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ABSTRACT

Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the
spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex
spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models,
they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter
difficulties related to accumulated noise and high time consumption during the extraction of temporal features
over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet) to address these
problems. It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal
with the great background diversity challenge. A straightforward, yet efficient approach for temporal feature
extraction is developed to avoid the accumulative noises and reduce time consumption. The distinction between
MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background
supervision, facilitating enhanced extraction of collaborative saliency cues. Another notable differentiation is
the innovative integration of spatial and temporal features, wherein the temporal module is integrated into the
multi-stream structure, enabling comprehensive spatial-temporal interactions within an end-to-end framework.
Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on
five benchmark datasets while maintaining a real-time speed of 27 fps (Titan XP). Our code and models are available
at https://github.com/RuJiaLe/MSTENet.
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1 Introduction

The human vision system always pays more attention to objects that are more prominent, distinc-
tive, or in motion. Video Salient Object Detection (VSOD) aims at identifying visually distinctive
regions in a video and has been a hot topic in the field of computer vision research due to its
applicability to downstream video tasks, such as video object segmentation [1], visual tracking [2,3],
video compression [4], and video popularity prediction [5]. High-speed VSOD exhibits a broad range
of applications, especially in the domains of autonomous vehicles [6] and traffic management [7].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.045258
https://www.techscience.com/doi/10.32604/cmc.2023.045258
mailto:xudan_zj@163.com
https://github.com/RuJiaLe/MSTENet


86 CMC, 2024, vol.78, no.1

There has been considerable development in still image-based salient object detection in the
last few decades [8–11]. Salient object detection in videos is considered to be more challenging as
compared to its image counterpart, as it is not only influenced by the complex spatial scenes but also
affected by the temporal dynamics. To address this issue, several temporal modeling strategies have
been proposed to guide the salient object detection for individual frames, including 3D convolution-
based methods [12,13], ConvLSTM-based methods [14,15], and optical flow-based methods [16,17].
For a better understanding, Fig. 1 demonstrates currently the most representative temporal models
and architectures used in VSOD approaches.

Figure 1: Temporal model and architecture comparison of the proposed model and other SOTA
methods. (a) 3D convolution, (b) ConvLSTM, (c) optical flow, and (d) the proposed model

Although the existing video salient object detection methods achieve great improvement in
spatiotemporal feature extraction and salient object detection, they suffer from two main problems.
The first problem is the existing methods pay more attention to foreground feature extraction in the
spatial domain, which cannot deal with the great diverse background scenes. The second problem
is accumulative noise and expensive computation costs introduced by the temporal model of the
methods. For instance, optical flow-based models suffer from expensive computation costs and a
heavy dependence on the quality of optical flow maps. ConvLSTM-based methods take long-term
temporal information into account, which may introduce accumulative noise from previous frames to
the current frame and result in inaccurate salient regions.

In this paper, we introduce a novel approach, namely the Multi-Stream Temporally Enhanced
Network (MSTENet), for video salient object detection. Our proposed multi-stream architecture
is designed to facilitate the extraction of foreground, background, and foreground-background
collaboration saliency cues in the spatial domain. This approach helps overcome the challenge of
diverse background scenes and achieving precise salient regions. The temporally enhanced module
aims at extracting motion information by enhancing distinct regions in the current frame in contrast to
those in adjacent frames. The accumulative noise is avoided in our model as we consider the difference
between adjacent frames instead of propagating the spatiotemporal information of previous frames
into the current frame. In addition, as shown in Fig. 1, we develop an end-to-end framework that
incorporates the temporally enhanced module into the multi-stream structure, enabling full spatial-
temporal interactions.
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Concretely, the main contributions of this work are listed as follows:

(1) We present a multi-stream fusion structure that encompasses foreground supervision, back-
ground supervision, and foreground-background fusion stream. The proposed structure effec-
tively extracts collaborative saliency cues in the spatial domain and helps locate accurate salient
regions.

(2) A simple and efficient difference enhancement module (DEM) is designed to acquire motion
information between adjacent frames. The lightweight temporal enhancement module has the
potential to avoid accumulative noise and high computation costs.

(3) Extensive experiments on five widely utilized datasets demonstrate that our method outper-
forms 18 state-of-the-art (SOTA) VSOD approaches in terms of three evaluation metrics.
Furthermore, our method ensures a real-time speed of 27 fps on a single GPU.

The rest of the paper is arranged as follows: In Section 2, we briefly introduce the related work,
including the progress of image salient object detection and video salient object detection. In Section 3,
we describe our method in detail. In Section 4, we explain the experimental setting and comparison
with existing SOTA VSOD methods. Conclusions are drawn in Section 5.

