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ABSTRACT

In the cloud environment, ensuring a high level of data security is in high demand. Data planning storage
optimization is part of the whole security process in the cloud environment. It enables data security by avoiding
the risk of data loss and data overlapping. The development of data flow scheduling approaches in the cloud
environment taking security parameters into account is insufficient. In our work, we propose a data scheduling
model for the cloud environment. The model is made up of three parts that together help dispatch user data flow to
the appropriate cloud VMs. The first component is the Collector Agent which must periodically collect information
on the state of the network links. The second one is the monitoring agent which must then analyze, classify, and
make a decision on the state of the link and finally transmit this information to the scheduler. The third one is the
scheduler who must consider previous information to transfer user data, including fair distribution and reliable
paths. It should be noted that each part of the proposed model requires the development of its algorithms. In this
article, we are interested in the development of data transfer algorithms, including fairness distribution with the
consideration of a stable link state. These algorithms are based on the grouping of transmitted files and the iterative
method. The proposed algorithms show the performances to obtain an approximate solution to the studied problem
which is an NP-hard (Non-Polynomial solution) problem. The experimental results show that the best algorithm
is the half-grouped minimum excluding (HME), with a percentage of 91.3%, an average deviation of 0.042, and an
execution time of 0.001 s.
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1 Introduction

With the improvement of computer and communication technology and the increasing need
for human quality of life, intelligent devices are growing in popularity. Internet applications are
growing in diversity and complexity due to the development of artificial intelligence algorithms
and communication technologies. Traditional cloud computing, which is used to support general
computing systems, can hardly satisfy the needs of IoT (Internet of Things) and mobile services due
to location unawareness, bandwidth shortage, operation cost imposition, lack of real-time services,
and lack of data privacy guarantee. These limitations of cloud computing pave the way for the advent
of edge computing. This technology is believed to cope with the demands of the ever-growing IoT
and mobile devices. The basic idea of edge computing is to employ a hierarchy of edge servers with
increasing computation capabilities to handle mobile and heterogeneous computation tasks offloaded
by the low-end (IoT) and mobile devices, namely edge devices. Edge computing has the potential
to provide location-aware, bandwidth-sufficient, real-time, privacy-savvy, and low-cost services to
support emerging innovative city applications. Such advantages over cloud computing have made edge
computing rapidly grow in recent years. Cloud computing consists of many data centers that house
many physical machines (hosts). Each host runs multiple virtual machines (VMs) that perform user
tasks with different quality of service (QoS). Users can access cloud resources using cloud service
providers on a pay-as-you-go basis.

The IoT environment associated with the cloud computing paradigm makes efficient use of
already available physical resources thanks to virtualization technology. Thus, multiple healthcare ser-
vice users (HCS) can store and access various healthcare resources using a single physical infrastructure
that includes hardware and software. One of the most critical problems in healthcare services is the
task scheduling problem. This problem causes a delay in receiving medical requests in the healthcare
service by users in cloud computing environments.

In this work, a new model was developed to store user data with fair distribution in cloud virtual
machines. The used method can reinforce the security of the stored data. Two types of information
are distinguished in this model. The first type is the data flow generated by users. It is random data
because time and size are unknown. The second one is the control information or mapping information
gathered by the collector agent and analyzed by the monitor agent according to the security levels.
The scheduler receives the random user data which represents the main input for our algorithms and
the regular information from the monitor agent which represents the second entree parameters for six
algorithms. In this paper, the two presented agents are proposed in the model description and explained
as part of our global model. The interaction of these agents with the scheduler will be treated in future
work. This paper focused on the development of algorithms for equity distribution. For each data flow,
developed algorithms should indicate the appropriate virtual machine and ensure a fair distribution of
all incoming data. The task scheduling algorithms in the literature are used to reach an objective like
minimizing the Makespan or latency or other well-known objectives. In this paper, a new objective is
proposed. In addition, novel algorithms based on the grouping method are developed and assessed to
show their performance. Consequently, the proposed algorithms can be reformulated and applied to
solve traditional scheduling problems like parallel machines flow shops, or other hard problems. The
main contributions of this paper are:

• Developing a new model for efficient file storage.
• Develop algorithms for equity distribution related to the virtual machines in the cloud environ-

ment.
• Minimize the risk of losing data by ensuring an equity distribution for the virtual machines.
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• Compare the efficiency of the proposed algorithms and their complexity.

