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ABSTRACT

Traffic prediction already plays a significant role in applications like traffic planning and urban management, but it
is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data. As well
as to fulfil both long-term and short-term prediction objectives, a better representation of the temporal dependency
and global spatial correlation of traffic data is needed. In order to do this, the Spatiotemporal Graph Neural Network
(S-GNN) is proposed in this research as a method for traffic prediction. The S-GNN simultaneously accepts various
traffic data as inputs and investigates the non-linear correlations between the variables. In terms of modelling, the
road network is initially represented as a spatiotemporal directed graph, with the features of the samples at the time
step being captured by a convolution module. In order to assign varying attention weights to various adjacent area
nodes of the target node, the adjacent areas information of nodes in the road network is then aggregated using a
graph network. The data is output using a fully connected layer at the end. The findings show that S-GNN can
improve short- and long-term traffic prediction accuracy to a greater extent; in comparison to the control model,
the RMSE of S-GNN is reduced by about 0.571 to 9.288 and the MAE (Mean Absolute Error) by about 0.314 to
7.678. The experimental results on two real datasets, Pe MSD7(M) and PEMS-BAY, also support this claim.
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1 Introduction

The Internet of Things technology [1], which travels thousands of miles every day, has been applied
to various traffic devices, generating a significant amount of traffic data. Intelligent transportation has
emerged and demonstrated a vigorous development trend in response to the ongoing development
of the social economy and the growing complexity of traffic road networks. How successfully this
data is processed and used will have a significant impact on the growth of smart cities. Forecasting
future traffic patterns in distinct urban areas is of vital importance in the study of intelligent transport
systems. By analysing past traffic observations, traffic prediction predicts future metropolitan real-
time traffic flows [2]. The public can enhance their travel experiences and safeguard their personal
safety by managing traffic to avoid congested areas, preventing stampede situations and adopting
safety precautions, minimising operational costs, and scheduling demand.
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Prediction of traffic flows is necessary; prediction can help to anticipate risks, avoid congestion
and prevent hazards. As a result, traffic prediction has become a hot research topic in recent years [3].
The key points to improve prediction accuracy are in the following areas: 1) A significant difficulty is
how to effectively represent the spatial interactions, the temporal-spatial interactions, and the temporal
interactions of crowd flows. Figs. 1 and 2 demonstrate how crowds create a complex web of interactions
in both space and time. 2) How to effectively capture the potential similarity patterns between forecast
data and historical traffic data (i.e., proximity data, periodic data and trend data) is another challenge
[4]. The numbers in Fig. 2 show the cars that left from various locations and arrived at the destination at
a specific time. For instance, yellow represents the vehicles that left from point A and blue represents the
vehicles that arrived at point A. The vehicle traffic patterns are shown in Fig. 3, the x-axis represents
time (seconds) and the y-axis represents observations (kb); closeness denotes previous data that is
closer to the forecast, periodicity denotes the same time period each day, and trend denotes traffic
data that exhibits a trend over a specific time period.

Figure 1: Spatial interaction of traffic data

Traditional traffic prediction techniques frequently only take into account a single information,
such as a temporal or geographical feature; current deep learning techniques also take these features
into account in combination, but they do not efficiently and completely capture them. To address the
aforementioned issues, this research suggests S-GNN, a multi-attentional predictive RNN (Recurrent
Neural Network) and a temporal sequence-dependent attentional convolutional long and short-term
memory network [5]. CNN (Recurrent Neural Network) and predictive RNNs (Pred RNN) are first
used to capture the spatiotemporal interaction features, and then a proximity attention module, a
periodic attention module, and a trending attention module are used, respectively, to capture the
proximity, periodicity, and trending of traffic data in the temporal sequence-dependent attention
module.
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Figure 2: Interaction of traffic data over time

Figure 3: Vehicle traffic trends

The novel contributions of our S-GNN model can be highlighted as follows:

a. Comprehensive Representation: While various models incorporate time and space modules, our
S-GNN aims to provide a more comprehensive representation by integrating multiple factors including
flow, occupancy, and average speed simultaneously. Thus, it can capture complex relationships and
nonlinear correlations among diverse traffic variables in a unified manner.

