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ABSTRACT

The purpose of software defect prediction is to identify defect-prone code modules to assist software quality
assurance teams with the appropriate allocation of resources and labor. In previous software defect prediction
studies, transfer learning was effective in solving the problem of inconsistent project data distribution. However,
target projects often lack sufficient data, which affects the performance of the transfer learning model. In addition,
the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning
model. To address these problems, this article propose a software defect prediction method based on stable learning
(SDP-SL) that combines code visualization techniques and residual networks. This method first transforms code
files into code images using code visualization techniques and then constructs a defect prediction model based
on these code images. During the model training process, target project data are not required as prior knowledge.
Following the principles of stable learning, this paper dynamically adjusted the weights of source project samples
to eliminate dependencies between features, thereby capturing the “invariance mechanism” within the data. This
approach explores the genuine relationship between code defect features and labels, thereby enhancing defect
prediction performance. To evaluate the performance of SDP-SL, this article conducted comparative experiments
on 10 open-source projects in the PROMISE dataset. The experimental results demonstrated that in terms of
the F-measure, the proposed SDP-SL method outperformed other within-project defect prediction methods by
2.11%–44.03%. In cross-project defect prediction, the SDP-SL method provided an improvement of 5.89%–25.46%
in prediction performance compared to other cross-project defect prediction methods. Therefore, SDP-SL can
effectively enhance within- and cross-project defect predictions.
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1 Introduction

Embracing the swift advancements in science and technology, the software industry has emerged
as a pivotal force in various applications, evolving from its subsidiary role for computer hardware to
a diverse array of closed or open systems prevalent in contemporary times. Software defect prediction
techniques have become significant tools in detecting possible software defects rapidly and accurately,
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thereby reducing software development costs and promoting software quality. Within the sphere of
software defect prediction, researchers have classified historical training data into two categories:
within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) [1], based on
whether the defects originate from the same project.

In studies focused on defect prediction, researchers have utilized machine learning techniques to
extract a variety of features from software source code, aiming at higher accuracy of defect prediction
models [2–6]. Some scholars have sought to integrate program semantics into defect prediction features
by employing a deep belief network (DBN) [6]. This approach allows for the extraction of semantic
features from the abstract syntax tree (AST) of the source code. Besides, a convolutional neural
network (CNN) [7] has been deployed to autonomously capture both semantic and structural features
of the program. Transfer component analysis (TCA) [8] was employed to train data transfer while
preserving the data attributes, thereby ensuring the alignment of the source data distribution with
that of the target data. Furthermore, a long short-term memory (LSTM) [9] network was engineered
to parse the program’s structural information and code inter-relationships. However, a key aspect
prevalent in these studies is the need for third-party tools to transform the code into another form,
which might result in the loss of information related to code.

As a result, some certain scholars have chosen to forego the utilization of dedicated tools for
intermediate code representation generation. Instead, they have adopted a more direct approach
to enhance comprehensive feature extraction. Chen et al. [10] introduced a methodology involving
software visualization and a deep transfer learning approach for defect prediction (DTL-DP). DTL-
DP creates code images at a fundamental granularity level through visualization techniques, mitigating
the information loss attributed to manual feature determination or abstract syntax tree (AST)
transformations. Nonetheless, DTL-DP exhibits two limitations.

For one thing, DTL-DP utilizes the deep transfer approach to learn transferable features; however,
this still requires target project data as a priori knowledge, whereas in practice, the data for target
projects are often insufficient, and the method of solving for the differences in the distribution of the
sample data through transfer learning may result in negative transfer in some projects.

For another, the DTL-DP method ignores the impact of uncorrelated features on prediction
performance, as shown in Fig. 1. In the example code and saliency map of Fig. 1, the brightness of
the saliency map indicates the extent to which the model pays attention to specific regions of the input
image, that is, brighter regions play a more important role in prediction. As shown in the figure, the
presence of uncorrelated features and false correlations between uncorrelated features cause DTL-DP
to focus on the entire image, whereas the proposed model focuses mainly on the core where code defects
exist. In real software defect prediction tasks, the erroneous correlation between irrelevant features and
code defects is a major factor causing model performance degradation, which is hard to evade while
concentrating on the entire image, as in previous approaches such as DTL-DP.

To tackle these challenges, this study introduces a stable learning-based software defect prediction
(SDP-SL) model, aiming to enhance the performance of software defect prediction. In particular,
the initial stage of SDP-SL involves transforming code into images using software visualization
techniques. Subsequently, dependencies between features are eradicated through global sample
reweighting, emphasizing features more pertinent to code defects for classification purposes.
Ultimately, SDP-SL is employed to extract features associated with code defects for defect prediction.
Experimental findings demonstrate that the SDP-SL method outlined in this study yields superior
outcomes compared to existing methodologies.
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Figure 1: Saliency maps produced by the DTL-DP and SDP-SL models

The primary contributions of this study are outlined as follows:

1. We design the SDP-SL method, incorporating a sample reweighting technique to eradicate
dependencies between features, allowing the model to concentrate on features directly associ-
ated with code defects.