This paper is structured as follows. Section 2, is reserved for the related works. Section 3 presents
the study background. In Section 4, the proposed algorithms are detailed and explained. The experi-
mental results are discussed in Section 5. Finally, the conclusion is given in Section 6.

2 Related Works

Some classical scheduling techniques, such as first-come-first-served (FCFS), round robin (RR),
and shortest job first (SJF), can provide scheduling solutions. Still, the scheduling problem is NP-
hard, which makes cloud computing difficult. It fails to meet the needs of programming [1]. Since
traditional scheduling algorithms cannot solve NP-hard optimization problems, modern optimization
algorithms, also called meta-heuristic algorithms, are used nowadays instead. These algorithms can
generate optimal or near-optimal solutions in a reasonable time compared to traditional planning
algorithms. Several metaheuristic algorithms have been used to deal with task scheduling in cloud
computing environments. For example, a new variant of conventional particle swarm optimization
(PSO), namely his PSO (RTPSO) based on ranging and tuning functions, was proposed in [2] to achieve
better task planning. In RTPSO, the inertia weight factors are improved to generate small and large
values for better local search and global searches. RTPSO was merged into the bat algorithm for further
improvement. This variant he named RTPSO-B.

In [3], the authors developed a task scheduling algorithm for bi-objective workflow scheduling
in cloud computing based on a hybrid of the gravity search algorithm (GSA) and the heterogeneous
earliest finish time (HEFT). This algorithm he called HGSA. This algorithm is developed to reduce
manufacturing margins and computational costs. However, GSA sometimes does not work accurately
for more complex tasks. The bat algorithm (BA) is applied to address the task scheduling problem in
cloud computing with objective features to reduce the overall cost of the workflow [4,5]. On the other
hand, BA underperformed in higher dimensions. Several papers treated load balancing in different
domains. In finance and budgeting [6–9], storage systems [10], smart parking [11], the network [12],
and parallel machines [13]. The authors in [14] proposed two variants of PSO. The first, called LJFP-
PSO, is based on initializing the population using a heuristic algorithm known as the longest job to
fastest processor (LJFP). On the other hand, the second variant, MCT-PSO, uses the MCT (minimum
completion time) algorithm to initialize the population and improve the manufacturing margin, total
execution time, and non-uniformity when dealing with task scheduling problems in the cloud.

This answer intended to limit the general execution value of jobs, at the same time as maintaining
the whole of entirety time inside the deadline [15]. According to the findings of a simulation, the
GSO primarily based mission scheduling (GSOTS) set of rules has higher consequences than the
shortest mission first (STF), the most essential mission first (LTF), and the (PSO) algorithms in
phrases of reducing the whole of entirety time and the value of executing tasks. There are numerous
different metaheuristics-primarily based mission scheduling algorithms inside the cloud computing
environment, which include the cuckoo seek a set of rules (CSA) [16], electromagnetism optimization
(EMO) set of rules [17], sea lion optimization (SLO) set of rules [18], adaptive symbiotic organisms seek
(ASOS) [19], hybrid whale optimization set of rules (HWOA) [20], synthetic vegetation optimization
set of rules (AFOA) [21], changed particle swarm optimization (MPSO) [22], and differential evolution
(DE) [23–27]. In the same context, other research works are developed [28–30].

The algorithms developed in this paper can be extended to be used for the subject treated in
[31–35]. The techniques for machine learning and deep learning can be utilized to develop new
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algorithms for the studied problem [36]. The Prevention Mechanism in Industry 4.0, the vehicular
fog computing algorithms, and the Scheme to resist denial of service (DoS) can also be adapted to the
novel constraint of the proposed problem [37–40].

According to literature research. Most of the heuristics and approaches developed to schedule
data flows focus on minimizing processing time and optimizing resources. There is not much research
that integrates the scheduling problem and the data security problem. By developing our approach,
we believe we can integrate certain security parameters into the scheduling algorithms. We believe
that the combination of the two techniques saves data processing time. In this article, we succeeded
in developing the best scheduling algorithms by considering the security parameters (Collector and
Monitor Agents) as constants. Our work continues to develop selection algorithms (trusted paths)
and integrate them with those recently developed.

In general, Cloud environments can have many internal and external vulnerabilities such as
Imminent risk linked to a bad configuration, possibly bad partnership/deployment strategy, and unau-
thorized access to resources, which increases the attack surface. To keep this environment accessible
and secure, access controls, multi-factor authentication, data protection, encryption, configuration
management, etc., are essential. Our goal is to place cloud data streams in the right places while
minimizing data security risks.