b. Enhanced Attention Mechanism: The proposed model employs a graph-based attention mecha-
nism that goes beyond simple GAT. The attention mechanism in S-GNN adapts the attention weights
to adjacent areas of target node, thus, it can effectively capture varying influences from different
regions of the road network. This provides a finer-grained understanding of spatial correlations
compared to traditional GAT.

c. Residual Connectivity and Model Complexity: We introduce residual connectivity within the
proposed model, which contributes to better gradient flow during training, potentially leading to faster
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convergence and improved prediction accuracy. Exploration of the optimal number of attention layers
in our analysis indicates the importance of balancing model complexity and performance.

d. Extensive Evaluation: The proposed model is rigorously evaluated on real-world traffic datasets,
PeMSD7(M) and PEMS-BAY, demonstrating its ability to achieve superior prediction accuracy
compared to various baseline models. The results showcase its effectiveness not only in short-term
but also in long-term traffic prediction scenarios.

The organization of the remaining paper is outlined as follows: Section 2 presents an overview
of related work in the field. In Section 3, a comprehensive background understanding is provided.
Section 4 details the mathematical formulation of the proposed S-GNN model. The experimental
results are presented in Section 5. Finally, Section 6 concludes the paper by summarizing the main
findings and discussing potential future directions.

2 Related Works

The emergence and development of deep learning [6] have been a great improvement in capturing
non-linear relationships between data, and therefore some scholars have also applied it to solve traffic
flow prediction problems.

In order to handle the challenge of forecasting cab demand, the literature [7] presented a multi-
view spatiotemporal network to understand the geographical links, temporal links, and regional
similarity relationships that exist between data. According to the literature [8] suggested for capturing
spatiotemporal aspects of global dynamics, GSTNet is a deep learning method made up of multilayer
spatiotemporal blocks, each of which consists of a temporal module and a spatial module. Both the
temporal and the spatial modules are used to record temporal and spatial characteristics, respectively.
A deep learning framework (Dynamic GRCNN) was put forth in the literature [9] to address the issue
of predicting urban traffic flow. Dynamic GRCNN models dynamic traffic station relationships as
spatiotemporally correlated dynamic graph structures in order to capture the proximity, periodicity,
and trends of traffic data based on historical traffic flows. A deep learning method for traffic prediction
(MDGRU) was created in the literature [10] in response to the issue of travel delay, or the time needed
for cars to change locations. This method develops a delay-based GRU (Gate Recurrent Unit) and
builds the model by stacking. A two-stage deep STD (State Transform Diagram) was proposed in the
literature [11] to predict urban traffic flow, which can simulate various regional perturbations and spa-
tiotemporal propagation effects caused by various regional functions. Spatiotemporal perturbations
are removed from historical traffic flows to enhance the learning of inherent traffic patterns in the
prediction stage.

The literature [12] proposed a traffic flow prediction method that combines long and short-
term memory networks, convolutional neural networks, using cellular neural networks to capture
temporal correlations, and the model also takes into account external factors like weather in order
to further improve the spatiotemporal characteristics of traffic flow data. In response to the com-
plexity, nonlinear linkages, and unpredictability of traffic flow data, the literature [13] offered a
novel spatiotemporal extended squeeze network (ST-ES-Net) framework, which designed numerous
successful solutions. In the literature, a multi-task framework for the prediction of node and edge flows
in spatiotemporal networks has been established [14]. The literature [15] proposed a deep learning
embedding technique (DELA) for modelling fine-grained traffic information, route structure, and
meteorological conditions.
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In [16], Zhang et al. introduced the STAGCN model, which integrates a spatio-temporal attention
mechanism into graph convolutional networks. This innovative approach demonstrated superior
predictive accuracy compared to standard methods. In [17], Zhao et al. proposed MSTFGRN, a
multi-spatio-temporal fusion graph recurrent network. By dynamically generating weighted adjacency
matrices and incorporating global attention, MSTFGRN surpassed existing models in capturing
complex dependencies. In [18], Lablack and Shen devised the STGM network, designed to tackle
dynamic node interactions over time. Through a novel attention mechanism and efficient architecture,
STGM achieved enhanced predictive performance while maintaining fewer parameters. In [19],
Wang et al. introduced TransGAT, a dynamic graph attention network utilizing node embedding
and TCN. This model excelled in various time intervals, exhibiting improved accuracy in traffic flow
prediction. In [20], Li et al. developed SSTACON, a shared spatio-temporal attention convolution
optimization network. SSTACON’s unique design, encompassing attention layers and graph optimiza-
tion, showcased superior results across different timeframes. In [21], Li et al. innovated CVSTGCN, a
coordinated attention-based spatio-temporal graph convolutional network. By combining coordinate
methods with graph convolutional networks, CVSTGCN demonstrated remarkable predictive power
in both short and long-term traffic flow scenarios.