2 Related Work
2.1 Salient Object Detection

At the early stage of the saliency detection study, heuristic SOD approaches, which employ low-
level saliency priors and handcrafted features, were developed to highlight the attentive object regions
[18–20]. When entering the deep learning era, substantial improvement for SOD has been achieved,
benefiting mostly from numerous labeled data and powerful learning methods. The convolutional neu-
ral network (CNN) [21,22] and fully convolutional networks (FCNs) [23,24] have been widely applied
for SOD since its first introduction in 2015. Then, several works [25,26] demonstrate that shallow layers
are more important in capturing detailed salient features; therefore, multi-level aggregation methods
are proposed to improve the saliency detection performance. For example, Hou et al. [8] used a short
connection to combine deeper layers and shallower layers to generate satisfactory saliency maps. CNN-
based encoder-decoder models have profoundly inspired recent works in SOD [9]. Ren et al. [10]
introduced a deep encoder-decoder network that captures discriminative saliency cues and generates
confidence scores. In this paper, we adopt the encoder-decoder architecture and incorporate short
connections due to their notable success in the task of SOD. Nevertheless, the SOTA works only
focus on saliency cues in the foreground objects and pay little attention to the features included in
the background regions. This leads to poor detection performance in complex background scenes. To
this end, we propose a multi-stream framework, including foreground stream, background stream,
and fusion stream. By leveraging foreground and background supervision, our proposed framework
aims to extract salient regions more accurately and effectively.

2.2 Video Salient Object Detection

To extract the spatiotemporal features entangled in the video, the current VSOD models are
devoted to building parallel networks, in which one network captures the static saliency over the spatial
domain and the other network extracts the motion saliency over the temporal scale. Xu et al. [27]
proposed a dual-stream spatiotemporal attention network that consists of two paths: the context
feature path for modeling the long-range temporal features over frames, and a content feature path
to effectively model the local spatial content information. Bak et al. [28] proposed a two-stream
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network to investigate different fusion mechanisms for spatial and temporal information for saliency
estimation. The static saliency detection methods that are conducted in the spatial domain have
been fully discussed in Section 2.1. Now we pay more attention to motion modeling strategies in the
temporal domain.

Early studies on VSOD relied on 3D convolution to capture the interframe temporal information.
Tran et al. [29] adopted a 3D convolutional deep network with a convolution kernel to simultaneously
model appearance and motion information. Le et al. [12] proposed a network that uses 3D filters
in the spatiotemporal domain to directly learn both spatial information and temporal information
to extract 3D deep features and then transfer the 3D deep features to pixel-level saliency prediction.
To explore motion information from a longer period, ConvLSTM is used for temporal information
capture. Fan et al. [14] proposed a baseline model equipped with a saliency-shift-aware ConvLSTM
and a densely annotated VSOD dataset. Song et al. [15] proposed a fast VSOD model with a pyramid
dilated convolution module and a deeper bidirectional ConvLSTM module for video salient object
detection. In addition, to explicitly model motion cues, optical flow-based methods were proposed.
Li et al. [16] developed a network for VSOD with an appearance branch for salient object detection
in still images and a motion branch for motion saliency detection in optical flow images. Li et al. [30]
designed an optical flow-guided current encoder for estimating the motion of each frame to enhance
temporal coherence. To develop deeper insight into the dynamic nature of video data, Zhang et al. [31]
proposed a dynamic context-sensitive filtering module and bidirectional dynamic fusion strategy for
video salient object detection.

Despite the remarkable improvements, the aforementioned temporal modeling strategies are
hampered by the issues of accumulating noise and high computational costs. In this study, we present
an innovative lightweight temporal model along with a spatial-temporal interaction framework to
effectively address these concerns.