3 Study Background

Nowadays, the cloud environment has become the primary environment to run applications that
require large capacities. Several areas use the cloud because of its scalability, fast services, and “we
pay for what we consume”. Data flow planning in the cloud aims to minimize the overall execution
time. It consists of building a map of all the necessary components to achieve tasks from source
to destination. This process is called task mapping. The cloud environment faces many challenges,
such as cost and power consumption reduction of various services. The optimization of the cost is
studied in [41–44]. Recently, many international companies have ranked security [45–47] as the most
difficult parameter to achieve in the cloud and the first challenge for cloud developers and users. In
the literature, several heuristics and meta-heuristics have been developed to optimize cost, processing
time, and distribute workflows and tasks [48–50]. Heuristics and algorithms for planning workflow
in a cloud environment, taking into account security parameters, are not extensively developed. The
security process includes an additional process time. The objective of our research is to develop
new heuristics to reduce unused or mismanaged network resources. The developed model consists
of periodically collecting information on the state of links, and intermediate nodes in the network,
using a collector agent. This information is analyzed and subsequently classified using a monitor agent
according to the level of confidence. The novel model is based essentially on three agents, as illustrated
in Fig. 1.

“Collector Agent” has the role of the collector to gather all possible information on the global state
of the network. The collector agent scans all available resources and collects information about the
state of the cloud virtual machine and the network link. This component translates this information to
the monitor which processes it, analyzes it and decides on the security level of each link, and transmits
it to the scheduler.

The information generated is an additional input for the scheduler which must take it into account
in each calculation. Several other works can be considered [51–53].
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Figure 1: Model for the cloud computing environment

Information related to the security level will be treated specially. The second agent is the
“Monitoring agent” which must analyze received information, estimate the risk levels on each section
of the network, and decide whether the final state of the network is a downlink, low-risk or fair-link,
or high-risk link (See Fig. 2). The Scheduler component run the best-proposed algorithm to make a
final decision about workflow dispatching. Users generate an arbitrary size of data flow. Finally, the
“Cloud resources” component represents the set of virtual machines (storage servers or Hosts, etc.).
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Figure 2: Monitoring agent decomposition

The scheduler should define the destination of each file ensuring the load balancing of the final
state of the virtual machines. The network path state is described in Fig. 2. In this work, we focus
on the role of the scheduler component that calls the best-proposed algorithm to solve the problem of
dispatching files that must be executed by the virtual machines. The two presented agents are proposed
in the model description and explained as part of our global model. Algorithms for the two agents
will be treated in future work. In this paper, the objective is to propose several algorithms to solve the
scheduling problem of transmission of files to different virtual machines ensuring equity distribution.
To do that, the gap of the used spaces between all virtual machines must be searched. This gap is
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denoted by GpV and given in Eq. (1):

GpV =
Nv∑
i=1

(Tvi − Tvmin) (1)

The variable descriptions are presented in Table 1. The objective is the minimize GpV . This
problem is already proved as an NP-hard problem in [10].

Table 1: Description of all used notations

Notation Description

F Set of given files
Nf Number of files
Nv Number of virtual machines
Vm Set of virtual machines
j Index of each file
i Index of a virtual machine
Vi Virtual machine number i
fj File number j
sfj Size of the file fj

tfj Used space when the file fj is transmitted
Tvi Total space in the virtual machine Vi

Tvmin Minimum used space ∀Vi, i = {1, . . . , Nv}

Example 1 may clarify the objective proposed in this paper.

Example 1

Assume that eight files must be transmitted to three virtual machines. In this case, Nf = 8 and
Nv = 3. The size files sfj for the file fj∀j = {1, . . . , Nf } are presented in Table 2.

Table 2: Size of the eight files

j 1 2 3 4 5 6 7 8

sfj 16 7 9 11 8 21 6 12

This example used two algorithms to explain the proposed problem. The first algorithm is the
shortest size first (SSF). This algorithm is based on the sorting of all files according to the increasing
order of their size. After that, the scheduling of the files will be done one by one on the virtual machine
that has the minimum Tvi. The second algorithm is the longest-size file algorithm (LSF). Firstly, the
files are sorted according to the decreasing order of their sizes. Next, the first file will be assigned
to the first virtual with the minimum Tvi value and so on, until the scheduling of all files. For SSF ,
files {1, 3, 7} are transmitted to the first virtual machine, files {2, 4, 6} are transmitted to the second
virtual machine, and files {5, 8} are transmitted to the second virtual machine. Consequently, the load
Tv1 in V1, Tv2 in V2, and Tv3 in V3 are 31, 39, and 20, respectively. Thus, Tvmin = 20. So, the GpV
value is