Although the aforementioned solutions have some impact on traffic flow, they ignore the
spatiotemporal correlation, such as temporal features or spatial characteristics; current deep learning
techniques also take these characteristics into account, but they do not effectively and fully capture
them. However, these models suffer from various limitations including potential inability to capture
abrupt traffic changes, and computational complexity, which could hinder real-time implementation.

3 Background Knowledge
3.1 The Traffic Prediction Problem

A traffic network can be defined as an graph G = (V , E, A), where E represents the set of edges
between nodes, reflecting the connection between links, and A ∈ RN×N represents the adjacency matrix
formed by Euclidean distance between sensors, The i and j elements A = [i, j] represent the strength of
the relationship between nodes vi and vj. If there is no close relationship between the two nodes, Then
A = [i, j] = 0, each node records traffic characteristics, such as traffic value, speed, road occupancy,
etc. In order not to lose generality, this study focuses on the prediction of speed, that is, the speed on the
road section is regarded as the attribute of the network node [22]. Given the traffic conditions observed
at the last T ′ hours, that is, the characteristic matrix X (T) = [

xτ−T ′+1, . . . , xτ
] ∈ RN×C, xi is the traffic

characteristics of each section at time i, and N is the number of sensors in the traffic network, That
is, the number of nodes, C is the characteristic number. The traffic prediction problem can generally
be expressed as the prediction of traffic information

(
xτ+1, . . . , xτ+T

)
at the next T hours by learning

model Fθ on the premise of road network topology G and historical traffic data characteristic X (T), as
shown in Eq. (1):(

xτ+1, . . . , xτ+T
) = Fθ

((
xτ−T+1, . . . , xτ

)
; G

)
(1)

3.2 Modeling of Diagram Structure

When aggregating the information of nodes in the road network, the accessibility of adjacent
nodes and the impact of upstream and downstream relationships should be considered [23]. Therefore,
in this study, the road network is modeled graph structure, and the edge set is defined as E, and the
vertex set is defined as V . The topological structure of the road network is G = (V , E). Define the
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adjacency matrix of the graph as A, then Gt = (V , E, A) is the graph at the t time step, and Vt is its
point set. The adjacency matrix A of the graph with node n is expressed as:

A =

⎡
⎢⎢⎢⎢⎣

1 a1,2 · · · a1,n−1 a1,n

a2,1 1 · · · a2,n−1 a2,n

· · · · · · · · · · · · · · ·
an−1,1 an−1,2 · · · 1 an−1,n

an,1 an,2 · · · an,n−1 1

⎤
⎥⎥⎥⎥⎦ ∈ Rn×n (2)

4 S-GNN Model

S-GNN model structure is depicted in Fig. 4. A number of traffic flow parameters are entered
into the S-GNN model’s input layer. To determine the difference between the anticipated value and the
actual value and to continuously update the network’s parameters, the data sequence is sent through
the time module, space module, and output layer.

Input layer

Time convolution 
module

Space module

Output layer

X

X

Figure 4: Structure of the S-GNN model

4.1 Multi Factor Input

Numerous factors, such as flow, occupancy, average speed, and others are taken into consideration
while determining the traffic flow order. Each component has an impact on the others. It is necessary
to investigate the nonlinear link between traffic forecast and traffic sequence further [24]. In order to
identify the nonlinear link between the various traffic variables and make accurate predictions, this
work models traffic, time occupancy, and average speed all at once.

4.2 Time Module

In the time dimension, the standard one-dimensional convolution is used to aggregate the
characteristics of the time step. Compared with LSTM (Long Short-Term Memory) and GRU models,
one-dimensional convolution does not rely on the previous output during training, does not need
iteration, has less computation and low time complexity [25].