3 The Proposed Method
3.1 Architecture Overview

The overall network structure of the proposed method is shown in Fig. 2. The MSTENet takes
a video clip consisting of four consecutive frames It (t = 1, 2, 3, 4) as input, generating saliency pre-
diction St (t = 1, 2, 3, 4). The network mainly contains three streams from top to bottom: background
stream, fusion stream, and foreground stream. The background and foreground streams are supervised
by the background mask and ground truth, respectively. A novel foreground-background fusion
module (FBFM) is developed to gradually fuse the background and foreground saliency cues. The
saliency prediction map generated by the fusion stream is considered the final saliency map of the
MSTENet. To fully utilize the temporal information between consecutive frames, we design a DEM to
capture temporal features by enhancing different regions between adjacent frames. The DEM module
is embedded into three spatial streams in the decoder stage, enabling the losses from the decoder
(temporal) to be propagated to the encoder (spatial) during backward propagation and facilitating the
integration of temporal and spatial features. Instead of adding the temporal module after each block,
we only put the DEM in the last two decoder blocks as they contain rich, detailed spatial structure
information.
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Figure 2: Overall architecture of our proposed method. The upper part of the figure shows the
framework of the MSTENet, and the lower part of the figure further explains the components.
The MSTENet contains three streams from top to bottom: Background stream, fusion stream and
foreground stream. The foreground and background streams are supervised by the ground truth
and background mask, respectively. Both foreground and background saliency cues are gradually
integrated into the fusion stream which is supervised using the ground truth. The DEM module is
embedded into three spatial streams in the decoder stage, facilitating the integration of temporal and
spatial features. The MSTENet takes a video clip consisting of four consecutive frames It (t = 1, 2, 3,
4) as input. The saliency maps St (t = 1, 2, 3, 4), generated by the fusion stream, are regarded as the
final output of the MSTENet

3.2 Multi-Stream Fusion Structure

3.2.1 Foreground and Background Streams

Both the background and foreground streams follow the encoder-decoder structure. The Shunted-
Transformer-s [32] network is adopted as a backbone of the encoder to acquire a more powerful feature
capture ability. The encoder consists of four stages, each generating a distinct feature map denoted as
fm (m = 1, 2, 3, 4), characterized by different spatial resolutions and channel numbers. After feature
extraction, the decoder is arranged into four stages. To make full use of the spatial saliency cues
provided by the encoder, each decoder layer is connected to its corresponding encoder layer with a
skip connection [11]. Furthermore, a channel-spatial attention module [33] is added to both the FBFM
module and skip connection stage to pay more attention to discriminative channels (channel attention)
and locations (spatial attention) of feature maps. For the foreground stream, the loss is calculated by
comparing the ground truth with the predicted saliency map. Conversely, for the background stream,
the loss is computed by comparing the background mask with the predicted background map.

3.2.2 Foreground-Background Fusion Module

Instead of employing a heuristic fusion approach, we propose a fusion stream to leverage the
complementary saliency cues derived from both the background and foreground streams. The fusion
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stream adopts an encoder-decoder structure, wherein the background and foreground saliency cues
are progressively integrated with a novel FBFM module. The resulting saliency map obtained from
the fusion stream represents the final output of the MSTENet model.

The detailed structure of the FBFM is shown in Fig. 3. The FBFM module takes f B
m , f F

m and fm−1 as
input, which denotes the m-th level background feature, foreground feature, and (m−1)-th level fusion
information, respectively. Then, we add them to obtain the immediate fusion information f ′

m through
a conv of 3 × 3 and a batchnormal layer:

f
′

m = Bconv3

(
f B

m + f F
m + fm−1

)
(1)

where Bconv3 (·) is a sequential operation that consists of 3 × 3 convolution and batch normalization.

Figure 3: The detailed structure of the FBFM. ‘SF’ denotes the softmax function

The background feature f B
m is added with f ′

m, followed by a CB (conv and batchnormal) layer and
a softmax function to acquire a fusion weight of f B

m . The element-wise multiplication operation is
selected to enhance the specific feature in f B

m . Inspired by [34], to preserve the original information,
a short connection is adopted to combine the weighted feature with the original f B

m . The foreground
feature f F

m and last layer fusion feature fm−1 follow the same fusion process, which is expressed as:

f B′
m = f B

m + f B
m ⊗ Softmax

(
Bconv3

(
f B

m + f
′

m

))
(2)

f ′′
m = fm−1 + fm−1 ⊗ Softmax

(
Bconv3

(
fm−1 + f

′
m

))
(3)

f F ′
m = f F

m + f F
m ⊗ Softmax

(
Bconv3

(
f F

m + f
′

m

))
(4)

where ⊗ denotes element-wise multiplication, f B′
m , f F ′

m and f ′′
m represent enhanced background, fore-

ground, and fusion features in the m-th level, respectively. We add f B′
m , f F ′

m and f ′′
m , then feed them to a

CBR (conv, batchnormal, and ReLU) layer to obtain the final fusion feature fm.

fm = RBconv3

(
f B′

m + f F ′
m + f ′′

m

)
(5)

where RBconv3 (·) is a sequential operation that combines a 3 × 3 convolution followed by batch
normalization and a ReLU function.
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Notably, our FBFM module hierarchically fuses background and foreground saliency cues, which
provides rich complementary information to promote saliency detection performance.

