
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.045022

ARTICLE

Facial Image-Based Autism Detection: A Comparative Study of Deep Neural
Network Classifiers

Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3 and
Arfan Jaffar1,2

1Faculty of Computer Science and Information Technology, The Superior University, Lahore, 54600, Pakistan
2Intelligent Data Visual Computing Research (IDVCR), Faculty of Computer Science and Information Technology, The Superior
University, Lahore, 54600, Pakistan
3Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, 12571, Saudi Arabia
4School of Computer Science and Electronic Engineering (CSEE), University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

*Corresponding Author: Sheeraz Akram. Email: sAkram@imamu.edu.sa

Received: 15 August 2023 Accepted: 07 November 2023 Published: 30 January 2024

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges
in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial,
particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive
comparative analysis of various machine learning classifiers for ASD detection using facial images to identify
an accurate and cost-effective solution tailored to the local context. The research involves experimentation with
VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In
addition, the “Orange” machine learning tool is employed to evaluate classifier performance and automated image
processing capabilities are utilized within the tool. The findings unequivocally establish VGG16 as the most
effective classifier with a 5-fold cross-validation approach. Specifically, VGG16, with a batch size of 2 and the
Adam optimizer, trained for 100 epochs, achieves a remarkable validation accuracy of 99% and a testing accuracy
of 87%. Furthermore, the model achieves an F1 score of 88%, precision of 85%, and recall of 90% on test images.
To validate the practical applicability of the VGG16 model with 5-fold cross-validation, the study conducts further
testing on a dataset sourced from autism centers in Pakistan, resulting in an accuracy rate of 85%. This reaffirms the
model’s suitability for real-world ASD detection. This research offers valuable insights into classifier performance,
emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image
analysis.
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties
in social interaction, communication, and repetitive behaviors. ASD is a developmental condition
that manifests in early childhood, making learning, speaking, expressing emotion, and socializing
difficult [1–3]. ASD has risen significantly in recent years. However, due to a lack of research, childcare
facilities, trained professionals for ASD, and cultural and contextual variables, the autism ratio could
be higher than previously estimated [4]. ASD is characterized by two main symptoms: difficulties
with social communication and a lower IQ, causing autistic individuals to be less accepted in society.
Individuals with ASD have trouble maintaining eye contact, interpreting facial expressions, using
gestures effectively, and comprehending others’ perspectives. They may also struggle with responding
to their name, sharing interests with others, and engaging in reciprocal conversation. Furthermore,
they may display restricted or repetitive behaviors, such as lining up objects, repeating words or
phrases, or fixating intensely on specific topics. Common self-stimulatory behaviors include hand-
flapping or rocking, and individuals with ASD may have altered sensitivity to sensory stimuli, such as
light, noise, touch, taste, or smell [5–7].

Early intervention and detection are crucial in helping autistic individuals, families, and caregivers.
Detecting ASD in early childhood and assisting with social interactions and communication can help
individuals become independent and socially accepted. Traditionally, ASD is detected using a checklist
based on questions posed to parents or caregivers about the behavior and patterns of children. This
method is performed several times to ensure the presence of autism. The timely detection of ASD
Autism Spectrum is paramount to prevent severe difficulties in social interaction and daily life tasks.
In addition to traditional checklist-based ASD detection, analyzing behavioral, genetic, neuroimaging,
facial images, or speech data can assist in identifying associated patterns or features of ASD [8–12].

Unlike traditional algorithms, machine learning enables the development of an algorithm that
can learn and improve over time based on data [13–17]. Conventional diagnostic methods often rely
on subjective observations, which can hinder the accuracy and timeliness of diagnoses [18]. Facial
features can reflect ASD, such as the eyes, nose, mouth, or ears, due to genetic or developmental
factors. Individuals with ASD may exhibit distinctive features, such as a broader upper face, a shorter
middle face, or wider-set eyes [19]. Machine learning techniques, like CNNs with transfer learning, can
measure facial features and classify images into ASD or non-ASD groups [20,21]. Pakistan reported
over 400,000 cases of autism in April 2021. However, social stigma and lack of awareness about
the disorder may have led to underestimating the actual number [22]. In Pakistan, there is a limited
availability of centers, experts, and instructors for ASD. Researchers are currently focusing on using
machine learning algorithms to detect autism using facial images. However, the datasets used for this
purpose are limited, and experimentation has been limited to typical CNN models. There is a need to
experiment with different learning rate schedulers, optimizers, and batch sizes to explore the maximum
potential of deep neural network models for autism detection.