1D convolution operation is a fundamental mathematical operation which involves sliding a filter
(also known as a kernel) along a 1D input sequence and computing the dot product between the
filter and the corresponding portion of the input at each position. This operation allows the network
to capture local patterns and features within the input sequence. The operation principle of one-
dimensional convolution is shown in Fig. 5 (for more details see [26]).
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Figure 5: 1D convolution operation (rebuilt from [27])

Set the input data as X , the characteristic length of each vertex as Ci, and the time step as M
[27]. The convolution operation with the size of one dimension is performed along the time dimension
without padding, and the input X is mapped to the matrix Y , and the output of the time dimension
is:

Y = Comv (X) (3)

4.3 Space Module

GAT (Graph Attention Network) is used to process the directed graph in the spatial dimension,
and the multi-head self-attention mechanism is utilised to create each attention subspace separately,
lowering the likelihood that the model would become overfitted and increasing the model’s capacity
for spatial expression [28]. The GAT structure is shown in Fig. 6.

Figure 6: Structure of GAT model



272 CMC, 2024, vol.78, no.1

Take Y module as the input of the space module:

Y = {y1, y2, . . . , yN} (4)

where yN is node N feature vector after temporal module output. The spatial module output is:

Y ′ = {
y′

1, y′
2, . . . , y′

N

}
(5)

Let the weight matrix W that transforms the input features into output features, then the attention
value of node j on node i is:

eij = a
(
Wyi, Wj

)
(6)

where a (·) is the function that calculates the correlation of the nodes.

Use the LeakyReLU function to activate it:

eij = LeakyReLU
(
aT

[
Wyi||Wyj

])
(7)

where LeakyReLU (·) is the activation function.

Find the attention values of all neighbors of node i. Use the soft max function to normalize the
attention weights:

αij = soft max
(
eij

) = exp
[
LeakyReLU

(
aT

[
Wyi‖Wyj

])]
∑
j∈Ni

exp
[
LeakyReLU

(
aT

[
Wyi‖Wj

])] , (8)

where LeakyReLU (·) is the activation function; a is the vector to be learned; aT is the transpose of
vector a; and || is the splicing operation.

With the graph attention layer feature extraction using weighted as output:

y′
i = σ

⎛
⎝∑

j∈Ni

αijWyj

⎞
⎠ (9)

where σ (·) is the activation function; αij is the attention value of node i at node j.

If a multi-headed attention where K sets of attention coefficients are calculated independently and
then averaged output is:

y′
i = σ

⎛
⎝ 1

K

K∑
K=1

∑
j∈Ni

αk
ijW

kyj

⎞
⎠ (10)

where akij is the kth set of attention values of node i on node j.

Then final prediction is:

y = Y ′w + b (11)

The loss function is:

L (y; Wθ ) = ||y (yt−M+1, . . . , yt, Wθ ) − y′
t+1||2 (12)



CMC, 2024, vol.78, no.1 273

5 Experimental Results
5.1 Data Set Description and Setup

In the experiments, PeMSD7 (M) and PEMS − BAY datasets were used to evaluate the proposed
model. PeMSD7 (M) Collected traffic information from 229 monitoring stations on the California
Highway System during weekdays from May to June 2012. PEMS−BAY Contains traffic information
collected from 326 sensors in the Bay Area, California, between January 01 and May 31, 2017. Traffic
data information was summarized every 5 min and normalized using Z − Score as input. Table 1
provides detailed statistical information on the dataset.

Table 1: Dataset statistical

Data #Nods #Edges #Time steps

PeMSD7(M) 229 833 12673
PEMS-BAY 326 2370 52117

The topological information of the traffic network is represented by the graph adjacency matrix.
For the PEMS−BAY dataset, the edge with the maximum weight between each pair of nodes is used to
construct the undirected graph and represent the topological information of the traffic road network
in this way; for the PeMSD7 (M) dataset, the weighted adjacency matrix W can be expressed as:

wij =

⎧⎪⎨
⎪⎩

exp
(

−d2
ij

δ

)
, i �= j and exp

(
−d2

ij

δ

)
≥ ε

0, other

(13)

where δ = 0.1 and ε = 0.5, wij are the edge weights associated with dij (the distance between node i
and node j), respectively, based on thresholds δ and ε that represent the distribution and sparsity of
the weighted adjacency matrix W in the literature. By implementing a grid search strategy, the best
parameters were located at the time of validation. Data from 12 observations (historical time step
τ = 12) were used on both datasets, i.e., a historical time window of 60 min was used to predict traffic
conditions for the next 15, 30 and 60 min (time step T = 3, 6, 9).The temporal convolution layer’s size
of the expansion factor is set at 1, 2, 1, 2, 1 in order to cover the length of the input sequence. The
spatiotemporal convolutional layer has 64, 16, 64 channels in total. The Adam optimizer, which has
the benefits of straightforward implementation, effective calculation, low memory requirements, and
suitability for situations involving huge amounts of data and parameters, is utilised for optimisation
in this study [29]. The iteration period is 50, the batch size parameter is 50, the learning rate parameter
is 0.001, and the weight decay factor of L2 regularization is 5 × 10−4.