3.3 Difference Enhancement Module

In general, adjacent frames within a video exhibit typically subtle disparity. In this study, we
introduce a Differential Enhancement Module (DEM) aiming to amplify the nuanced variances
observed among consecutive frames. The DEM serves the purpose of extracting and highlighting
temporal features from the enhanced differences. Note that we only add the DEM to the last two
decoder blocks as abundant fine information is contained in these stages.

The details of the DEM are presented in Fig. 4. A bidirectional differential structure is adopted
to further enhance the interframe differences. During forward and backward propagation, the current
frame is compared with its last frame and next frame, respectively. In this way, we can more effectively
capture temporal information than a single-directional structure. The input of the DEM is a feature
map sequence F = ft, t = 1, 2, 3, 4, which is generated by the decode module. A difference enhancement
operation DE (·) is used to obtain the difference matrix between adjacent frames and to enhance the
distinctive regions of the current frame compared with the last frame, followed by a short connection
and a CBR layer. We denote the output of forward propagation as Ffw = (

f fw
t , t = 1, 2, 3, 4

)
.

Backward propagation is calculated with similar operations, and the corresponding output is Fbw =(
f bw

t , t = 1, 2, 3, 4
)
. The bidirectional propagation of the DEM is formulated as:

f fw
t = RBconv3 (DE (ft, ft−1) ⊕ ft) (6)

f bw
t = RBconv3

(
DE

(
f fw

t , f fw
t+1

) ⊕ f fw
t

)
(7)

DE
(
fi, fj

) = fi ⊗
(
1 ⊕ Softmax

(
Abs

(
fi − fj

))) ⊕ fi (8)

where RBconv3 (·) is a sequential operation that combines a 3 × 3 convolution followed by batch
normalization and a ReLU function. ⊗, ⊕ and Abs denote element-wise multiplication, addition, and
absolute value, respectively.

Figure 4: Detailed structure of the proposed difference enhancement module (DEM)
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Note that for t = 1 in forward propagation and t = 4 in backward propagation, DE (f1, f1) and
DE

(
f fw

4 , f fw
4

)
are computed as there are no extra frames for the interframe differential.

The calculation flow DE (·) is shown at the bottom of Fig. 4. Abs
(
fi − fj

)
is used to generate

a difference matrix between frames fi and fj. The operation 1 ⊕ Softmax (·) maps the value of the
difference matrix to the range [1,2], which is applied as the weight of enhancing distinctive regions in
the frame fi.

3.4 Loss Function

We use the hybrid loss proposed by BASNet [11] as our final loss function L:

L = lbce + lssim + liou (9)

where lbce, lssim, liou denote BCE loss, SSIM loss and IoU loss, respectively.

BCE loss is a widely employed loss in binary classification and salient object detection. BCE loss
is defined as follows:

lbce = −
∑

(r,c)
[G (r, c) log (S (r, c)) + (1 − G (r, c)) log (1 − S (r, c))] (10)

where G (r, c) ∈ 0, 1 is the ground truth label of the pixel (r, c) and S (r, c) is the predicted saliency
value.

SSIM captures the structural information of an image; it was originally proposed for measuring
the similarity of two images. Let x and y be the pixel values of two patches cropped from the saliency
map S and the corresponding ground truth mask G. The SSIM of x and y is expressed as:

lssim = 1 −
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) (11)

where μx, μy and σx, σy are the mean and standard deviation, respectively, of x and y. σxy is their
covariance; and C1 = 0.012 and C2 = 0.032 are used to avoid dividing by zero.

In object detection, IoU is applied to evaluate the coincidence degree between the predicted
bounding box and the ground truth box. Now, IoU has been applied as a training loss with the
following definition:

liou = 1 −
∑H

r=1

∑W

c=1S (r, c) G (r, c)
∑H

r=1

∑W

c=1 [S (r, c) + G (r, c) − S (r, c) G (r, c)]
(12)

where H and W are the height and width of the image. G (r, c) and S (r, c) have the same meanings as
those in Eq. (10).