Our study used deep neural networks to identify facial images. We conducted experiments with
different learning rates, batch sizes, and network architectures using n-fold cross-validation and
Orange. We also collected data from autism centers in Pakistan and collaborated with local centers
to introduce ml-based autism detection methodologies. This paper consists of a literature review
demonstrating the research conducted using machine learning for autism detection, including the
classifiers used and their respective accuracies. The research methodology section explains the flow
used in this study, and the experiment section shows the experimentation setting for all the experiments.
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The result section provides a detailed analysis of the results, while the discussion section explains the
work and evaluates all classifiers used. Lastly, we conclude the study in the conclusion section.

2 Literature Review

ASD is a neurodevelopmental disorder causing difficulties in social skills and communication,
and individuals demonstrate repetitive behaviors [23]. Autism is a developmental disorder that can
be assessed by monitoring verbal communication, social interaction, and nonverbal cues in early
childhood [24–27]. Research on ASD covers a wide range of symptoms and dimensions. Fig. 1
summarizes the research areas covering a wide spectrum of research for ASD. ASD detection is crucial
in research as early detection can reduce the effect of this neurodevelopmental disorder.

Figure 1: Research spectrum of ASD

The detection of ASD considered the most significant research dimension, can be achieved
using traditional assessment tools and ML-based classifiers. Detection of Autism currently relies
on interviews-based behavioral assessment tools like the Autism Diagnostic Observation Schedule
(ADOS) [28] and the Autism Diagnostic Interview-Revised (ADIR) [29]. This traditional checklist-
based assessment tool requires parents/caregivers to answer questions in the presence of an expert.
These methods are time-consuming and costly. The assessments are conducted repeatedly with an
interval of months to confirm ASD. However, these approaches do not identify the biological basis
for developmental delays, as neuroanatomy is unclear [30,31]. Diagnosing autism through traditional
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methods can be a lengthy and repetitive process. Traditional tools rely on behavioral assessments to
analyze the child’s behavior after age. Delayed diagnosis of autism can profoundly impact individuals,
leading to lifelong effects. Compared to traditional ASD assessment methods, Artificial Intelligence
(AI), Machine Learning (ML), and Deep Learning (DL) approaches provide greater accuracy and
earlier detection. Supervised learning is used by ML and DL classifiers to recognize patterns, features,
and biomarkers associated with autism and detect them in new data. Lately, many researchers have
explored deep neural networks as they can accurately identify ASD at an early age. Table 1 summarizes
some of the studies on autism detection using facial images. Most researchers use facial image datasets,
Magnetic Resonance Imaging (MRI), and checklist analysis for autism detection.

Table 1: Literature on machine and deep learning for autism detection

Paper Limitations Contribution Classifiers Test accuracy

[32] – A CNN system with
91% accuracy and 0.53.

Deep neural network
(DNN) classifier

91%

[33] Limited facial
images labeled
from online data.

Funding support for the
research.

CNN 90%

[34] A comprehensive review
of existing supervised
machine learning.

SVM (support vector
machines)

80%

[35] Small sample sizes
in many of the
studies

A systematic review of
technological
approaches for autism.

Symptoms pulled from
standardized
assessment protocols

78.90%

[36] Many at-risk
toddlers did not
attend an
evaluation even
after repeated
invitations.

We are assessing early
ASD screening and
repeat screenings from
12 months using
longitudinal data.

Autism diagnostic
observation schedule,
toddler autism
symptom inventory,
autism diagnostic
interview

The overall
sensitivity of
71% and
specificity of
95.9%

[37] Web searching
tasks are
unsuitable for
young children; a
small number of
participants.

Eye tracking for autism
detection in infants,
toddlers, and young.