2. Experimental evaluations conducted on 10 open Java projects demonstrate the enhanced
performance of the proposed approach compared to WPDP and CPDP methodologies.

The subsequent sections of this paper are structured as follows: In Section 2, a literature review has
been conducted. Section 3 dissects the SDP-SL method, followed by the presentation of the SDP-SL
experimental setup in Section 4. The performance of SDP-SL is illustrated in Section 5, while potential
threats to its validity are deliberated in Section 6. Finally, Section 7 draws a conclusions and proposes
several potential avenues for future research.

2 Related Work

Stable learning (SL) was proposed to address high-risk fields, such as autonomous driving and
healthcare. The core idea of SL is to realize the statistical independence of each dimensional feature
through sample reweighting so that the association (correlation) between the reweighted outcome
variable and each dimensional feature becomes a real causal relationship [11]. SL methods consistently
display good performance when using non-smooth and agnostic test data to learn models. Many
machine learning methods that assume test and training data distributions to be consistent, have
performed effectively. However, in practice, this assumption is often difficult to fulfill because models
tend to exploit subtle statistical relationships between features when making predictions on test data,
which makes them prone to prediction errors.

Consequently, researchers have proposed various solutions. For example, Liu et al. [12] applied
density ratios to reweigh the training data to make the distribution closer to that of the test data.
However, estimating the density ratio requires a priori knowledge on the test data distribution.
Hu et al. [13] enhanced the ability of their model to generalize previously unseen domains by
extracting domain-invariant features from multiple source domains. As model prediction performance
is affected by the correlation between features, numerous studies were conducted to eliminate the
correlation between features during training. Takada et al. [14] achieved feature decorrelation by
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using a regularizer to select highly correlated features. However, these methods are limited to the
linear framework. Zhang et al. [15] innovatively proposed StableNet, which can process complex data
types, such as images or videos. Nevertheless, SL method have not yet found application in defect
prediction. In this investigation, we introduce an innovative stable learning-based mechanism that
addresses feature decorrelation in defect prediction through sample reweighting.

Software defect prediction (SDP) stands as a prominent area of study in the field of software
engineering. The majority of research efforts are directed toward extracting multifaceted features
from software source code. These features’ intrinsic interconnections are typically harnessed to train
machine learning-based classifiers, predicting the defectiveness of code files. Among these, static and
changing features have been widely confirmed by scholars. Static features include Halstead’s feature,
which assesses code complexity based on the number of operators and operands [16]; McCabe’s feature,
which measures the complexity of the control flow in code based on code dependencies [17]; and CK’s
feature, which assesses the complexity of object-oriented software based on object-oriented concepts
[18]. None of the above features can be separated from the term “code complexity,”which is determined
by a presupposition of applying the above features to construct software defect prediction models.
That is, the more complex the structure of the source program code, the greater is the likelihood of the
presence of defects. In many studies, changes in features have been proven to be effective in predicting
software quality, including the number of code modifications [19], historical commit information
[20], and code change records [21]. Nevertheless, the static and change features utilized in the studies
mentioned above are prone to subjective human interpretation and lack the inherent structural or
semantic information contained by the code.

Therefore, some scholars have proposed constructing defect prediction models using the structural
and semantic features contained in the code. Wang et al. [6] used a DBN to learn semantic features
from token vectors extracted using an AST. Li et al. [7] used a CNN to generate features from the AST
representation of the source code and attempted to combine it with some of the static features to further
improve the model accuracy. In addition, because the WPDP is limited in practice, it is usually difficult
for new projects to obtain sufficient training data; therefore, some scholars have turned to constructing
predictive models by deploying other projects, among which transfer learning has gained attention.
Nam et al. [22] proposed the TCA+ method to enhance the performance of defect prediction models
by mapping the source and target projects onto a potential feature space. Chen et al. [23] proposed
double transfer boosting (DTB) to eliminate some of the instances by using Bayesian-based transfer
enhancement.

Utilizing AST for code transition representation is flawed because the AST method is affected by
granularity and fails to completely represent the information of the code. Therefore, Chen et al. [10]
used code visualization technology [24] to convert code files into images, and then deep learning
technology was adopted to extract features from the images, promoting the model’s performance.
Table 1 summarizes and compares the existing methods.

Inspired by the techniques mentioned above, this paper proposes the use of stable learning
techniques based on code visualization, to eliminate the dependencies between features by training the
weights of source project samples and navigating the focus of the model to real connections between
code defect features and labels, thereby facilitating defect prediction performance.
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Table 1: Summary of existing methods

Method Advantage Disadvantage Publication
Halstead [16] Considers code complexity metrics using

fast computation
Not suitable for detecting real program
errors

1977

McCabe [17] Identifies complex parts in the code
conveniently

Unable to consider data flow and code
content

1976

CK [18] Considers multiple code quality metrics and
automatically adapts to different projects
and languages

Requires a significant amount of feature
engineering and data preparation

1994

Code modification
count [19]

Accessible historical perspective on code
changes

Fails to directly capture code quality or error
information

2008

Historical commit
information [20]