4 Experiments
4.1 Datasets

There are five mainstream VSOD datasets, which are divided into two types: 1) key-frame
annotation datasets, such as ViSal [35] and VOS [36], and 2) dense (per-frame) annotation datasets,
including SegV2 [37], DAVIS [38] and DAVSOD [14]. ViSal is the first dataset intended for video
salient object detection. It contains 17 video sequences and 193 labeling frames; on average, every 5
images have a label. VOS consists of 200 video sequences; on average, every 15 frames have a label,
and there are 7467 labeling frames in total. The limitation of this dataset is its low diversity and
generality. Only simple indoor, stable camera scenarios are contained in the VOS dataset. SegV2 is
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a dataset originally provided for video segmentation that consists of 13 video sequences and 1065
densely annotated frames. DAVIS consists of 50 video sequences and 3455 densely labeled frames. The
dataset is very challenging as occlusion, motion blur, and appearance change scenarios are included.
DAVSOD is the up-to-date and largest dataset provided for video salient object detection; it consists of
226 video sequences and 23938 per-frame labeling frames. The main difference between DAVSOD and
other datasets is that DAVSOD emphasizes the shift of salient objects in dynamic scenes. In addition,
instance-level object annotation and real human eye fixation annotation are provided in DAVSOD for
further study of video saliency detection. Table 1 provides a comprehensive description of the datasets.

Table 1: A comprehensive description of the datasets

Datasets Video
sequences

Labeling
frames

Size Training Test Validation Annotation

ViSal 17 193 320 ∗ 240 0 17 0 Key-frame
VOS 200 7467 800 ∗ 448 160 40 0 Key-frame
DAVIS 50 3455 854 ∗ 480 30 20 0 Per-frame
SegV2 13 1065 640 ∗ 360 0 13 0 Per-frame
DAVSOD 226 23938 640 ∗ 360 61 80 85 Per-frame

4.2 Implementation and Experimental Setup

First, we initialize our backbone with a Shunted-Transformer-s [32] pre-trained on ImageNet.
Then, we pre-train the whole MSTENet on the image salient object detection dataset DUTS-TR [39]
and fine-tune the pre-trained model on the training set of DAVIS and DAVSOD.

We resize all the frames to the same spatial size of 320 × 320 before feeding them to the network.
The number of input frames each time is set to 4 due to the limitation of GPU memory. The training
frames are augmented using various strategies, including random flipping, cropping, rotation, and
color enhancement, to avoid overfitting. The optimization algorithm is AdamW, and the learning rate
is set to 1e-4 and 1e-5 for pretraining and fine-tuning, respectively. Cosine decay is chosen as the
learning rate schedule. 20 epochs are separately carried out for both the pretraining stage and fine-
tuning stage. The batchsize is set to one. We implement our network based on the publicly available
PyTorch 0.4.0 framework. The proposed method is evaluated on the test sets of DAVIS, SegV2, ViSal,
VOS, and DAVSOD benchmarks. Both training and testing are implemented on a PC with an NVIDIA
GeForce GTX Titan XP GPU.

4.3 Evaluation Metrics

Three indicators are employed to evaluate our method: mean absolute error (MAE), F-measure,
and structural measurement (S-measure).

The MAE measures the difference between the resulting saliency map and the ground truth pixel
by pixel with the following definition:

MAE = 1
N

∑N

i=1
|fi − yi| (13)

where fi denotes the resulting saliency map value and yi denotes the ground truth value. N represents
the total number of pixels within the image.
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The F-measure is a weighted harmonic mean of precision and recall and is defined as:

Fβ =
(
1 + β2

) × Precision × Recall

β2 × Precision + Recall
(14)

We use the max F-measure over all thresholds from 0 to 255 and β2 = 0.3.

The S-measure is used to evaluate the structural similarity between the predicted saliency map and
the ground truth mask and is defined as follows:

Sλ = α × So + (1 − α) × Sr (15)

where α ∈ [0, 1] and is usually set to 0.5. So is the object-aware structural similarity measure, and Sr

is the region-aware structural similarity measure.

4.4 Comparisons with State-of-the-Arts

We compare our method with 18 state-of-the-art deep learning-based video salient object detec-
tion methods: SCANet [40], DSNet [41], DCFNet [31], STVS [42], MQP [43], STANet [44], PCSA
[45], TENet [17], LSDGCN [46], MGA [16], SSAV [14], PoolNet [47], CPD [48], DSSANet [27],
RCRNet [49], PDB [15], MBNM [50], and SCOM [51]. Among these methods, DCFNet is based on
dynamic filtering; SCANet and STVS are based on 3D convolution; STANet, SSAV, RCRNet, and
PDB are ConvLSTM-based methods; DSNet, MQP, LSDGCN, MGA, SCNN, MBNM, and SCOM
are optical flow-based methods; and TENet is ConvLSTM- and optical flow-based method.