Eye tracking data from
visual processing tasks

Around 74%

The literature reviewed in the proposed study demonstrates that ML-based autism detection
can detect ASD at an early age. Table 1 suggests limitations, contributions, classifiers, and accuracy
achieved in the literature. We can interpret that all research accuracy achieved is insufficient, the dataset
used is limited, and the methodology used is weak. Reference [38] applied ML algorithms to analyze
Electroencephalogram (EEG) signals and accurately distinguish between individuals with ASD and
typically developing individuals. The study demonstrated the potential of ML techniques in providing
objective and efficient ASD detection based on neurophysiology.
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Reference [39] applied models such as Support Vector Machines (SVM), Random Forest Classifier
(RFC), Naïve Bayes (NB), Logistic Regression (LR), and K-Nearest Neighbors (KNN) to their
dataset and constructed predictive models based on the outcome. The paper’s main objective was
determining if a child is susceptible to ASD in its nascent stages, which would help streamline the
diagnosis process. Based on their results, Logistic Regression gave the highest accuracy for their
selected dataset. Another study summarized recent progress in machine learning models for diagnosing
ASD and Attention-Deficit/Hyperactivity Disorder (ADHD) using functional and structural MRI.
They outlined and described machine learning, especially deep learning, techniques suitable for
addressing research questions in this domain, pitfalls of the available methods, and future directions
for the field [40].

Reference [41] proposed a web-based deep learning application to detect ASD using facial images.
The authors of the study experimented using MobileNet, XceptionNet, and InceptionV3. Based on
the validation data, it achieved an accuracy of 95% for MobileNet, 94% for Xception, and 0.8 for
InceptionV3. The dataset contains 3,014 facial images of children, including 1,507 autistic children
and 1,507 non-autistic children.

During this study, the literature review revealed a few gaps that must be addressed. These gaps
include lower accuracy, limited and insufficient datasets, experimentation on deep learning classifiers
without changing hyperparameters, and testing on datasets that lack diversity. To overcome these gaps,
the study conducted experiments using various classifiers and collected a local dataset to verify the
best-performing classifier’s authenticity.

3 Proposed Methodology

This section will discuss the approach used to develop a model that deals with the challenges
of detecting ASD. In the proposed study, we preprocessed the collected data and experimented with
VGG16 using multiple optimizers, learning rate schedulers, and batch sizes. Finally, we performed
testing using the best-performing model on a locally collected dataset of facial images. Fig. 2 visually
represents our proposed DL-based ASD detection system. The acquired data undergoes an initial
preprocessing phase, followed by division into training, validation, and test sets for the subsequent
classification. In the experimentation section, we discussed the parameters investigated to optimize
the choice of optimizer, learning rate scheduler, and batch size. Our analysis encompasses VGG16
MobileNet and employs automated ASD detection with the Orange tool. This study performs a
comparative analysis of VGG16 and MobileNet by changing hyperparameters. Detailed information
regarding the dataset, preprocessing steps, and experimentation is presented in Sections 3.1, 3.2, and
3.3, respectively.

3.1 Facial Image Dataset

We collected the facial image dataset from the public library Kaggle, which includes data for
individuals with autism and those without autism, with ages ranging from 2 to 14. Table 2 describes
the dataset; Fig. 3 presents images of autistic and non-autistic, respectively.

Our research analyzed the accuracy of facial recognition in identifying ASD. With a dataset of
2500 images lacking crucial information, we obtained 50 confidential images from nearby ASD centers
to fill the gaps. We ensured the confidentiality of these images by not sharing them on social media or
documenting them.
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Figure 2: Research methodology

Table 2: Facial dataset description

Autistic Non-autistic Total Image dimension Image type

Training 1250 1250 2500 2D image RGB image
Validation 50 50 100 2D image RGB image
Testing 150 150 300 2D image RGB image
Local dataset for testing 25 25 50 2D image RGB image
Image size 240 × 240
File type JPG
Male-Female ratio 3-1
Autistic to non-autistic ratio 1-1
Age range 2–14 years

Figure 3: Images from dataset (a) autistics (b) non-autistic
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3.2 Data Preprocessing

To effectively train a Convolutional Neural Network (CNN) model, a set of facial images was
first cropped and divided into three distinct groups: training (consisting of 2,500 images), validation
(comprised of 100 images), and testing (consisting of 150 images). We alternated between class images
to ensure a balanced class representation. To effectively prepare the images for feature extraction, we
utilized the Keras preprocessing Image Data Generator to normalize the pixel values by scaling them
from a range of [0,255] to [0,1]. Feature extraction involves using deep neural networks that utilize
input, hidden, and output layers, with weights and biases transformed by hidden layers and passed
through activation functions to produce predictions. We used the Stochastic Gradient Descent (SGD)
optimizer to optimize the algorithm and minimize error [42].