Captures information about team
collaboration and development processes

Not suitable for large-scale and complex
projects

2022

Code change
records [21]

Tracks specific details of code modifications Has difficulty in handling change history of
large-scale projects

2020

DBN [6] Capable of handling large-scale and complex
datasets

Potential issues lurk behind model
interpretability, making it difficult to
understand the decision-making process

2016

CNN [7] Captures both local and global patterns of
code, and is suitable for defect prediction
using image-based representation

Requires substantial training data and
computational resources, and may not be
sensitive to code semantics

2017

TCA+ [22] Combines multiple metrics and data sources,
and considers multi-level software defect
prediction

Requires careful feature and parameter
selection and tuning with limited
applicability

2013

DTB [23] Explicable models are accessible High computational cost for large datasets
and strong feature dependency

2015

DTL-DP [10] Reduces information loss caused by manual
feature engineering or AST conversion

Impact of feature dependencies on the
model is neglected

2020

3 Approach

The general framework of the SDP-SL methodology is delineated in Fig. 2, comprising three
stages: (1) generating code file visualization images, (2) constructing SDP-SL models, and (3) per-
forming defect prediction. Initially, code files for each project are transformed into images using code
visualization techniques. Subsequently, a defect prediction model is developed based on the RestNet18
network structure, incorporating a sample reweighting module to formulate the final SDP-SL model.
In the final step, the test data are inputted into the trained SDP-SL model for defect prediction.
Detailed explanations of each step follow in the subsequent sections.

3.1 Code File Visualization

In this step, we convert all code files of the source project into corresponding RGB images, as
shown in Fig. 3. First, the source code features in each code file are converted into corresponding
ASCII decimal values. For example, the symbol ‘+’ is converted to “43” and the letter “M” is converted
to “77”, following which, all features in the code file are combined into an integer vector, and all three
values in the vector are grouped together. In order to convert the integer vector into pixels with color
information, we specify these three values as the values of the color channels R, G, and B. For example,
the word “and”which is common in code, can be converted to (97, 110, 100), whereby a lime green pixel
is obtained by filling the RGB color channel with these three values in sequence; The word “static”
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can be converted to (115, 116, 97) and (116, 105, 99), to obtain two consecutive dark gray-green pixels
and sepia pixels. This process is then repeated.

R G B
R G B

Buggy Clean

Sample 
Reweight
Moudle

+
Buggy

Clean

Code Visualization Model Building Defect Prediction

Figure 2: Framework of SDP-SL

Decimal ASCII

Code File Convert Code Image

[105, 102, 32, 40, 108, 
105, 115, 116, 101, 110, 
101, 114, 77, 97, 110, 97, 
103, 101, 114, 32, 33, 61, 
32, 110, 117, 108, 108ę ]

Figure 3: Code file to code image

After the above operation, the pixel vector that is obtained has length one-third of the original
(because every group of three features represents one pixel). The size of an image is affected by its
width, and an image with an inappropriate width affects the predictive performance of subsequent
models. According to the literature [25], it is more appropriate to determine the image width based on
the size of the original code file. Therefore, the image width corresponding to files with a size of less
than 10 KB was set to 32; for files between 10–30 KB, it was set to 64; for files between 30–60 KB it
was set to 128; for files between 60–100 KB it was set to 256; for files between 100–200 KB, it was set
to 384; and for files larger than 200 KB the width was set to 512. The specific code file visualization
process is presented in Algorithm 1:

Algorithm 1: Code File Visualization
Input: filepath
Output: image
1: width = getwidth(filepath)
2: with open(filepath, ‘rb’) as f:
3: content = f.read()
4: hex = convert content to hexadecimal using binascii.hexlify()
5: for i from 0 to length(hex) - 1 with step 2 do
6: append integer value of hex[i:i + 2] in base 16 to fh
7: end for

(Continued)
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Algorithm 1 (continued)
8: end = length(fh) - length(fh) % 3
9: r = select elements in fh at index 0 to end (exclusive) with step 3
10: g = select elements in fh at index 1 to end (exclusive) with step 3
11: b = select elements in fh at index 2 to end (exclusive) with step 3
12: image = get_image(r, g, b, width)
13: return image

3.2 Modeling SDP-SL

The structure of SDP-SL is shown in Fig. 4. The code image pass through a series of convolutional
and pooling layers for feature extraction in a ResNet18 network and then through a global average
pooling layer for the final features. These features are then fed into the global sample reweighting
module (GSRM). Specifically, the first half of the GSRM performs sample weighting using random
Fourier features (RFF), and the second half learns global sample weights. The weights learned by the
GSRM module are combined with the predicted loss to obtain the final loss, to complete the training
of the model. Next, ResNet18 and GSRM in SDP-SL are described in detail.