5.2 Assessment Metrics and Baselines

In this paper, three widely used evaluation metrics, Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are used to measure the
performance of the different methods. The baseline models compared are: 1) historical averaging
model (HA); 2) ARIMA [12]; 3) FC-LSTM [14]; 4) STGCN [3]; 5) Graph Wave Net [7]; 6) Space-
Time Transformation Network (STTN); 7) Graph Convolution Network (LSGCN) using gated line
cells.
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5.3 Comparison and Analysis of Results

Table 2 shows the results, and it is clear from the three-assessment metrics that the S-GNN
performs admirably in both short- and long-term prediction [30]. Both datasets showed promising
results for S-GNN, particularly in the long-term prediction task. The table presents performance
metrics for various traffic flow prediction models on two datasets, PeMSD7(M) and PEMS-BAY,
at different time intervals (15/30/60 min). The metrics include Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE%). The models range
from traditional methods like HA and ARIMA to advanced neural network models like FC-LSTM,
STGCN, Graph Wave Net, and more. The proposed S-GNN model consistently outperforms other
models across both datasets and time intervals, demonstrating significantly lower MAE, RMSE, and
MAPE%. Notably, the model achieves remarkable accuracy with MAE values as low as 1.90 for
PeMSD7(M) and 1.23 for PEMS-BAY, showcasing its effectiveness in traffic flow prediction across
different scenarios and prediction horizons.

Table 2: Performance of different methods on the PEMS-BAY and Pe MSD (M) datasets

Model PeMSD7(M) (15/30/60 min)
MAE RMSE MAPE%

HA 4.02 7.21 10.62
ARIMA 5.56/6.25/6.76 9.01/9.14/9.73 12.93/13.95/16.93
FC-LSTM 3.58/3.95/4.36 6.21/7.04/7.94 8.618/9.56/10.62
STGCN 2.26/3.04/4.02 4.05/5.71/7.56 5.27/7.34/9.79
Graph Wave Net 2.15/2.81/3.43 4.02/5.49/6.73 4.94/6.90/8.58
LSGCN 2.23/2.97/3.82 3.99/5.48/7.10 5.15/7.19/9.61
STTN 2.15/2.71/3.32 4.05/5.38/6.52 5.06/6.89/7.99
STAGCN 2.19/6.79/3.29 4.26/5.26/6.92 5.30/6.62/7.35
MSTFGRN 2.27/2.86/4.17 4.08/5.30/6.87 5.26/6.46/7.35
STGM 2.35/2.80/4.15 4.11/4.92/6.70 4.64/6.30/7.38
TransGAT 2.17/2.69/3.64 3.95/4.80/6.54 4.55/6.26/7.24
SSTACON 2.05/2.87/3.50 3.87/4.87/6.22 4.50/5.88/7.15
CVSTGCN 1.98/2.61/3.41 3.67/4.76/6.05 4.38/5.78/6.98
Proposed S-GNN 1.90/2.43/3.10 3.37/4.38/5.47 4.165/5.33/6.89

Model PEMS-BAY (15/30/60 min)
MAE MAE

HA 2.89 5.60 6.81
ARIMA 1.63/2.24/3.39 3.31/4.77/6.51 3.51/5.41/8.30
FC-LSTM 2.06/2.21/2.38 4.20/4.56/4.97 4.81/5.21/5.71
STGCN 1.40/1.85/2.43 2.93/4.13/5.34 3.01/4.23/5.59
Graph Wave Net 1.31/1.68/1.96 2.74/3.68/4.64 2.75/3.71/4.53
STTN 1.37/1.68/1.96 2.88/3.80/4.51 2.90/3.79/4.59
STAGCN 1.87/2.05/2.67 3.24/3.85/4.28 3.22/4.42/4.30
MSTFGRN 1.96/1.96/2.70 3.16/3.72/4.12 3.10/4.26/4.25