3.3 Experimentation

In this research, the experimentation phase fine-tunes our machine learning models by exploring
optimizers, learning rate schedulers, and batch sizes. This ensures that our models deliver the best
performance in autism detection within the given constraints. Optimizers offer different mechanisms
for weight updates, learning rate schedulers control the evolution of the learning rate during training,
and batch sizes affect both training efficiency and generalization capacity. Our approach strikes the
right balance between accuracy, convergence speed, and computational efficiency.

This study utilized the computational capabilities of Google Colab Premium, including its power-
ful GPU and RAM, to conduct experiments on preprocessed datasets. We explored the performance
of deep learning models, including VGG16 and MobileNet. The aim of experimenting with these deep
learning models was to test the effectiveness of these models in classifying images of individuals with
autism. The experiment analyzed classifiers’ training and validation accuracy by varying the optimizer,
learning rate scheduler, and batch size. The reason for choosing VGG16 and MobileNet is their high
accuracy and precision in capturing facial features.

The VGG16 model has 16 layers, including 13 convolutional and three fully connected layers. It
processes 224 × 224 pixel images and extracts features using convolutional filters and max pooling.
The model minimizes cross-entropy loss using SGD during training to update weights and biases and
produce predictions [43]. MobileNet is a deep learning architecture that relies on depth wise separable
convolutions to reduce the number of parameters required compared to other neural networks. This
approach results in more lightweight models that maintain high accuracy, making it suitable for mobile
and embedded devices with limited computational resources [44]. According to previous research,
to enhance the precision of the classifiers, we can conduct further experimentation and change
optimizers and learning rate schedulers [45]. We aim to improve classifiers’ efficiency by utilizing
various experimentation methods, such as modifying the number of epochs, batch size, and learning
rate scheduler and incorporating 5-fold cross-validation.

After preprocessing the images in the initial phase, this study conducted experiments with learning
rate schedulers to fine-tune the hyperparameters in deep-learning models. A learning rate scheduler
adjusts the learning rate during training based on a predetermined schedule to strike a balance between
the speed of convergence and the final performance of the model. Common approaches include
constant, step-based, exponential decay, time-based decay, and cyclical learning rates [46]. Eqs. (1)
and (2) represent the learning rate of exponential decay and time-based decay, respectively. This study
used exponential and time-based learning schedules with VGG16.
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learningrate = initiallearningrate ∗
(

e
−iteration
decayrate

)
(1)

learningrate = initiallearningrate ∗
(

e
−time

decayrate

)
(2)

After experimenting with both learning rate schedulers on VGG16 and MobileNet using batch
sizes 2, we found that exponential decay yielded good results on VGG16 and MobileNet with batch
size 2 on 100 epochs. When training a deep learning model, optimizers adjust the weights and minimize
the loss function. In this study, we utilized SGD, Adam, and Adagrad optimizers while training the
VGG16 model with 100 epochs and a batch size of 2.

w = w − learningrate ∗ gradient

v = (momentum ∗ v) − (learningrate ∗ gradient)

w = w + v

accumulatedsquaredgradients
= accumulatedsquaredgradients

+ gradient2

weights = W − learningrate ∗ gradient√
accumulatedsquaredgradients

+ epsilon
(3)

Adagrad adjusts the learning rate for each parameter based on the sum of squares of past gradients
but may become slow over time. Eq. (3) mathematically represents Adagrad in detail. Adam combines
SGD and momentum to provide an efficient optimization method for deep learning models [45].
The Adam update rule can be expressed mathematically as in Eq. (4). Through experimentation; we
discovered that using the Adam optimizer with a batch size of 2 over 100 epochs yielded remarkable
performance on VGG16. Once we selected the optimal learning rate scheduler and optimizer, we
focused on determining the best batch size for VGG16 and MobileNet. The results of our experiments,
which identified classifiers that achieved notable accuracy, are presented in the results section.

m = β1 ∗ m + (1 − β1) ∗ gradient

v = β2 ∗ v + (1 − β2) ∗ gradient2

weights = weights − learningrate ∗ m√
v + epsilon

(4)