Average Pooling Layer Final Loss

Sample 
Decorrelation

Global Sample 
Weights

Input Convolutional Layer MaxPooling Layer Residual Block*4

Fully Connected Layer

Global Sample Reweighting Module

Weights

Classifler

Labels

Prediction

Prediction Loss

Figure 4: Network structure of SDP-SL

1) ResNet18 in SDP-SL: ResNet18 is a deep convolutional neural network, and unlike the
traditional network structure, it introduces a residual structure to solve the degradation problem
caused by an excessive number of network layers, thereby avoiding information loss during feature
extraction. The structure of the ResNet18 used in this study was as follows:
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Input Layer: The input image size was 224 × 224 × 3, that is, 224 pixels in height, 224 pixels in
width, and three channels (RGB image).

Layer 1: The convolutional layer had three input channels and 64 output channels with convolu-
tional kernel size of 7 × 7, stride of 2, and padding of 3. Batch normalization and ReLU activation
were performed in a follow-up step.

Layer 2: This is a maximum pooling layer with a pooling kernel size of 3 × 3, a step size of 2, and
padding of 1. The function of this layer is to downsample the spatial dimension of the feature map
and reduce the size of the feature map to 1/4 of the original size.

Layer 3: Four basic convolutional blocks were used. Each basic convolutional block consisted
of two 3 × 3 convolutional layers and a skip connection. The number of input and output channels
was 64 each. The size of the convolutional kernel was 3 × 3 with a step size of 1 and a padding of 1.
Each convolutional layer was subjected to batch normalization and ReLU activation. In the first basic
convolutional block, input feature maps were added before the final ReLU activation function via skip
connections to preserve feature information. In the other basic convolutional blocks, the number of
input and output channels was kept constant.

Layer 4: Four basic convolutional blocks were used. Each basic convolutional block had 64 input
channels and 128 output channels. The other configurations were the same as those of the third layer.

Layer 5: Four basic convolutional blocks were used. Each basic convolutional block had 128 input
channels and 256 output channels. The other configurations were the same as those of the third layer.

Layer 6: Four basic convolutional blocks were used. Each basic convolutional block had 256 input
channels and 512 output channels. The other configurations were the same as those of the third layer.

Global average pooling layer: This layer was used to reduce the spatial dimension of the feature
map to 1 × 1 while preserving the channel dimension, with a final output of 1 × 1 × 512.

2) Global sample reweighting module in SDP-SL: This study introduced GSRM, which signifi-
cantly reduces storage usage and computational cost by saving and reloading the global correlation
mechanism, making global decorrelation via sample reweighting applicable to deep models. The
GSRM includes a sample-reweighting module and a module for learning the global sample weights.

(a) Sample reweighting module: In previous studies, the Hilbert-Schmidt independence criterion
(HSIC) was often utilized to supervise feature decorrelation [26]. However, this is not applicable to
deep model training because of the high computational cost. In fact, the Hilbert-Schmidt paradigm in
Euclidean space corresponds to the Frobenius paradigm [27], and the independence test can also be
based on the Frobenius paradigm. Therefore, feature dependency within the representation space was
eliminated through sample weighting, and independence was assessed utilizing RFF. This is specified
as follows:

First assume that the partial covariance matrix is:∑̂
AB

= 1
n − 1

∑n

i=1

[(
u (Ai) − 1

n

∑n

j=1
u

(
Aj

))T

·
(

v (Bi) − 1
n

∑n

j=1
v
(
Bj

))]
(1)

where

u (A) = (
u1(A), u2 (A) , . . . , unA (A)

)
, uj (A) ∈ HRFF, ∀j,

v (A) = (
v1 (B) , v2 (B) , . . . , vnB (B)

)
, vj (B) ∈ HRFF, ∀j. (2)



CMC, 2024, vol.78, no.1 73

where nA and nB are sampled from HRFF, which denotes the function space of random Fourier features
as follows:

HRFF =
{

h : x → √
2 cos (ωx + ∅) |ω ∼ N (0, 1) ,∅ ∼ Uniform(0, 2π)

}
(3)

where w ∈ R
n
+ denotes the sample weights and

∑n

i=1 ωi = n. The sample weights are combined using
Eq. (1) because the goal is to ensure independence between all feature pairs. For any pair of features

Z : ,i and Z : ,j, the corresponding partial cross-covariance matrix should be
∥∥∥∑̂

Z : ,iZ : ,j ;w

∥∥∥2

F
. The details

are as follows:∑̂
AB;w

= 1
n − 1

∑n

i=1

[(
ωiu (Ai) − 1

n

∑n

j=1
ωju

(
Aj

))T

·
(

ωiv (Bi) − 1
n

∑n

j=1
ωjv

(
Bj

))]
(4)

where u and v denote the RFF mapping functions included in Eq. (2). To minimize the correlation
between features, w is optimized as follows:

w′ = arg minw∈Qn

∑
1≤i<j≤mZ

∥∥∥∥∑̂
Z : ,iZ : ,j ;w

∥∥∥∥2

F

(5)

where Qn = {w ∈ R
n
+| ∑n

i=1 ωi = n}.
The sample weights w, representation function f, and prediction function g can be iteratively

optimized during the training process to obtain the best results.

f (t+1), g(t+1) = arg minf ,g

∑n

i=1
ωt

i L (g (f (Xi)) , yi) (6)

w(t+1) = arg minw∈Qn

∑
1≤i<j≤mZ

∥∥∥∥∑̂
Z(t+1)

: ,i Z(t+1)
: ,j ;w

∥∥∥∥2

F

(7)

where Z(t+1) = f (t+1) (X) , L(·, ·) denotes the cross-entropy loss function, and t denotes the timestamp.
The initial weights of all samples were set to 1.