∑3

i=1(Tvi − Tvmin) = (31 − 20) + (39 − 20) + (20 − 20) = 30. In this case, the gap between
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the used spaces between all virtual machines is 30. Now, it is crucial to find another schedule that
gives a better solution than the latter result. This means that find a schedule with a minimum value of
GpV . In this context, the algorithm LSF is applied. This algorithm gives the schedule as follows: files
{5, 6} are transmitted to the first virtual machine, files {1, 3, 7} are transmitted to the second virtual
machine, and files {2, 4, 8} are transmitted to the second virtual machine. Consequently, the load Tv1

in V1, Tv2 in V2, and Tv3 in V3 are 29, 31, and 30, respectively. Thus, Tvmin = 29. So, the GpV value is∑3

i=1(Tvi − Tvmin) = (29 − 29) + (31 − 29) + (30 − 29) = 3. In this case, the gap of the used spaces
between all virtual machines is 3. This schedule is better than the first one. A gain of 27 units is reached
after applying the second algorithm.

To ensure a fair distribution, the algorithms must always calculate the difference in capacity
between the virtual machines also called the gap (the gap is the unused space in each virtual machine).
The main role of algorithms is to minimize the gap (capacity) between different virtual machines. The
scheduler must then transfer a flow of capital data to the appropriate virtual machine (the one which
must minimize the difference between the different virtual machines). In this way, data stability is more
secure and several tasks that may occur such as data migration are avoided. Data stability means even
less risk. On the other hand, if we consider that the states of the links are stable, this means that there
is no other constraint to be taken into account by the scheduler, it must ensure a fair distribution in
the first place. If the link states are not stable, other factors must be considered in the calculation of
the scheduler since the virtual machines will not be “judged” according to their level of use but also
according to the level of risk. This is what we are currently developing.

The main idea is to forward the data stream to the appropriate cloud virtual machines. In the
developed model, two new components are introduced which are the collector agent and the monitor
agent. The collector agent collects information about the state of the network (nodes and links), mainly
security information (denial of service, downlinks, virtual machines at risk, etc.). This information will
be transmitted to the surveillance agent who traits this information, decides the risk level degree, and
transmits it to the scheduler. The scheduler must consider the decision of the monitor agent as input
and re-estimate its new decision according to the new considerations.

4 Proposed Algorithms

In this section, several algorithms to solve the studied problem are proposed. These algorithms
are based on the grouping method. This method consists of dividing the set of files into two groups.
After that, several manners and variants are applied to choose how to schedule the files on the
virtual machines between the first group and the second one. Essentially, seven-based algorithms
are proposed. The proposed algorithms are executed by applying four steps. Fig. 3 shows the steps
of the objective reached by algorithms. The first step is the “Objective” which is the load-balancing
schedule. The second step is the mathematical formulation to reach the load balancing. The third step
is minimizing the load gap by reaching the solution. The fourth step is the analysis of the performance
of each solution obtained by the proposed algorithms.

4.1 Longest Size File Algorithm (LSF)

Firstly, the files are sorted according to the decreasing order of their sizes. Next, the first file will
be assigned to the first virtual machine with minimum Tvi value, and so on, until the scheduling of all
files. The complexity of the algorithm is O(nlogn).
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Figure 3: Steps of the objective reached by algorithms

4.2 Half-Grouped Classification Algorithm (HGC)

This algorithm is based on dividing the set of files into two groups. Initially, the two groups are

empty. The number of files in the first group, G1 is n1 =
⌊

Nf
2

⌋
. While the number of files in the second

group, G2 is n2 = Nf − n1. In fact, G1 = {f1, . . . , fn1
} et G2 = {fn1+1, . . . , fNf } where F = {f1, . . . , fNf }.

