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ABSTRACT

Task scheduling plays a key role in effectively managing and allocating computing resources to meet various
computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the
challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm
Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids
our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO)
algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.
Comprehensive testing including evaluations of algorithm convergence speed, resource execution time, load
balancing, and operational costs has been done. The results indicate that the EABC algorithm exhibits greater
parallelism compared to the Artificial Bee Colony algorithm. Compared with the Particle Swarm Optimization
algorithm, the HPSO algorithm not only improves the global search capability but also effectively mitigates getting
stuck in local optima. As a result, the hybrid HPSO-EABC algorithm demonstrates significant improvements in
terms of stability and convergence speed. Moreover, it exhibits enhanced resource scheduling performance in both
homogeneous and heterogeneous environments, effectively reducing execution time and cost, which also is verified
by the ablation experimental.
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1 Introduction

Cloud computing resource scheduling refers to the process of efficiently allocating and managing
computing resources, such as virtual machines, storage, and networking, within a cloud infrastructure.
The primary objective of resource scheduling in cloud computing is to optimize resource utilization,
ensure high availability, and meet the performance requirements of applications and services hosted
in the cloud environment. This involves making dynamic decisions on how to allocate resources to
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various tasks, workloads, or users in a way that maximizes efficiency and minimizes costs while
maintaining a balanced and responsive system [1,2]. Furthermore, resource scheduling in cloud com-
puting is a critical component for ensuring the allocating of cloud resources effectively and real-time
adaptation of requirements. It involves load balancing, provisioning, and de-provisioning resources,
as well as considering factors like workload priorities, resource constraints, and cost management. A
seamless and efficient computing experience would help cloud users easily and effectively operate the
underlying infrastructure. Effective resource scheduling is important in the scalability, flexibility, and
cost-effectiveness of cloud computing services.

Additionally, the cloud computing resources can be divided into homogeneous and heterogeneous.
As for the homogeneous one, there is a set of resources with the same or similar nature components.
When they are processed by virtual machines, there are few fluctuations in processing speed. The time
cost is low, and the load is less. On the contrary, the heterogeneous resources are composed of different
resources with different natures. Cloud computing usually needs to deal with various resources, such
as the requirement of storage space, varied computational speed, accuracy of data processing, and
so on. So far, the investigations on the resource-scheduling techniques in heterogeneous multi-cloud
environments are mainly focused on resource scheduling, provisioning, and clustering, which are
usually limited to a single cloud platform. Resource scheduling with better adaptability used in higher-
level, large-scale, and heterogeneous multi-cloud scenarios is still a challenge. Moreover, although most
metaheuristic algorithms on heterogeneous resources improve the comprehensive performance, the
complexity is also increased. Additionally, they usually tend to fall into local ones during the iterative
convergence phase of the algorithm to find the optimal solution. The scheduling time is prolonged,
reducing efficiency.

Currently, there are many optimization algorithms, like the cuckoo-improved particle swarm
optimization (PSO). In literature [3], Levy flight in Rhododendron was introduced into PSO to solve
the problem of particle swarm being trapped in local optimization. Gray wolf optimization was used in
the literature [4], in which the wolf pack fitness function was optimized to process multiple targets with
a single fitness. It overcomes the serious sensitivity to the initial population settings. Additionally, the
random value used in the algorithm to update the position of the Wolf was limited to the search range.
In literature [5–7], the researchers carried out the cat swarm algorithm to improve the search efficiency.
In which, the algorithm divides cats into two categories and optimizes them at the same time. For the
elite algorithm and the idea of the Pareto optimal frontier, the introduced cat colony improvement
effectively accelerated the convergence of the optimal solution [5]. Although the disadvantages of the
cat swarm algorithm like the requirement of more iterations to achieve effective optimization still
exist, these studies also guide future research. In addition, particle swarm algorithm [8–10], seagull
optimization algorithm [11], and other emerging intelligent algorithms [12–15], have been proposed
to optimize the cloud-computing resource scheduling. Among these algorithms, PSO may be more
mature and have more application, while it is easy to fall into local optimum. Therefore, by modifying
the varied and crossover operators of the backtracking search algorithm (BSA) via neighborhood,
the PSO-BSA algorithm has been proposed to accelerate the convergence speed [8]. Such as the ant
colony optimization was carried out to improve the convergence accuracy and avoid local optima [12–
15]. This algorithm has strong parallelism, and it is suitable for large-scale problems. Nevertheless,
its insufficient convergence speed in the early stage notably increases the early computing time cost
in resource scheduling. To reduce time cost, pseudo-random state transfer rules were used for path
selection, and the state transfer probability was calculated based on the current optimal solution
and the number of iterations as well as optimal and worst solutions were used to improve the global
pheromone update [13]. In recent years, numerous emerging algorithms have shown novel and infinite
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potential, although they were proposed later than the aforementioned algorithms. For example,
the dwarf mongoose optimization algorithm [16] can achieve a balance between exploration and
exploitation by incorporating principles which makes it an effective metaheuristic approach for solving
complex optimization problems. Its convergence speed is low, however, there will be more heuristic
algorithms to enhance algorithm robustness on this base in the future. The gazelle optimization
algorithm that mimics the process of a gazelle chasing its prey in the natural world to search for
the optimal solution [17] displays fast convergence speed, high precision, ease of implementation,
and significant applicability in solving complex optimization problems. While it would converge
prematurely in some cases.