(b) Learning global sample weights: In deep learning tasks, the learning of global sample weights
is difficult to achieve because of the huge storage and computational costs required, and the samples
in each batch are usually not complete during the optimization process. Therefore, we save the data
from the training process and feed this data back into the model before the next training session,
thereby optimizing sample weights. Specifically, the first step is to optimize feature generation for
sample weights in each batch and merge all features based on sample crosstabs, as follows:

Znew = Concat (ZG1, ZG2, . . . , ZGk, Zc) ,

wnew = Concat (wG1, wG2, . . . , wGk, wc) . (8)

Znew denotes the features used to optimize the weights of new samples; wnew denotes the weights of
new samples; Zc denotes the features of the samples in the current batch; wc refers to the weights of the
samples in the current batch; and ZG1, ZG2, . . . , ZGk, wG1, wG2, . . . , wGk represent the global features and
weights, respectively, updated at the end of the training of each batch. We kept wGi fixed at the beginning
of training in each batch, which makes only wc learnable. Therefore, as soon as a training iteration
of the model concludes is completed, we integrate local information (Zc, wc) and global information
(ZGi, wGi), as follows:

Z′
Gi = αiZGi + (1 − αi) Zc,
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w′
Gi = αiwGi + (1 − αi) wc. (9)

where αi represents the smoothing parameter, which serves to balance the long-term memory and
short-term memory in the global information. Finally (ZGi, wGi) was updated to (Z′

Gi, w′
Gi).

The training procedure for our SDP-SL is shown in Algorithm 2:

Algorithm 2: Training Procedure of SDP-SL
Input: epoch A, balance_epoch B, batch C
Output: trained model
1: for epoch ← 1 to A do
2: for batch ← 1 to C do
3: forward propagate
4: reload global features based on Znew = Concat (ZG1, ZG2, . . . , ZGk, Zc)

5: for epoch balancing ← 1 to B do

6: optimize sample weights based on w′ = argmin
w∈Qn

∑
1≤i<j≤mZ

∥∥∥∑̂
Z: ,iZ: ,j ;w

∥∥∥2

F

7: end for
8: back propagate
9: save features and weights
10: end for
11: end for

3.3 Execute Defect Prediction Tasks

When training the SDP-SL model, the visualization images generated by the source project
are input into the model, whereby the model iteratively optimizes the sample weights and model
parameters during the training process. In the prediction phase, the model can directly predict the
presence of code defects in input projects without any other calculation.

4 Experiments

Experiments were conducted to evaluate the performance of SDP-SL, including WPDP and
CPDP defect prediction, and the results were compared with several existing deep-learning-based
defect prediction methods. The average results were reported after running each experiment ten times.
Next, we provide a detailed introduction to the dataset, baseline methodology, statistical tests, and
evaluation metrics.

4.1 Dataset Description

For a convenient and smooth comparison of our work and that of other scholars, we borrowed
a dataset from the literature [10], which is publicly available in the PROMISE3 database. Different
versions of each of the 10 Java projects were obtained from GitHub, thereby recording the project
name, version number, and defect labels for each of the code files in these projects. Efforts were
also made to count the total number of files available, average file size, and average defect rate
for each project. Detailed information about the 10 projects is provided in Table 2. In the WPDP
experiments, sequential versions of each project, as outlined in Table 1, were utilized for defect
prediction. Specifically, the older versions were chosen for model training, while the newer versions
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serving as the target project for testing (e.g., the lucene-2.0 project was employed as the training set,
and the lucene-2.2 project was designated as the test set). In the CPDP experiments, one version was
randomly selected from each project as the target project, and two projects distinct from the target
project were chosen as the source projects for defect prediction.

Table 2: Dataset details

Project % Defective Avg size (kb) Avg files #Files Versions

ant 13.4 6.2 488 1465 1.5, 1.6, 1.7
lamel 18.7 2.9 1046 3140 1.2, 1.4, 1.6
jEdit 19.2 8.7 645 1935 3.2, 4.0, 4.1
poi 40.7 3.6 416 1248 1.5, 2.5, 3.0
ivy 20.0 4.1 311 622 1.4, 2.0
xalan 29.6 4.6 992 1984 2.4, 2.5
synapse 22.7 3.8 220 661 1.0, 1.1, 1.2
xerces 15.7 2.9 549 1647 1.2, 1.3
lucene 35.8 3.8 402 607 2.0, 2.2, 2.4
log4j 49.7 3.4 150 300 1.0, 1.1

4.2 Baseline Methods

To comprehensively evaluate the prediction performance of the SDP-SL model for WPDP and
CPDP software defect prediction, we compared it with various benchmark methods, as shown in
Table 3. The details of this process are described below:

• DBN This is a deep learning model that can improve defect prediction performance by learning
advanced features, such as semantic features, in software projects.

