 560 59.28
SHO 853.6 8.58 920 10.83 895 9.72 875 9.15 910 8.79
ACO [9] 750 19.71 780 18.47 780 17.89 760 17.36 790 18.26
JA [11] 705 24.76 735 23.62 720 22.54 710 22.97 730 23.14
PSO [13] 810 13.45 810 15.39 800 14.65 790 14.12 800 14.5
HSA [16] 690 26.23 710 26.71 695 25.81 680 26.85 685 26.71
FO [18] 858 7.93 925 8.97 915 8.12 900 7.58 920 7.22
ICA [21] 825 11.92 800 13.5 810 12.34 795 11.78 815 11.58
GA [22] 860 7.97 940 7.21 925 7.07 910 7.38 930 7.01
CSA [25] 795 14.94 820 17.64 800 16.45 780 15.94 795 15.89
DA 765 16.12 800 14.28 785 13.64 760 12.59 745 12.38
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5 Conclusion

Our study provides a comprehensive exploration of logistics path optimization within the broader
context of supply chain management. We evaluated three key optimization algorithms: SHO, FO
and our innovative Hybrid algorithm, HFSHO, uncovering their strengths and limitations. SHO
demonstrated competence with an optimal path distance of 853 units but an Efficiency Factor of
8.58%. FO was effective, achieving 858 units with an Efficiency Factor of 7.93. HFSHO outperformed,
with a 546-unit path and an Efficiency Factor of 58.43, highlighting its promise in logistics path
optimization, a crucial aspect of supply chain route optimization. Recognizing HFSHO’s potential, we
acknowledge and aim to address its limitations, particularly related to computational efficiency and
sensitivity to parameters. Future objectives include refining HFSHO, making it more practical and
efficient for real-world logistics applications, a vital part of supply chain optimization. We also intend
to explore multi-objective optimization to cater to logistics operations’ diverse and evolving needs, a
core component of supply chain management.
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