As a free and open-source tool, Orange offers a visual programming interface that facilitates
building ML workflows through blocks representing various tasks [46]. This study used the Orange
tool to evaluate its built-in features. Visual Geometry Group 19 (VGG19) loaded and read the
dataset, and then performed feature extraction. We trained three classifiers (KNN, RF, and Gradient
Boost), and the evaluation included generating a Receiver Operating Characteristics (ROC) curve and
accuracy matrix. Training data compromised 80% of the data for VGG19 with 200 epochs, and the
testing used the remaining 20%. Orange’s visualization module visualized the accuracy metric and
ROC curve. Fig. 4 shows the architecture of the Orange tool for Autism detection.
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Figure 4: Architecture diagram for autism detection using orange

4 Results

This section will analyze the performance of all the classifiers used in our experiments. We will
discuss the results of our experimentation and provide a detailed evaluation of the classifiers. We con-
ducted experiments with various batch sizes, epochs, and techniques, including 5-fold cross-validation
to enhance performance in facial image analysis for individuals with autism. Image preprocessing was
made easier using data generators. The VGG16 architecture attained a validation accuracy of 98% and
a test accuracy of 88% after training for 100 epochs with a batch size of 2. Fig. 5 displays the training
and validation accuracy curves for VGG16. As depicted in Fig. 6, the accompanying confusion matrix
reveals that the trained model exhibited 16 false positives and 19 false negatives out of 150 images of
individuals with and without autism. ROC curve, Fig. 7 demonstrates that it has a sharp angle, which
indicates a high True Positive Rate (TPR) for a relatively low False Positive Rate (FPR). The classifier
seems to detect positive instances and avoid false positives accurately.

The VGG16 model was trained using 5-fold cross-validation with a batch size of 2 for 100 epochs.
The model achieved an outstanding validation accuracy of 99%, while the testing accuracy was 87%.
However, the validation accuracy curves (presented in Fig. 8) fluctuate, indicating a possible issue
with the dataset. The confusion matrix (Fig. 9) and the ROC curve (Fig. 10) further confirm that the
VGG16 model with 5-fold cross-validation obtained 99% and 87% test accuracy rates. The model’s
FPR was 15, and the FNR was 23 out of 150 images of individuals with and without autism.
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Figure 5: Vgg-16 training/validation accuracy and training/validation loss

Figure 6: Vgg-16 confusion matrix

Figure 7: Vgg-16 roc curve
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Figure 8: Vgg-16 5-fold cross-validation complete training report

Figure 9: Vgg-16 5-fold confusion matrix

Figure 10: Vgg-16 5-fold roc curve
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Fig. 11 displays the training and validation accuracy of VGG16, which was trained with a batch
size of 16. The model achieved a validation accuracy of 93% and a testing accuracy of 86%. The
confusion matrix, shown in Fig. 12, reveals that the trained model had 13 false positives and 29 false
negatives out of 150 images of individuals with and without autism. Furthermore, Fig. 13 presents the
ROC curve for VGG16 with a batch size 16.

Figure 11: Vgg-16 batch size 16 cross-validation complete training report

Figure 12: Vgg-16 batch size 16 confusion matrix

We trained VGG16 using a batch size of 32, and its training and Fig. 14 presents validation
accuracy equal 98% and test accuracy equivalent 87%. Additionally, Fig. 15 shows the confusion
matrix, which indicates that the model, out of 150 images of individuals with and without autism,
produced 15 false positives and 26 false negatives. The ROC curve in Fig. 16 illustrates the performance
of the trained model with a batch size of 32. From these plots, we analyzed that although VGG16 with
32 batch size provided an accuracy of 88%, FNR is 26, which is a bit higher.
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Figure 13: Vgg-16 batch size 16 roc curve

Figure 14: Vgg-16 experimentation results with 32 batch size

Figure 15: Vgg-16 batch size 32 confusion matrix
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Figure 16: Vgg-16 batch size 32 roc curve

We trained VGG16 with a batch size of 64. It exhibited a validation accuracy of 94% and a test
accuracy of 88%. The training and validation accuracy curves for VGG16 are shown in Fig. 17. The
confusion matrix in Fig. 18 reveals that the model produced 19 false positives and 16 false negatives
out of 150 images of individuals with and without autism. The ROC curve in Fig. 19 also exhibits a
high TPR and a relatively low FPR.