• DP-CNN: Deep pyramid CNN is a CNN-based software defect prediction method that focuses
on learning feature representations from the AST structure of the source code. DP-CNN
can effectively capture pattern and structure information in the code, thereby enhancing the
accuracy of defect prediction.

• DP-LSTM: Differential privacy-inspired LSTM is a software defect prediction method based
on LSTM, which is a recurrent neural network. In software defect prediction, DP-LSTM utilizes
the LSTM network to construct the evolutionary history and change patterns of the code, to
predict potential defects.

• DTL-DP: This is the latest defect prediction model, which employs the approach of converting
code into images combined with attention mechanisms, effectively enhancing the model’s
performance.

• PROMISE-DP: This is a method for defect prediction that utilizes static features, eliminating
the need for source code as training data. It possesses a relatively straightforward structure.

In CPDP experiments, we used the TCA+ method instead of PROMISE-DP for cross-project
defect prediction because PROMISE-DP cannot be deployed directly.

• TCA+: This technique represents an advanced method for data transfer, preserving crucial
data attributes while aligning the distributions of both source and target data. It utilizes TCA
integrated with sophisticated algorithms, enabling seamless knowledge transfer across domains.
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For a fair comparison, the same computer was used to conduct experiments and report the average
results. The baseline method is implemented exactly as delineated in the relevant paper.

Table 3: Baseline method selection

WPDP experiment baseline CPDP experiment baseline

DBN DBN
DP-CNN DP-CNN
PROMISE-DP DTL-DP TCA+ DTL-DP
DP-LSTM DP-LSTM

4.3 Statistical Test

To perform a multidimensional comparison between SDP-SL and other methods, we utilized
the Scott-Knott effect size difference (ESD) test method. This technique employs a hierarchical
clustering algorithm to group means and evaluates the statistical significance of differences between
these clusters. The specific procedure is outlined as follows:

1) Finding the optimal grouping: First, the division that maximizes the mean value of component
measurements is determined using hierarchical clustering. This step facilitates the grouping of samples
with similar measurements to better compare their performances.

2) Grouping or merging: After obtaining the optimal grouping, certain combinations are merged
into one group or a group is split into two groups based on the marked differences between the samples.
The purpose of this step is to identify prominent differences between the groups to determine which
models have a significant advantage in performance.

4.4 Evaluation Metric

For a comprehensive assessment of model performance and to ensure that the model is well bal-
anced in positive and negative samples, we adopted the F-measure metric which combines two metrics,
precision and recall, as the evaluation index of the model. The performance of the classification model
cannot be evaluated without the confusion matrix, which records the four possible outcomes of the
model’s classification of samples, as shown in Table 4.

Table 4: Confusion matrix

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Specifically, if the model correctly predicts a flawless document as a positive example, it is called
a TP; if the model incorrectly predicts a defective document as a positive example, it is a FP; if the
model correctly predicts a defective document as a negative example, it is a TN; and if the model
incorrectly predicts a flawless document as a negative example, it is a FN. The precision (P), recall
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(R), and F-measure are defined as follows:

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

F − measure = 2 ∗ PR
P + R

(12)

5 Results
5.1 RQ1: How Does SDP-SL Compare to the Other Five Baseline Methods in WPDP?

This study compared SDP-SL with five baseline methods, including the PROMISE-DP method,
which is based on traditional features for defect prediction; DP-CNN, which is based on AST for
extracting semantic structural features; and the newest DTL-DP method, which combines software
visualization and self-attention mechanisms. Sixteen sets of WPDP experiments were carried out
utilizing these five methodologies. In each experiment, the old versions of the project were chosen
to train the model with source data, while the new versions serving as the target project for testing
purposes.

Table 5 shows the experimental results for all the methods in the WPDP experiments. The highest
F-measure values for the six methods are indicated in bold. Each of the six methods was run 10
times on 16 sets of data to avoid random results. In the table, the average F-measure of SDP-SL is
0.628, and the average F-measures of DTL-DP, PROMISE-DP, DP-LSTM, DP-CNN, and DBN are
0.615, 0.498, 0.500, 0.550, and 0.436, respectively, which is an improvement of 2.11%, 26.10%, 25.6%,
12.42%, and 44.03%, respectively. The results show that, compared with DBN, DP-CNN, DP-LSTM,
PROMISE-DP, and DTL-DP, the proposed method is highly competitive in improving within-project
defect prediction.