In addition, the artificial bee colony (ABC) algorithm, as an intelligent algorithm, is also a popular
swarm intelligence algorithm [18]. It has been widely used in cloud computing resource scheduling due
to its advantages of fast convergence, strong global optimization capability, and easy implementation
[19,20]. These studies mainly focus on improving the performance of the algorithm, exploring its
application in different scenarios, and/or combining it with other optimization algorithms. Moreover,
some researchers have also proposed modified ABC algorithms, such as hybrid ABC algorithms [20]
used to adapt to the complex and dynamic environment of cloud computing better. Achieving a multi-
objective optimal solution in a complex environment by combining with another algorithm. Overall,
the research on the ABC algorithm in cloud computing resource scheduling is still ongoing, and there
is still room for further exploration and improvement.

In this work, an evolutionary artificial bee colony algorithm (EABC) has been proposed to make
the solution more diverse to avoid falling into local optimum by adding random perturbation to ABC.
The probability of onlooker bees choosing honey sources was introduced to improve the inertia weight
decline of the particle swarm algorithm. The average of fitness was taken into the original equation to
determine whether it was far from the optimal solution and to increase the accuracy of the selection
of the solution. Considering that the improved algorithm cannot effectively improve the processing
speed of heterogeneous resources, we proposed an improved hierarchical particle swarm optimization
(HPSO) algorithm and incorporated it into the EABC to obtain a hybrid hierarchical particle
swarm and evolutionary artificial bee colony algorithm (Hierarchical particle swarm optimization-
evolutionary artificial bee colony, HPSO-EABC), which is more robust in improving load balancing,
processing different resources faster, and reducing the cost in resource scheduling. However, this paper
also has some defects, such as the performance of the improved algorithm (EABC, HPSO-EABC)
highly depends on the algorithm and parameter settings. Choosing the appropriate parameter values
is critical to the performance, but parameter selection is often a challenging task and may require trial
and error and adjustment to obtain the best results. Introducing more mechanisms and additional
steps also leads to an increase in the complexity of the algorithm.

The remaining sections of this paper are organized as follows: Section 2 presents the research
content and the proposed algorithms of this work, namely EABC, HPSO, and HPSO-EABC. This
section provides a detailed description of the ideas and steps involved in these proposed algorithms. In
Section 3, we focus on the experiments conducted in both homogeneous and heterogeneous resource
scenarios. The performance of our proposed algorithms is also compared with other algorithms
in terms of convergence speed, task execution time, load balancing, and operational cost. Finally,
Section 4 concludes this investigation and outlines future work.
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2 Methods
2.1 Cloud Computing Resource Scheduling Algorithm

The principle of cloud computing task scheduling involves dividing the problem to be executed
into two parts Map and Reduce. The submitted task of the user is split into several smaller tasks by
the Map program. Through cloud virtualization technology, these sub-tasks are assigned to virtual
machine computing resources with a certain scheduling method. The Reduce step integrates the
computation results and puts out the ultimate ones. Throughout this process, the virtual machines
are independent of each other, and each sub-task only can run on one virtual machine resource.
On the other hand, heterogeneous resources are composed of different components with diverse
properties. Cloud computing encompasses a variety of resources. Some tasks require large storage
space with minimal computing speed requirements, while others have the opposite characteristics [21].
Current challenges in heterogeneous resource scheduling include resource orchestration, provisioning,
and clustering. These challenges often restrict the resource scheduling techniques to within a single
cloud platform, which lacks higher-level and multi-cloud scheduling capabilities, and exhibits limited
adaptability to large-scale and heterogeneous scenarios.