(Continued)
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Table 2 (continued)

Model PeMSD7(M) (15/30/60 min)
MAE RMSE MAPE%

STGM 2.04/2.02/2.26 2.96/3.64/4.09 2.92/3.98/4.11
TransGAT 1.40/1.88/2.35 3.05/3.78/4.05 2.85/3.78/4.05
SSTACON 1.38/1.87/2.26 2.94/3.76/3.84 2.95/3.92/4.26
CVSTGCN 1.45/1.96/2.04 2.88/3.65/3.82 2.87/3.90/4.15
Proposed S-GNN 1.23/1.53/1.87 2.55/3.21/3.40 2.40/3.13/3.76

The experimental results show that traditional traffic prediction statistical models, like the HA
and ARIMA models, do not have satisfactory prediction results because they cannot handle complex
spatiotemporal data, while deep learning-based spatiotemporal prediction methods, like FC-LSTM,
STGCN, Graph Wave Net, STTN, and S-GNN, tend to achieve better prediction results than
traditional prediction statistical models. STGCN captures both temporal and spatial dependence
jointly through gated convolution and graph convolution-based approaches, which is significantly
better than FC-LSTM, but it relies on graph structure, ignores global spatial features, and cannot
determine the significance of inter-node relationships. FC-LSTM uses LSTM to capture the temporal
dependence of traffic data, but it is still insufficient in capturing spatial dependence [31]. In comparison
to STGCN, Graph Wave Net’s bi-directional diffusion graph convolution takes into account the
influence of directionality, improving prediction results; however, STTN performs better in long-
term prediction than Graph Wave Net, but still has issues with short-term prediction, and the overall
prediction results are still slightly below the model proposed. The Pe MSD(M) dataset is smaller
relative to the PEMS-BAY dataset, i.e., smaller in both time and space, resulting in a much larger
standard deviation of its acquisition speed than the PEMS-BAY dataset, and consequently the capture
of spatiotemporal correlations of traffic data on the Pe MSD(M) dataset is relatively more difficult
[32]. This is why the majority of baseline models and the models in this study perform better on the
PEMS-BAY dataset.

MAE, RMSE and MAPE values are plotted for both short- and long-term forecasts on the Pe
MSD(M) dataset, as shown in Fig. 7. In general, as the forecast time grows, the corresponding forecast
difficulty and forecast error also increases. From the Fig. 7, it can be seen that the performance of
traditional prediction models is poor and deep learning-based models can achieve better results in
spatiotemporal prediction, and the prediction performance of the network model designed in this
paper is higher than that of other deep learning methods. In order to more intuitively show our model’s
prediction of traffic flow, the prediction effect is shown in Fig. 8.
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Figure 7: Results of the PeMSD7(M) prediction

Figure 8: Our technique for predicting traffic
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5.4 Network Design Analysis

In order to assess the effectiveness of the attention mechanism described in this research, the
proposed model S-GNN, the model S-GNN-1 without the attention mechanism, and the STGCN
model with the same iteration process were compared on the Pe MSD(M) dataset and the PEMS-
BAY dataset. Figs. 9 and 10 show the outcomes, respectively. The outcomes show that S-GNN can
reduce prediction error and improve the model’s performance.

Figure 9: PeMSD7(M) dataset

Figure 10: PEMS-BAY dataset

5.5 Convergence Speed Analysis

This section aimed to assess the convergence rates of three distinct models: STGCN, FC-LSTM
(after residuals removal), and S-GNN, employing the PeMSD7(M) dataset for evaluation. By plotting
training loss curves against the number of iterations, the study examined the convergence behavior for
15, 30, and 60-min forecasts. The obtained results, presented in Fig. 11, exhibited intriguing patterns.

S-GNN model consistently demonstrated the most rapid convergence to the lowest loss values
across all time horizons. This effect was particularly pronounced in the context of long-term predic-
tions. The outcome underscores S-GNN’s exceptional fitting capability for the specific test dataset,
accentuating its superiority over both STGCN and FC-LSTM model [33].