4.4.1 Quantitative Evaluation

Table 2 shows the quantitative comparisons in terms of three metrics, including Sλ, Fβ , MAE, on
five widely utilized VSOD datasets. Our method achieves the performance of SOTA VSOD methods
and ranks first with the DAVIS, SegV2, and ViSal datasets and second with the DAVSOD dataset.
In particular, our method improves the Sλ, Fβ by 5.5% and 10.3% with the SegV2 dataset and 3.2%
and 5.7% with the DAVSOD dataset compared with [31]. The results on VOS are not as good as those
on other datasets as our DEM only considers short temporal information. In the VOS dataset, every
15 frames have a label, which generates a long-term span between adjacent labeling frames. More
quantitative comparisons are demonstrated in Figs. 5–7.

Table 2: Quantitative comparisons of three evaluation metrics on five widely utilized VSOD datasets.
All the chosen methods are deep learning-based methods. “↑” & “↓” indicate that larger or smaller is
better. The top three results are marked in boldface, red and green fonts

DAVIS SegV2 ViSal VOS DAVSOD

Years Method Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓

18–
19

SCOM 0.832 0.783 0.048 0.815 0.764 0.030 0.762 0.831 0.122 0.712 0.690 0.162 0.599 0.464 0.220
MBNM 0.887 0.861 0.031 0.809 0.716 0.026 0.898 0.883 0.020 0.742 0.670 0.099 0.637 0.520 0.159
PDB 0.882 0.855 0.028 0.864 0.800 0.024 0.907 0.888 0.032 0.818 0.742 0.078 0.698 0.572 0.116
RCRNet 0.886 0.848 0.027 0.842 0.781 0.035 0.922 0.906 0.026 0.873 0.833 0.051 0.741 0.653 0.087
CPD 0.863 0.826 0.030 0.851 0.839 0.018 0.944 0.944 0.013 0.800 0.731 0.065 0.697 0.595 0.086
PoolNet 0.854 0.815 0.038 0.782 0.704 0.025 0.902 0.891 0.025 0.773 0.709 0.082 0.702 0.592 0.089
SSAV 0.893 0.861 0.028 0.851 0.801 0.023 0.943 0.939 0.020 0.819 0.742 0.073 0.724 0.603 0.092
MGA 0.912 0.892 0.022 0.864 0.821 0.030 0.941 0.940 0.016 0.792 0.767 0.063 0.751 0.656 0.081

(Continued)
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Table 2 (continued)

DAVIS SegV2 ViSal VOS DAVSOD

Years Method Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓

20–
22

LSDGCN 0.897 0.891 0.021 0.880 0.866 0.018 0.950 0.952 0.012 0.850 0.792 0.050 0.768 0.689 0.075
TENet 0.905 0.881 0.017 0.868 0.810 0.025 0.949 0.949 0.012 0.845 0.781 0.052 0.779 0.697 0.070
PCSA 0.902 0.880 0.022 0.865 0.810 0.025 0.946 0.940 0.017 0.827 0.747 0.065 0.741 0.655 0.086
STANet 0.892 0.883 0.025 0.872 0.769 0.031 0.910 0.893 0.021 0.804 0.701 0.062 0.706 0.549 0.107
MQP 0.916 0.904 0.018 0.882 0.841 0.018 0.942 0.939 0.016 0.828 0.768 0.069 0.770 0.703 0.075
STVS 0.892 0.862 0.023 0.891 0.860 0.017 0.952 0.952 0.013 0.850 0.791 0.058 0.746 0.651 0.086
DCFNet 0.914 0.900 0.016 0.883 0.839 0.015 0.952 0.953 0.010 0.846 0.791 0.060 0.741 0.660 0.074
DSNet 0.914 0.891 0.018 0.875 0.832 0.028 0.949 0.950 0.013 0.855 0.801 0.060 0.729 0.627 0.077
SCANet 0.902 0.881 0.021 0.906 0.890 0.026 0.954 0.955 0.011 0.872 0.828 0.048 0.801 0.731 0.064
Ours 0.924 0.914 0.012 0.932 0.926 0.010 0.953 0.961 0.009 0.863 0.825 0.049 0.765 0.698 0.063

Figure 5: Precision-recall curve comparison of the MSTENet and other SOTA VSOD methods on five
widely used datasets