The proposed algorithm uses three variants. For each variant, a solution is calculated, and the best
solution is picked. In the first variant, there any sort of changes to the set F is made. After creating
the two groups, G1 and G2, two manners are applied to scheduling files. The first is to schedule all files
in G1. After that the files in G2 are scheduled. The second manner is to schedule all files in G2. After
that, all files in G1 are scheduled. The solution is calculated for this first variant. In the second variant,
the files in F are sorted according to the decreasing order of their sizes. After creating the two groups,
G1 and G2, two manners are applied to scheduling files. The first is to schedule all files in G1. After
that, all files in G2 are scheduled. The second manner is to schedule all files in G2. After that, all files
in G1 are scheduled. The solution is calculated for this first variant. In the third variant, the files in F
are scheduled according to the increasing order of their sizes. After creating the two groups, G1 and
G2, two manners are applied to scheduling files. The first is to schedule all files in G1. After that, all
files in G2 are scheduled. The second manner is to schedule all files in G2. After that, all files in G1

are scheduled. The solution is calculated for this first variant. Denotes by DCs (A), the procedure that
accepts a set of elements as input and sorts these elements according to the decreasing order of their
values. While ICs(A) is the procedure that accepts a set of elements as input and sorts them according
to the decreasing order of their values. Procedure Sh(A) schedules the elements on the virtual machines
one by one. The virtual machine is selected to schedule an element characterized by the minimum value
of Tvi. The procedure of each variant denoted by HGCP() is detailed in Algorithm 1. This procedure
returns the solutions GpV 1

k and GpV 2
k with k = {1, 2, 3}. The execution details of HGC are given in

Algorithm 2. The complexity of the algorithm is O(nlogn).
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Algorithm 1: Half-Grouped Classification Procedure Algorithm (HGCP)
Step0 Construct G1 and G2

Step1 Call Sh(G1)

Step2 Call Sh(G2)

Step3 Calculate GpV 1
k

Step4 Call Sh(G2)

Step5 Call Sh(G1)

Step6 Calculate GpV 2
k

Algorithm 2: Half-Grouped Classification Algorithm (HGC)
Step0 for (three variants) do
Step1 Call HGCP(F)

Step2 end for
Step3 Calculate GpV = min

1≤k≤3
(GpV 1

k , GpV 2
k )

4.3 Mini-Load Half-Grouped Algorithm (MLH)

This algorithm is based on the grouping method. The two groups, G1 and G2 are constructed by
the same method detailed in the above algorithm (Step 1 in Algorithm 3). The proposed algorithm
uses three variants. For each variant, a solution is calculated, and the best solution is picked. In the
first variant, there is any sort of changes to the set F . After creating the two groups, G1 and G2, the
scheduling of files will be based on the minimum load of the two groups. Let “a load of a group”
is the sum of all file sizes in the group. So, initially, after constructing the two groups, the load of
G1 denotes by LG1 is

∑n1
j=1 sfj, and the load of G2 denotes by LG2 is

∑Nf

j=n1+1 sfj. If LG1 ≥ LG2 the first
file in G1 is selected and scheduled (Step 4 in Algorithm 3). Otherwise, the first file in G2 is selected
and scheduled (Step 7 in Algorithm 3) and soon on until all files are scheduled. The solution in this
manner is calculated and denoted by GpV1 (Step 11 in Algorithm 3). In the second variant, the files
are sorted into F according to the decreasing order of their sizes. The two groups are created and
apply the minimum load to choose between groups. The solution in this manner is calculated and
denoted by GpV2 (Step 13 in Algorithm 3). In the second variant, the files are sorted into F according
to the increasing order of their sizes. Two groups are created and apply the minimum load to choose
between groups. The solution in this manner is calculated and denoted by GpV3 (Step 15 in Algorithm
3). Denotes by ShF(G) the procedure that schedules the first file in the set G. The execution details of
MLH are given in Algorithm 3. The complexity of the algorithm is O(nlogn).

Algorithm 3: Mini-Load Half-Grouped Algorithm (MLH)
Step0 for (three variants) do
Step1 Construct G1 and G2

Step2 for (j = 1 to Nf ) do
Step3 Calculate LG1 and LG2

Step4 if (LG1 ≥ LG2) then
Step5 Call ShF(G1)

Step6 else
Step7 Call ShF(G2)

(Continued)
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Algorithm 3 (continued)
Step8 end if
Step9 end for
Step10 if (variant1) then
Step11 Calculate GpV1

Step12 else if (variant2) then
Step13 Calculate GpV2

Step14 else if (variant3) then
Step15 Calculate GpV3

Step16 end if
Step17 end for
Step18 Calculate GpV = min

1≤k≤3
GpVk

4.4 Excluding the Nv-Files Mini-Load Half-Grouped Algorithm (ENM)

This algorithm is based on the grouping method. Firstly, the Nv big files are excluded. These Nv
files denoted by LNV are scheduled on the virtual machines. Each file will be assigned to an available
virtual machine. After that, for the remaining Nf − Nv files denoted by RFV , the MLH algorithm
is adopted to schedule these remaining files to the virtual machines taking into consideration the Nv
files already scheduled. The complexity of the algorithm is O(nlogn).