In comparison to homogeneous resources, most heuristic algorithms designed for handling
heterogeneous resources tend to increase overall performance at the expense of complexity. During the
iterative convergence process of these algorithms, it is easy to get trapped in local solutions, resulting
in longer scheduling time and lower efficiency. The EABC algorithm proposed here combines the
advantages of global search, robustness, and high efficiency, which belongs to bee colony optimization.
Compared to the ABC algorithm, the EABC algorithm effectively improves task completion time
and algorithm convergence within different environments. Additionally, the HPSO-EABC algorithm
integrates the rapid convergence and the strong global search capability from the HPSO algorithm
on the base of the EABC algorithm. It addresses the deficiency of EABC in terms of heterogeneous
resource scheduling speed and ensures a more balanced workload allocation for virtual machines
during resource scheduling. The framework of the cloud computing resource scheduling used here
is shown in Fig. 1.

In detail, the scheduling process is abstracted as m subtasks executing on n VM nodes. T =
{t1, t2, t3, . . . , tm} is the set of m subtasks, where (i = 1, 2, 3, . . . , m) is the i-th subtask. VM =
{vm1, vm2, vm3, . . . , vmn}, which is the set of n virtual machines, where vmj (j = 1, 2, 3, . . . , n) is the j-th
VM compute node. As a result, the allocation relationship between them can be described as m × n
matrix TVM as Eq. (1).

TVM =
⎡
⎣tvm11 . . . tvm1n

. . . tvmij . . .

tvmm1 . . . tvmmj

⎤
⎦ (1)

where tvmij takes two separate values of 0 and 1. When tvmij is 0, it means the subtask ti is not assigned
to the vmj virtual machine. On the contrary, if tvmij is 1, the subtask is assigned to the vmj virtual
machine. Each subtask can only be assigned to one virtual machine, denoted as

∑n

j=1 tvmij = 1. The
execution time of a subtask on a virtual machine is represented by the matrix ETC as Eq. (2).

ETC =
⎡
⎣etc11 . . . etc1n

. . . etcij . . .

etcm1 . . . etcmn

⎤
⎦ (2)
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where etcij denotes the running time of the subtask ti on the virtual machine vmj. It can be calculated
with Eq. (3).

etcij = lengthi

mipsj

(3)

where lengthi denotes the length of subtask i, while mipsj denotes the processing speed of virtual
machine j. The final goal of the whole scheduling is the minimum time for task completion. It can
be expressed by Makespan [22], and calculated with Eq. (4).

Makespan = maxn
j=1

sum(j)∑
i=1

etcij (4)

where sum (j) denotes the total number of tasks assigned to the virtual machine vmj.

Figure 1: The cloud resource management framework

2.2 Cloud Computing Resource Scheduling Based on Evolutionary Artificial Bee Colony Algorithm

The artificial bee colony algorithm is an optimization method proposed by imitating the behavior
of bees. It does not need to know the special information about the problem, but comparing the
advantages and disadvantages of the problem is required. Based on the local optimization-seeking
behavior of each bee, the global optimum value will be deduced, which has a fast convergence speed.
Furthermore, the process of gathering honey is regarded as a task assignment. The bee species are
roughly divided into employed and non-employed bees. The non-employed bees are further divided
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into onlooker and scouter bees. The employed bees can pass their honey-harvesting information to the
onlooker ones through the “waggle dance”. The onlooker bees will select the nectar source based on
the information passed from the employed ones and continue to exploit. When a nectar source reaches
the threshold value and does not update its position, one of the employed bees will turn into a scouter
to re-exploit a new nectar source. After the iteration, the optimal solution will be decided according
to the predefined criteria [19].