Fig. 5 shows the precision-recall curves of MSTENet and other SOTA methods on five widely
used datasets. The results indicate that MSTENet outperforms those methods in precision scores
and recall scores in DAVIS, SegV2, and Visal datasets. Our method exhibits suboptimal performance
on the VOS dataset compared to RCRNet and SCANet. This discrepancy can be attributed to the
relatively inferior performance of our DEM module in handling long-term temporal information
when contrasted with the ConvGRU module utilized in RCRNet and the 3D convolutional module
employed in SCANet. Fig. 6 shows the F-measure curves of MSTENet and other SOTA methods on
five widely used datasets. F-measure is a weighted harmonic mean of precision and recall, therefore,
the performance conveyed through the F-measure is consistent with that depicted in Fig. 5. The S-
measure-MAE scatter plots depicted in Fig. 7 measure the degree of similarity between the predicted
saliency maps and the ground truth. In the S-measure-MAE scatter plot, the x-axis corresponds to
the MAE while the y-axis corresponds to the S-measure. It is worth noting that superior algorithm
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performance is indicated by the proximity of data points to the upper right corner of the plot. Fig. 7
demonstrates that the MSTENet achieves superior performance compared to other SOTA methods
on four out of five datasets.

Figure 6: F-measure curve comparison of the MSTENet and other SOTA VSOD methods on five
widely used datasets

Figure 7: The S-measure-MAE scatter plots of the MSTENet and other SOTA VSOD methods on five
widely used datasets. In each subfigure, the x-axis shows MAE and the y-axis represents the S-measure.
The closer to the upper right corner, the better the algorithm performance
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4.4.2 Qualitative Evaluation

To further illustrate the superior performance of our method, Fig. 8 shows several representative
samples of our model and eleven other SOTA methods on the DAVIS dataset. Our method can
accurately detect salient objects in various challenging scenarios, including images with some small
but elaborate objects (1st and 2nd rows), large objects (3rd and 4th rows), a cluttered background
(5th and 6th rows), low contrast and a complex foreground (7th and 8th rows). In addition, the visual
results demonstrate that our method achieves clearer salient object boundaries and more accurate local
salient regions with rich details.

Figure 8: Qualitative comparisons of MSTENet with eleven existing state-of-the-art VSOD methods

4.4.3 Time Consumption Evaluation

We use the FLOPs (floating-point operations) to measure the computational complexity of the
model. The FLOPs required for a convolution operation depend on multiple factors, such as the size
of the convolution kernel, the dimensions of the input and output feature maps, and the number of
channels involved in the feature maps. This can be expressed as follows:

FLOPs = H × W × (Cin × Kw × Kh + 1) × Cout (16)

where H, W, and Cin are the height, width, and number of channels of the input feature map,
respectively. Kh and Kw are the kernel height and width, and Cout is the output channels. As presented in
Table 3, the proposed method achieves minimal FLOPs and faster running speed compared with some
optical flow-based methods and ConvLSTM-based methods. The complex structure of ConvLSTM
and the need for the computation of optical flow maps result in high time consumption of ConvLSTM-
based and optical flow-based methods.
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Table 3: Time-cost comparison with other methods

Methods Input size Speed (FPS) FLOPs (G) Based Platform

PDB 473 ∗ 473 20 282.6 ConvLSTM 1080Ti
RCRNet 448 ∗ 448 27 442.4 ConvGRU 1080Ti
SSAV 473 ∗ 473 20 279.7 ConvLSTM Titan Xp
MGA 512 ∗ 512 14 494.3 Optical flow 1080Ti
LSDGCN 256 ∗ 256 8 706.7 Optical flow 2080Ti
TENet 256 ∗ 256 17 332.6 – 1080Ti
STANet 473 ∗ 473 17 403.3 ConvLSTM Tesla_V100
MQP 352 ∗ 352 20 237.5 Optical flow Titan Xp
DCFNet 448 ∗ 448 16 373.2 Dynamic filtering Titan Xp
Ours 320 ∗ 320 27 209.4 – Titan Xp

Fig. 9 depicts the relationship between running speed (frames per second, FPS) and accuracy
evaluation metrics. We define Acc = s-measure + F-measure + (1-MAE), representing a comprehen-
sive performance evaluation index that captures multiple aspects of algorithm performance. Closer to
the upper right corner indicates both higher FPS and evaluation metrics. It visually demonstrates that
our model achieves an optimal balance between time and accuracy.

Figure 9: Relationship between FPS and evaluation metrics, where Acc = S-measure + F-
measure + (1−MAE). Closer to the upper right corner indicates both higher FPS and evaluation
metrics

4.5 Ablation Studies

In this section, we conduct extensive experiments to illustrate the effectiveness of each component
of our method. The ablation study contains two parts: background stream ablation and DEM ablation.