4.5 One-by-One Half-Grouped Algorithm (OHG)

This algorithm is based on dividing the set of files into two groups following the same way
described in HGC. Three variants are used. For each variant, a solution is calculated, and the best
solution is picked. In the first variant, there is no sort of changes to the set F . After creating G1 and
G2, two manners are applied to scheduling files. The first is to schedule the first file in G1 after that,
the first file in G2, until the scheduling of all files and the solution GpV1 is calculated. In a second
manner, all files in G2 are scheduled. After that, all files in G1 are scheduled. The solution GpV2 is
calculated. The Minimum between GpV1 and GpV2 constitutes the solution of the first variant. In the
second variant, the files in F are sorted according to the decreasing order of their sizes. After creating
G1 and G2, the two previous manners are applied to scheduling files. The solution is calculated for this
second variant. In the third variant, the files in F are sorted according to the increasing order of their
sizes. After creating G1 and G2, the two previous manners are applied to scheduling files. The solution
is calculated for this third variant. The best of these three solutions is picked. The OHG instructions
are given in Algorithm 5. The complexity of the algorithm is O(nlogn).

Algorithm 4: One-by-One Half-Grouped Algorithm (OHG)
Step0 for (three variants) do
Step1 Construct G1 and G2

Step2 for (j = 1 to Nf ) do
Step3 Call ShF(G1)

Step4 Call ShF(G2)

Step5 end for
Step6 Calculate GpV 1

k

Step7 Call Sh(G2)

(Continued)
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Algorithm 4 (continued)
Step8 Call Sh(G1)

Step9 Calculate GpV 2
k

Step10 end for
Step11 Calculate GpV = min

1≤k≤3
(GpV 1

k , GpV 2
k )

4.6 Swap Two-Files Half-Grouped Algorithm (STH)

This algorithm is based on dividing the set of files into two groups. Three variants are used. For
each variant, a solution is calculated, and the best solution is picked. In the first variant, there is no
sort of changes to the set F . The two groups are created in the same way described in HGC. After
that, the first file in G1 denotes by F1 is swapped with the first file in G2 denotes by F2. The swap is
to move F1 to the first position in G2 and to move F2 to the last position in G1. The two manners
described in HGC are applied to calculate the first solution. In the second variant, the files in F are
sorted according to the decreasing order of their sizes. After creating the groups, G1 and G2, the first
file in G1 is swapped with the first file in G2. Next, the two manners are applied, and the second solution
is calculated. In the third variant, the files in F are sorted according to the increasing order of their
sizes. The two groups are created in the same way described in HGC. After that, the first file in G1 is
swapped with the first file in G2. The two manners described in HGC are applied to calculate the third
solution. The best of these three solutions is picked. The complexity of the algorithm is O(nlogn).

4.7 Swap One-in-Tenth-Files Half-Grouped Algorithm (SOH)

This algorithm is based on dividing the set of files into two groups. Three variants are used. For
each variant, a solution is calculated, and the best solution is picked. In the first variant, there is no sort

of changes to the set F . The two groups are created in the same way described in HGC. Let St = Nf
10

.

After that, the St first files in G1 is swapped with the St first files in G2. The swap is to move the St
first files in G1 to the front in G2 and to move the St first files in G2 to the last positions in G1. The
two manners described in HGC are applied to calculate the first solution. In the second variant, the
files in F are sorted according to the decreasing order of their sizes. After creating the groups, G1 and
G2, the St first files in G1 is swapped with the St first files in G2. Next, the two manners are applied,
and the second solution is calculated. In the third variant, the files in F are sorted according to the
increasing order of their sizes. The two groups are created in the same way described in HGC. After
that, the St first files in G1 is swapped with the St first files in G2. the two manners described in HGC
are applied to calculate the third solution. The best of these three solutions is picked. The procedure
SWPT(G1, G2) swaps the St files as described above. The complexity of the algorithm is O(nlogn). In
the experimental results, let HGS be the algorithm that returns the minimum value after the execution
of HGC and SOH. In addition, let HME be the algorithm, which returns the minimum value after the
execution of HGC, MLH, ENM, OHG, and STH. Finally, let HSS be the algorithm, which returns
the minimum value after the execution of HGC, STH, and SOH.