Table 5: F-measure of the six methods in the WPDP experiments

Project Version DBN CNN LSTM PROM DTL-DP SDP-SL

ant 1.5->1.6 0.202 0.485 0.391 0.490 0.579 0.606
1.6->1.7 0.413 0.571 0.279 0.513 0.556 0.593

camel 1.2->1.4 0.241 0.429 0.343 0.395 0.391 0.414
1.4->1.6 0.102 0.292 0.422 0.318 0.375 0.419

jEdit 3.2->4.0 0.608 0.589 0.466 0.502 0.598 0.696
4.0->4.1 0.501 0.685 0.492 0.551 0.662 0.704

log4j 1.0->1.1 0.566 0.776 0.519 0.602 0.775 0.789
lucene 2.0->2.2 0.702 0.691 0.710 0.498 0.817 0.759

2.2->2.4 0.767 0.736 0.742 0.612 0.796 0.773
xalan 2.4->2.5 0.113 0.456 0.701 0.540 0.724 0.631
xerces 1.2->1.3 0.245 0.279 0.196 0.233 0.381 0.397
ivy 1.4->2.0 0.263 0.435 0.129 0.330 0.513 0.485
synapse 1.0->1.1 0.212 0.308 0.434 0.495 0.501 0.518

(Continued)
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Table 5 (continued)

Project Version DBN CNN LSTM PROM DTL-DP SDP-SL

1.1->1.2 0.430 0.428 0.563 0.546 0.671 0.647
poi 1.5->2.5 0.819 0.877 0.838 0.612 0.689 0.785

2.5->3.0 0.799 0.775 0.781 0.727 0.816 0.832

W/T/L 14/0/2 15/0/1 14/0/2 16/0/0 11/0/5

Average 0.436 0.550 0.500 0.498 0.615 0.628

In the second-to-last row of Table 5, W/T/L signifies the count of wins, draws, and losses when
comparing SDP-SL results with those of the corresponding method in the current column. The most
favorable outcome observed was 16 wins, 0 draws, and 0 losses, while the least favorable outcome was
14 wins, 0 draws, and 2 losses. Hence, the findings affirm the positive impact of the SDP-SL method
on within-project defect prediction.

In the experiments, the Scott-Knott ESD test was applied to the prediction results of each method,
and the results are shown in Fig. 5. In the figure, the SDP-SL method not only has the highest average
F-measure in the WPDP experiments but also a higher median value than all other methods. The
results of the Scott-Knott ESD test demonstrate the superiority of the SDP-SL method for within-
project defect prediction, where it excels in terms of average F-measure and performance stability,
displaying better prediction performance and reliability.

Overall, the results of the experimental and statistical validations show that the SDP-SL method
is effective for WPDP and can improve the performance of WPDP tasks.

5.2 RQ2: How Does SDP-SL Compare to the Other Five Baseline Methods in CPDP?

As described in Section 4.2, TCA+ was used to replace PROMISE-DP in the CPDP experiments.
We conducted 22 sets of CPDP experiments, in which one version from each project was randomly
selected as the target project, and the source project comprised two projects different from the target
project.

Table 6 presents the experimental results for all methods in the CPDP experiment. The highest
F-measure values for the six methods are indicated in bold. Each of the six methods was run 10 times
on 22 sets of data to avoid random results. In the table, the average F-measure of SDP-SL is 0.611,
and the average F-measures of DTL-DP, TCA+, DP-LSTM, DP-CNN, and DBN are 0.577, 0.487,
0.490, 0.536, and 0.561, respectively, resulting in improvements of 5.89%, 25.46%, 25.46%, and 8.91%,
respectively. The results show that the proposed method provides significant advantages over other
baseline methods in terms of improving cross-project defect prediction.
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Figure 5: Scott-Knott ESD test on six different WPDP defect prediction methods

Table 6: F-measure of the six methods in the CPDP experiments

Source Target DBN CNN LSTM TCA+ DTL-DP SDP-SL

ant1.6 camel1.4 0.321 0.341 0.297 0.340 0.398 0.419
jEdit4.1 camel1.4 0.686 0.655 0.305 0.315 0.386 0.430
camel1.4 ant1.6 0.883 0.607 0.455 0.628 0.541 0.646
poi3.0 ant1.6 0.455 0.546 0.400 0.611 0.649 0.650
camel1.4 jEdit4.1 0.615 0.593 0.394 0.528 0.526 0.567
log4j1.1 jEdit4.1 0.512 0.431 0.381 0.422 0.628 0.532
jEdit4.1 log4j1.1 0.638 0.642 0.570 0.570 0.769 0.792
lucene2.2 log4j1.1 0.618 0.633 0.574 0.561 0.789 0.721
lucene2.2 xalan2.5 0.544 0.519 0.669 0.531 0.660 0.692
xerces1.3 xalan2.5 0.562 0.558 0.672 0.579 0.522 0.694
xalan2.5 lucene2.2 0.600 0.633 0.746 0.566 0.730 0.738
log4j1.1 lucene2.2 0.688 0.662 0.732 0.520 0.704 0.736
xalan2.5 xerces1.3 0.388 0.413 0.280 0.414 0.394 0.464
ivy2.0 xerces1.3 0.396 0.419 0.264 0.389 0.333 0.447
xerces1.3 ivy2.0 0.461 0.475 0.276 0.405 0.408 0.476
synapse1.2 ivy2.0 0.855 0.451 0.261 0.391 0.495 0.478
ivy1.4 synapse1.1 0.481 0.488 0.450 0.338 0.499 0.511
poi2.5 synapse1.1 0.422 0.438 0.446 0.381 0.538 0.556