4.5.1 Background Stream Ablation

To prove the effectiveness of the proposed foreground-background fusion strategy, we remove
background supervision from the MSTENet. The visual samples in Fig. 10 and quantitative metrics
in Table 4 show that the proposed foreground-background fusion strategy takes advantage of the
complementary relationship between foreground saliency cues and background saliency cues, and
outperforms the foreground supervised method by a large margin on all five experiment datasets.
As depicted in Fig. 10, our method tends to generate saliency maps with both lower false positives
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(2nd and 3rd columns) and false negatives (1st and 4th columns) compared to the foreground-based
method.

Figure 10: Effectiveness of background supervision. From top to bottom: video frames, GT,
and saliency maps generated by methods with background supervision and without background
supervision

Table 4: The quantitative analysis of ablation studies. “Base” denotes the model without background
stream (BS) and DEM, and “+” denotes adding the module to the base model

DAVIS SegV2 ViSal VOS DAVSOD

Method Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓
Base 0.898 0.883 0.018 0.928 0.922 0.011 0.950 0.957 0.010 0.822 0.805 0.063 0.751 0.671 0.068
+BS 0.909 0.892 0.016 0.929 0.924 0.009 0.951 0.958 0.010 0.845 0.806 0.051 0.755 0.696 0.065
+BS+DEM 0.924 0.914 0.012 0.932 0.926 0.010 0.953 0.961 0.009 0.863 0.825 0.049 0.765 0.698 0.063

4.5.2 DEM Ablation

To demonstrate the effectiveness of the proposed difference enhancement module, we conducted
the ablation experiment by removing the module. It can be considered a degeneration from video to
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still image saliency detection. Fig. 11 shows that noises and blurry boundaries will be introduced to
changing regions in the resulting saliency map due to a lack of temporal information. Table 4 shows the
quantitative comparison, which illustrates that the metrics with datasets DAVIS, VOS, and DAVSOD
suffer from significant falls when removing the DEM from the proposed method.

Figure 11: Effectiveness of DEM. From top to bottom: video frames, GT, and saliency maps generated
by methods with and without the DEM module

4.6 Limitations and Future Directions

The frames presented in Fig. 12 are extracted from the VOS dataset at an interval of 15 frames,
specifically identified by the frame numbers 00614, 00629, and 00644. In contrast to the ground truth,
which exactly depicts the dancing woman in motion, our method inadvertently identifies both the
woman and the static chair as salient objects. Because our method takes 4 consecutive video frames as
its input each time and only differences between adjacent frames are computed, its sensing scope over
the temporal scale is quite limited and fails to eliminate the objects undergoing a long static period. In
the future, we plan to improve the performance of VSOD methods from two aspects. First, we aim to
explore lightweight modules for extracting long-term temporal information, to alleviate the trade-off
between accuracy and computational complexity. Second, we intend to design novel spatial-temporal
interaction strategies, enabling the collective improvement of both temporal and spatial features.



CMC, 2024, vol.78, no.1 101

Figure 12: Some failure samples of the proposed method. From left to right: Video frames, GT, and
saliency maps generated by the proposed method

5 Conclusion

In this paper, we work on the challenge of accurate video saliency detection in real-time. The major
highlights of our approach can be summarized as follows:

First, we propose a multi-stream structure consisting of background, foreground, and fused
saliency cues, wherein the background and foreground saliency cues are progressively integrated with
a novel FBFM module. The structure ensures precise salient detection in the spatial domain. Second, a
simple and effective difference enhancement module is proposed to capture motion information in the
temporal domain. Our lightweight temporal module can be treated as a plug-in to be inserted into the
decoder stage, enabling the original spatial decoder to sense temporal information. Last, we conduct
extensive quantitative and qualitative evaluations to show the advantages of the proposed model
and verify the effectiveness of each of its main components with ablation analysis. The evaluation
metrics indicate that our model outperforms SOTA methods, ranking first in terms of performance
on the DAVIS, SegV2, and ViSal datasets, and second on the DAVSOD dataset. The comparison
of time consumption reveals that the proposed model achieves optimal computational performance,
exhibiting lower FLOPs.

The MSTENet can be transferred into other computer vision tasks. The multi-stream structure,
along with the incorporated fusion module FBFM, exhibits a high degree of generalizability for diverse
computer vision tasks that concern multi-stream fusion, including RGB-D saliency detection and
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video classification. The lightweight DEM module can seamlessly serve as a plug-in, enabling its inte-
gration into various video processing tasks, such as object tracking and video surveillance. In addition
to its extensive utilization in computer vision tasks, MSTENet finds significant application within
the domain of autonomous vehicles and traffic management, wherein the multi-stream structure of
MSTENet enhances the accuracy of detection results in complex scenarios, while the DEM module
guarantees the real-time requirements of the associated applications.
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