Figure 17: Vgg-16 experimentation results with 64 batch size

We trained MobileNet with a batch size of 64. Fig. 20 visualizes the training and validation
accuracy curves for MobileNet, showcasing the accuracy progression throughout the training process.
The confusion matrix, presented in Fig. 21, provides insights into the model’s performance. Out of
150 images of individuals with and without autism, the trained MobileNet model exhibited 15 false
positives and 23 false negatives. The model incorrectly classified 15 instances as positive (individuals
with autism) when negative (individuals without autism) and 23 as negative when, they were positive.
To assess the model’s ability to balance TPR and FPR, the ROC curve is displayed in Fig. 22. The
sharp angle in the ROC curve suggests a high TPR for a relatively low FPR. This behavior indicates
that the MobileNet classifier is effective in achieving a high sensitivity by correctly identifying positive
instances (individuals with autism) while simultaneously maintaining a low rate of false positives.
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Figure 18: Vgg-16 batch size 64 confusion matrix

Figure 19: Vgg-16 batch size 64 roc curve

Figure 20: Mobilenet accuracy/loss experiment result



120 CMC, 2024, vol.78, no.1

Figure 21: Mobilenet confusion matrix

Figure 22: Mobilenet roc curve

4.1 Using Orange for Machine Learning

Utilizing the Orange Tool, we employed machine learning techniques to analyze an image dataset
comprising autistic and non-autistic pictures. We utilized the VGG16 neural network to extract
features from the dataset. Later, the VGG19 is trained for classification. The training process involved
200 epochs with Relu activation and Adam optimizer and was supplemented by the application
of Gradient Boost, KNN, and SVM for a more comprehensive analysis. All applied classifiers’
performances are presented in Figs. 23–26.

The KNN classifier achieved a validation accuracy of 78% and a test accuracy of 77.4%, with
precision, recall, and F1 score values ranging from 72% to 70.9%. The Random Forest classifier showed
similar validation accuracy (78%), but a lower test accuracy of 71.1%, with precision, recall, and F1
score values around 71.2% and 71%. The Gradient Boost classifier demonstrated a higher validation
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accuracy of 83.9% but a lower test accuracy of 75.2%. However, its precision, recall, and F1 score
values remained at 75.2%. Lastly, the VGG19 classifier achieved the highest validation accuracy of
85.5% and test accuracy of 77.8%, with precision, recall, and F1 score values all at 77.8%.

Figure 23: Orange tool vgg-19

Figure 24: Orange tool random forest

Figure 25: Orange tool kNN

Figure 26: Orange tool gradient boosting

4.2 Additional Test Data

During our visit to local autism centers in Pakistan, we identified the limited availability of experts
and resources for autism detection. We began collaborating on developing ML solutions to address
the challenge. We collected a dataset of 50 images each from autistic and typically developed children,
ensuring strict confidentiality. Using the VGG16 model with 5-fold cross-validation, we tested the
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locally collected dataset and achieved an impressive prediction accuracy of 85%. This performance
remained remarkable despite race, facial features, and ethnicity variations between the training and
testing datasets.

5 Discussion

Based on the provided results, a comparative evaluation of different classifiers applied to the
autistic dataset reveals variations in their performance. We considered the following evaluation
metrics: validation accuracy, test accuracy, precision, recall, and F1 score. The VGG16 classifier
exhibited a validation accuracy of 97% and a test accuracy of 88%, accompanied by precision, recall,
and F1 score values of 87%, 88%, and 88%, respectively. In contrast, the VGG16 model with 5 folds
achieved a higher validation accuracy of 99% but a slightly lower test accuracy of 87%. Its precision
and recall were 88% and 90%, resulting in an F1 score of 85%.

Furthermore, the VGG16 classifier with a batch size of 16 displayed a validation accuracy of 93%,
a test accuracy of 86%, and a precision-recall balance with values of 93% and 91%, respectively, leading
to an F1 score of 87%. Similarly, the VGG16 models with batch sizes of 32 and 64 achieved validation
accuracies of 98% and 94.5%, test accuracies of 87% and 88%, and F1 scores of 88%, respectively.
These models’ precision, recall, and F1 score values varied between 84%-89% and 87%-93%. Lastly, the
MobileNet classifier exhibited a validation accuracy of 92%, test accuracy of 87, and precision, recall,
and F1 score values of 85%, 90%, and 88%, respectively. In conducting machine learning analysis using
the Orange Tool, we observed that the KNN classifier demonstrated a validation accuracy of 78% and
a test accuracy of 77.4%. Its precision, recall, and F1 score values were 72% to 70.9%.