5 Experimental Results

The discussion of experimental results is presented in this section. The proposed algorithms are
coded in C++ and compared between them to show the best algorithm among all. The computer
used that executes all programs is an i5 processor and eight memories. The operating system installed
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in this later computer is Windows 10. the proposed algorithms are tested through four classes of
instances. These classes are based on the normal distribution N[x, y] and the uniform distribution
U [x, y] [54]. The different values of the file-size sfj are given as follows: C1: U [15, 150], C2: U [90, 350],
C3: N[250, 30], and C4: N[350, 90]. For each pair of Nf and Nv and each class, ten instances are
generated. The values of the Nf and Nv are detailed in Table 3. In total, there 1240 instances.

Table 3: Size files and virtual machines values

Nf Nv

10, 25, 40 3, 4, 5
50, 150, 250, 350 3, 4, 5, 10
400, 500, 600 5, 10

The metrics used in [10] to measure the performance of the developed algorithms are:

•
︷︸︸︷

F is the minimum value of GpV for all algorithms.
• F is the GpV value returned by the presented algorithm.

• Pc is the percentage of instances when
︷︸︸︷

F = F .

• Ga = F −
︷︸︸︷

F
F

is the gap between the presented algorithm and the best-obtained value. If

F = 0, Ga = 0.
• AP is the average of Ga for a group of instances.
• Time is the average execution time. The symbol “+” is marked if the execution time is less than

0.001 s. The time is given in seconds.

Table 4 shows the overall results measuring the percentage, the average gap, and the time. In this
latter table, the best algorithm is HME, with a percentage of 91.3%, an average gap of 0.042, and a
running time of 0.001 s. The second-best algorithm is HSS, with a percentage of 81%, an average gap
of 0.043, and a running time of 0.001 s. The algorithm that gives the minimum percentage of 33.4% is
SOH. Table 4 shows that for all algorithms the average gap is less or equal to 0.001 s. The execution
time is very close for all algorithms.

Table 4: Overall results measuring the percentage, the average gap, and the time

LSF HGC SOH HGS HME HSS

Pc % 56.2% 58.1% 33.4% 70.6% 91.3% 81.0%
Ga 0.174 0.159 0.376 0.082 0.042 0.043
Time in seconds + + + 0.001 0.001 0.001

The load balancing applied on the cloud environment solving the studied problem is not integrally
used in the literature. However, the load of files through several storage supports is treated in [10]. The
best algorithm developed in this latter work is SIDAr. After coding this algorithm and executing it
over the instances used in this paper, a comparison with the best-proposed algorithm HME results
in Table 5. This latter table shows that HME gives better results than SIDAr in 23.5% of cases with
292 instances. However, SIDAr gives better results than HME in 29.3% of cases with 363 instances.
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Finally, there are 585 instances when HME and SIDAr obtained the same results. To summarize, the
best algorithm in [10] does not dominate the best-proposed algorithms. Consequently, a new algorithm
can be developed based on the combination of HME and SIDAr.

Table 5: Comparison of the best-proposed algorithm with the best from the literature

Condition Number of instances Percentage

HME < SIDAr 292 23.5%
HME > SIDAr 363 29.3%
HME = SIDAr 585 47.2%

Table 6 shows the average gap values when the number of files changes for all algorithms. There
are only four cases when the average gap is less than 0.001. These cases are reached when Nf = {10, 25}
for the HME algorithm and Nf = {400, 600} for HSS.

Table 6: The average gap criteria when the number of files changes for all algorithms

Nf LSF HGC SOH HGS HME HSS

10 0.094 0.079 0.079 0.079 0.000 0.076
25 0.127 0.121 0.281 0.072 0.000 0.072
40 0.122 0.118 0.467 0.081 0.025 0.030
50 0.213 0.187 0.313 0.088 0.037 0.033
150 0.208 0.201 0.423 0.053 0.124 0.023
250 0.148 0.133 0.355 0.097 0.037 0.068
350 0.393 0.361 0.374 0.122 0.115 0.074
400 0.049 0.049 0.532 0.040 0.009 0.000
500 0.103 0.100 0.567 0.086 0.003 0.002
600 0.062 0.062 0.533 0.042 0.016 0.000

Table 7 shows the average gap criteria when the number of virtual machines changes for all
algorithms. There are only two cases when the average gap is less than 0.001. These cases are reached
when Nv = {5, 10} for HSS. The advantage to execute HME is to reach a minimum average gap for
almost Nf values. The execution time of HME is polynomial.