(Continued)
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Table 6 (continued)

Source Target DBN CNN LSTM TCA+ DTL-DP SDP-SL

ivy2.0 synapse1.2 0.441 0.465 0.538 0.612 0.603 0.618
poi3.0 synapse1.2 0.508 0.531 0.491 0.539 0.594 0.625

W/T/L 16/0/4 18/0/2 19/0/1 20/0/0 17/0/3

Average 0.561 0.536 0.490 0.487 0.577 0.611

In CPDP, the comparison of victories, draws, and losses between the SDP-SL method and other
approaches is evident from the penultimate row of Table 6. The most favorable outcome observed was
20 wins, 0 draws, and 0 losses, while the least favorable outcome was 16 wins, 0 draws, and 4 losses.
Therefore, the results indicate that the SDP-SL method is highly effective in CPDP.

As described in Section 5.1, a Scott-Knott ESD test was conducted on the prediction results
of each method, as shown in Fig. 6. The average F-measure of the SDP-SL method is the highest
throughout the CPDP experiments, and the median value of the SDP-SL method is also higher than
that of all the other methods. The results of the Scott-Knott ESD test indicate the superiority of
the SDP-SL method in cross-project defect prediction, with the prominent average F-measure and
performance stability values, indicative of better prediction performance and reliability.

Figure 6: Scott-Knott ESD test on six different CPDP defect prediction methods

In summary, the experimental and statistical validation results demonstrate that the SDP-SL
approach is effective for CPDP and can improve the performance of CPDP tasks.
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5.3 RQ3: Why Does the Proposed SDP-SL Approach Work?

The experimental results in Sections 5.1 and 5.2 demonstrate that the SDP-SL method has better
prediction performance than the various types of baseline methods in the software defect prediction
task, for both within- and cross-project defect prediction. There are two possible reasons for this
finding.

1) Through code visualization, SDP-SL attempts to extract structural semantic features from
letters, which, compared with other extraction methods (e.g., hand-counted and AST-generated
features), provide more comprehensive information and avoid information loss.

2) The SDP-SL method considers the impact of correlations between features on model perfor-
mance. This research added a sample reweighting module based on the idea of stable learning to the
model, thereby decorrelating features by weighting the samples, to obtain feature information that is
directly related to code defects for training.

5.4 Discussion

Regarding the choice of the base model, deep learning-based defect prediction models have several
significant advantages over static and dynamic code analysis tools. First, deep learning models can
learn patterns and features from large-scale source code, enabling them to detect more complex
code defects, including those that may be difficult to identify using traditional code-analysis tools.
In addition, deep learning models can continuously learn and improve their performance through
training and iterations, allowing them to adapt to new code defect patterns and project requirements.
To address the issue of vanishing gradients that may arise during the training process, ResNet was
selected as the base model. The residual connections in ResNet allow information to be directly
propagated between layers, effectively mitigating the problem of vanishing gradients. ResNet has
been widely applied in deep learning frameworks, demonstrating excellent performance, particularly
in various image-related tasks. By transforming source code files into code images, the goal is to
conveniently leverage image-based models, such as ResNet, for defect prediction while preserving
program details to the maximum extent possible.

6 Threats to Validity

Threats to internal validity: To prove the validity of the SDP-SL method, we compared it with
several baseline methods. Among these baseline methods, if the source code was available in the
original paper, we utilized that code to implement the corresponding baseline method. For some of
the methods with no source code available in the original paper (e.g., DP–CNN), we strictly followed
the details in the original paper, to maintain consistency as much as possible.

Threats to external validity: Datasets from 10 different projects were used in the experiments,
covering 16 sets of within-project defect prediction and 22 sets of cross-project defect prediction tasks.
We deliberately selected diverse datasets of varying sizes and defect rates, to ensure reliability of the
experimental results. Nevertheless, while this method exhibits sound performance in Java projects,
there is no assurance that our approach will yield similar enhancements when applied to distinct
programming languages.

Threats to construct validity: The F-measure, which has been widely used in previous studies,
was chosen as the evaluation metric to assess the validity of defect prediction. The F-measure is a
comprehensive metric that balances accuracy and recall and is widely applied in the performance
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evaluation of defect prediction. Although we believe that the F-measure is a reliable performance
metric, different conclusions may be reached with other performance metrics.

7 Conclusions and Future Work

This study introduces a defect prediction method called SDP-SL, which combines stable learning
with code visualization. By converting code into images and utilizing a ResNet18 network with a
sample reweighting module, SDP-SL enhances features by giving different weights to samples. It
enables the model to identify crucial defect-related features, improving defect prediction performance.
Our experimental results validate the superiority of SDP-SL over other baseline methods.

However, SDP-SL has some limitations. During the conversion of code files into code images,
there may be some loss of information, which can influence the predictive performance of the model.
Therefore, in future research, we will explore methods to preserve source code information more
effectively while transforming code files into code images. Additionally, manual parameter settings
may have impacted the model’s predictive performance. Therefore, future research will incorporate
parameter optimization techniques to automatically fine-tune the model parameters and strive for
even better performance.
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