These findings offer valuable insights into the dynamics of model convergence, shedding light on
S-GNN’s effectiveness in adapting to the intricacies of the PeMSD7(M) dataset. In essence, S-GNN
emerges as a compelling solution, boasting remarkable convergence rates and highlighting its potential
for accurate and efficient traffic flow prediction, especially in prolonged forecasting scenarios.
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Figure 11: Convergence rate analysis

5.6 Analysis of Attentional Layers

The Pe MSD(M) dataset was used for the graph attention layer validation trials, and the outcomes
are displayed in Table 3. According to the experimental findings, the training time and prediction error
rise as the number of attention layers grows, therefore the prediction performance is higher when the
number of attention layers is 1.

5.7 Computational Complexity Analysis

On the PEMS-BAY dataset, the number of parameters, training time, and testing time of STGCN,
STTN, and proposed S-GNN were further compared. In Table 4, the experimental findings are
displayed. The S-GNN suggested in this paper has faster training and testing times than STTN since
STTN stacks numerous spatiotemporal converters to speed up calculation. In contrast to STGCN,
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our training and testing periods are a little bit longer. This is as a result of the addition of an attention
module, which increases the network’s classification accuracy. Additionally, due to the increase in
parameters brought on by the usage of the attention module and residual connectivity, the number
of parameters in our network is higher than that of STGCN and STTN.

Table 3: Effect of different attention layers on the prediction performance of the Pe MSD(M) dataset

Attention layer MAE (15/30/60 min) RMSE (15/30/60
min)

MAPE (15/30/60
min)

Training time
(epoch)

1 1.88/2.41/3.08 3.35/4.36/5.45 4.13/5.31/6.87 14 s
2 1.90/2.40/3.41 3.56/4.67/5.85 4.34/5.58/7.26 23 s
3 1.89/2.84/3.53 3.69/4.76/5.98 4.56/5.80/7.47 36 s

Table 4: Computational complexity of the PEMS-BAY dataset

Mode #Parameters Training time (epoch) Test time

STGCN 582784 56 s 50 s
STTN 483421 268 s 258 s
Proposed S-GNN 659388 82 s 77 s

6 Conclusion

This paper introduced an efficient approach for addressing the challenges of accurate traffic
prediction by proposing the Spatiotemporal Graph Neural Network (S-GNN) model. The complex
and non-linear spatiotemporal correlations in traffic data posed significant hurdles to conventional
prediction methods. S-GNN model was designed to capture both short-term and long-term traffic
patterns to achieve better performance compared to existing statistical models and state-of-the-art
deep learning models. The model’s architecture contained temporal and spatial modules that effectively
processed multiple traffic data inputs. The temporal module utilized one-dimensional convolutions,
allowing for efficient time-dependent feature aggregation. Meanwhile, the spatial module employed
the Graph Attention Network (GAT) to capture intricate global spatial relationships within the road
network. Extensive experiments were conducted on real-world datasets, PeMSD7(M) and PEMS-BAY,
to validate the efficacy of the proposed S-GNN model. The model demonstrated superior predictive
accuracy, especially in long-term prediction tasks, effectively surpassing various baseline models. The
results highlighted S-GNN’s capability to handle the intricacies of spatiotemporal traffic data and
its potential contribution to traffic planning, management, and urban development. Furthermore,
the research analyzed critical aspects of the proposed S-GNN model, encompassing the influence of
attentional layers and computational complexity. The findings revealed that a single attention layer
yielded optimal results, and S-GNN’s computational efficiency was on par with relevant state-of-the-
art models. When contrasted with the control model, S-GNN demonstrates a noteworthy reduction in
RMSE by approximately 0.571 to 9.288, and in MAE (Mean Absolute Error) by around 0.314 to 7.678.
This assertion is reinforced by the outcomes of experiments conducted on two authentic datasets, Pe
MSD7(M) and PEMS-BAY.
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Future work in this area will be directed towards further optimizing the network architecture,
streamlining computational complexity, and enhancing the overall performance of traffic forecasting
models. The goal is to refine S-GNN by fine-tuning its parameters, exploring novel attention
mechanisms, and investigating advanced techniques to efficiently handle larger datasets. Additionally,
efforts will be concentrated on reducing computational complexity without compromising predictive
accuracy, thereby making the model more practical for real-time applications. Additionally, the future
work could explore alternative architectural choices by incorporating more complex temporal model-
ing techniques, to address the specific challenges associated with very long-term traffic prediction.
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