Similarly, the Random Forest classifier displayed a validation accuracy of 78%, though with a
slightly lower test accuracy of 71.1%. Its precision, recall, and F1 score values were approximately
71.2% and 71%. The Gradient Boost classifier exhibited a higher validation accuracy of 83.9% but
a lower test accuracy of 75.2%, with consistent precision, recall, and F1 score values of 75.2%.
Finally, the VGG19 classifier demonstrated the highest validation accuracy of 85.5% and test accuracy
of 77.8%, with all precision, recall, and F1 score values at 77.8%. The VGG16 classifier with 5
folds demonstrated superior performance to other classifiers based on the evaluation metrics. It
achieved a higher validation accuracy of 99%, indicating its ability to generalize well to unseen data.
Although its test accuracy was slightly lower at 87%, the precision (88%) and recall (90%) values
highlight its balanced performance in correctly identifying positive cases (autistics) and minimizing
false negatives. The resulting F1 score of 85% indicates a favorable trade-off between precision and
recall. The utilization of 5-fold cross-validation further enhances the reliability of the VGG16 model
by effectively utilizing the available data for training and evaluation. This approach helps mitigate
overfitting and accurately represents the model’s performance on unseen data. Furthermore, test
results on locally collected data highlight the potential of machine learning, specifically the VGG16
model, as a reliable tool for autism detection in the local context. Overcoming variations in facial
characteristics and cultural attributes demonstrates its applicability to diverse populations. Table 3
presents the performance of the tested classifiers for autism detection using facial images.

We compared the VGG16 and MobileNet classifiers in detecting autism. VGG16 achieved
exceptional potential with 99% validation accuracy using a 5-fold validation strategy. However, test
accuracy was slightly lower at 87%. MobileNet showed strong performance with 92% validation and
87% test accuracy. Both models used the Adam optimizer, but VGG16 outperformed MobileNet in
accuracy. MobileNet used a batch size of 64, while VGG16 was trained using 2 batch size.
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Table 3: Comparing the performance of applied classifiers

Classifier Validation accuracy Test accuracy Precision Recall F1 score

VGG16 0.97 0.88 0.87 0.88 0.88
VGG16 5 folds 0.99 0.87 0.88 0.90 0.85
VGG16 16 batch size 0.93 0.86 0.93 0.91 0.87
VGG16 32 batch size 0.98 0.87 0.84 0.93 0.88
VGG16 64 batch size 0.945 0.88 0.89 0.87 0.88
MobileNet 0.92 0.88 0.85 0.90 0.88
KNN 0.78 0.774 0.72 0.72 0.709
Random forest 0.78 0.711 0.712 0.711 0.71
Gradient boost 0.839 0.752 0.752 0.752 0.752
VGG19 0.855 0.778 0.778 0.778 0.778

6 Conclusion

This study employed various deep learning classifiers, including VGG16 and MobileNet, to
classify autism spectrum disorder (ASD) through facial images. Additionally, the machine learning
tool Orange was utilized for this purpose. The researchers tested VGG16 with 5-fold cross-validation
and different batch sizes. Among the classifiers applied, VGG16, with 5-fold cross-validation, demon-
strated the highest performance, achieving an impressive test accuracy of 87%. This result highlights
the effectiveness of the cross-validation technique in improving the robustness and generalizability
of the model. Furthermore, collecting locally gathered data from Pakistan was crucial in raising
awareness about autism within the local community. By introducing a deep learning-based approach to
autism detection, this study has the potential to significantly reduce the cost and enhance the efficiency
of autism diagnosis. Early detection of autism is vital for timely intervention and support, and using
facial images in combination with deep learning techniques offers a promising avenue for accurate
and accessible diagnosis. The findings of this research contribute to the field of autism detection,
providing valuable insights into the performance of different classifiers and the potential of machine
learning in ASD diagnosis. Integrating locally collected data underscores the importance of context-
specific research and highlights the significance of addressing specific regions’ unique challenges and
requirements.
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