Table 7: The average gap criteria when the number of virtual machines changes for all algorithms

Nv LSF HGC SOH HGS HME HSS

3 0.263 0.223 0.229 0.123 0.016 0.097
4 0.243 0.227 0.217 0.097 0.123 0.092
5 0.090 0.090 0.490 0.053 0.020 0.000
10 0.123 0.122 0.512 0.057 0.029 0.000
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Table 8 presents the average gap criteria when the classes change for all algorithms. This table
shows that for LSF , HGC, SOH, and HGS the highest average gaps are observed for classes 3 and 4.
This means that these classes are harder than classes 1 and 2 for these algorithms. However, for HME,
the highest average gaps are observed for classes 1 and 2. This means that these classes are harder than
classes 3 and 4 for this algorithm. Finally, for HSS, the highest average gaps are observed for classes
2 and 4. This means that these classes are harder than classes 1 and 3 for this algorithm.

Table 8: The average gap criteria when the classes change for all algorithms

Class LSF HGC SOH HGS HME HSS

1 0.154 0.151 0.524 0.037 0.061 0.024
2 0.166 0.153 0.603 0.076 0.044 0.065
3 0.188 0.171 0.181 0.104 0.035 0.038
4 0.186 0.163 0.197 0.111 0.027 0.045

Fig. 4 shows the average gap variation for SOH and HGS when the pair (Nf , Nv) changes. So,
for each value (Nf , Nv), a pair value is given and presented in the figure with the related average gap.
This figure shows that the curve of HGS is always below the curve of SOH. Indeed, the average gaps
obtained by SOH are better than those obtained by HGS.

Figure 4: The average gap variation for SOH and HGS

Fig. 5 shows the average gap variation for HME and HSS when the pair (Nf , Nv) changes. This
figure shows that the curve of HSS is 16 times below the curve of HME and 15 times the opposite.

Despite the performance of the proposed algorithms, a hard instance can be generated with big-
scale ones. In addition, the studied problem does not take into consideration when the virtual machines
do not have the same characteristics. Indeed, in the studied problem, we suppose that all virtual
machines have the same characteristics.

Table 9 represents results comparisons with other state of the art studies.
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Figure 5: The average gap variation for HME and HSS

Table 9: Results comparisons with other state of the art studies

Reference Year Applied
algorithms

Treated
problem

Scheduling
strategy

Results

[55] 2022 ACO Load balancing Simulation Load balancing
and task
scheduling
strategies in the
cloud
environment

[56] 2021 Meta-heuristics
methods

Cost and equity Multi-objective
grey wolf
optimizer

Enhance cloud
manufacturing
(CMfg)
scheduling

[57] 2022 Hybrid swarm
intelligence
method

Makespan time
and cloud
throughput

Math analyzes Handle the
problem of
scheduling IoT
tasks in cloud
computing

[58] 2023 BCSV
scheduling
algorithm

Load balance
and makespan

Scenarios Load balancing
problem of
working nodes

Our paper 2022 Heuristics Load balance
and security
awareness

Iterative,
grouping

The used spaces
in the cloud will
be load balanced

6 Conclusion

In this paper, a new approach is proposed to schedule workflow in the cloud environment with
utmost trust. Developed algorithms enable the scheduling process to choose the virtual machines that
ensure load balancing. These algorithms provide more security to transferring workflow and minimize
the time of data recovery in case of data loss. Our model is composed of three agents: the collector,
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scheduler, and monitor. This model permits to visualization of the network links and node states
permanently. The developed algorithms in the scheduler agent show promising results in terms of time
and data protection. These algorithms are based on the grouping of several files into two groups. The
choice of the file that is scheduled on the appropriate virtual machine is the most advantage of the work.
Several iterative procedures are used in this paper. An experimental result is discussed using different
metrics to show the performance of the proposed algorithms. In addition, four classes of instances are
generated and tested. In total, there are 1240 instances in the experimental result. The experimental
results show that the best algorithm is HME, with a percentage of 91.3%, an average gap of 0.042, and a
running time of 0.001 s. The first line for future work is to enhance the proposed algorithms by applying
several metaheuristics and considering the proposed algorithms as the initial solution. The second line
is to propose a lower bound for the studied problem. The third line is to develop an exact solution
and the last line is to develop intelligent algorithms for the monitor agent. After selecting the best
algorithm, future research will focus on collector and monitor agents. The development of effective
collection and monitoring agents enables the collection and analysis of meaningful information about
virtual machines and intermediaries to decide on trusted bindings.
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