2.2.1 Honey Source Initialization

At the initial stage of this algorithm, there is no prior experience for the bee. All the bees are
scouters. The population number was set as N. That is, there are N initial solutions. The location of
the i-th nectar source can be expressed as Xi = (xi1, xi2, . . . , xiD), where D denotes the dimension, that
is the number of tasks. Each component of the nectar source was mapped into the ID number of the
VM according to the corresponding mapping rules. Thus, the location of a nectar source corresponds
to a virtual machine. The feasible equation for each initial solution of a virtual machine assignment
scheme is described as Eq. (5).

xij = xminj + rand(0, 1)(xmaxj − xminj) (5)

where xij is the nectar source location, j is any number from the set of 1 to D, xmaxj and xminj respectively
denotes the maximum and minimum value in each dimension, i.e., the upper and lower bounds of the
task number, and rand (0,1) represents a random number from 0 to 1.

2.2.2 Improved Location Update and Search Strategy

This section discusses the improvements in the search strategy of onlooker bees, in the standard
ABC algorithm, the employed bees conduct a neighborhood search first, then the onlooker bees collect
nectar through the information transmitted by the “waggle dance” of the employed bees. If a nectar
source has a higher fitness value, the probability of being selected by the onlooker bees is also higher,
there will be more onlooker bees in the neighborhood to exploit it. When onlooker bees are in the
neighborhood search phase, the location of the new nectar source can be generally calculated using
the following Eq. (6) [19].

vij = xij + r(xij − xkj) (6)

where i and k are not equal, r is a random number in the range 0 to 1, k ∈ {1, 2, 3, . . . , N},
j ∈ {1, 2, 3, . . . , D}, xij is the current nectar source location, and vij is the new nectar source obtained
within the neighborhood search [19]. It is worth mentioning that the neighborhood search method of
the employed bees is also referred to in Eq. (6). Moreover, this section does not improve the location
update strategy of employed bees, while it is the other way for the onlooker bees.

On the other hand, it is hard to derive the optimal solution quickly with the steps mentioned
above. To overcome this lack, the learning factor in the particle swarm algorithm was introduced. As a
result, the swarm can locate the better nectar source more precisely through the guidance of the current
optimal solution during the neighborhood search. Eq. (6) is further modified as Eq. (7).

vij = xij + α(xbestj − xkj) (7)

where xbestj is the current best nectar source location, and α represents a random number from 0 to 1.
Although Eq. (7) crosses the optimal solution and the current position, the neighborhood search may
lead to a depressed exploitation capability. It is easy to fall into local solutions, reducing the exploration
of other nectar sources [23]. Therefore, a random perturbation is added to optimize Eq. (7) and to
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increase its search capability. The final equation after improvement is presented as Eq. (8).

vij = xij + α(xbestj − xkj) + β(xr1j − xr2 j) (8)

where r1 and r2 are the two random numbers with different values, and β is a random number, which
will be set to a random number in the range of −0.5 to 1.5 after several rounds of testing. In this way,
the onlooker bees will unconsciously favor some random nectar sources in the neighborhood search
on the original guidance, providing the opportunity for nectar with optimal solutions to be exploited.

2.2.3 Improved Selection Strategy

For the traditional ABC algorithms, the selection probability is achieved by the roulette wheel. It
will lead the poorer nectar sources to abandon, reducing the diversity of the population, and finally
making the algorithm premature. Here, an improved selection strategy in the initial algorithm is carried
out, which is described as Eq. (9).

Pi = (1 − γ ) ∗ (fi/fmax) + γ (9)

where Pi is the selection probability of the ith onlooker bee, fi and fmax are the ith nectar source fitness
value and the current maximum fitness value, respectively. γ is a coefficient of 0.1, when the selection
strategy is optimal after several rounds of test. Nevertheless, due to ignoring the degree of converging to
the optimal solution of the algorithm, the accuracy of the derived result with Eq. (9) is not enough. To
improve it, the sensitivity was introduced in the free search algorithm [24,25]. The improved probability
is described as Eq. (10).

S1(i) =
{∣∣(fi − favg)/(fmax − favg)

∣∣ fmax �= favg

0 the others
(10)

where S1(i) is the probability of the ith nectar source being selected, and generating another number
that S2(i) indicates the probability of each onlooker bee selecting that source, S2(i) ∼ U(0, 1). When
S2(i) < S1(i), the search is performed, or vice versa, and the original nectar source location is kept
unchanged.

2.2.4 Steps of the EABC Algorithm

The flow chart of our EABC algorithm is shown in Fig. 2. The detailed steps of our EABC
algorithm are as follows:

For ease of reading, in the following steps, the employed bees had been defined as “Bee A,” the
onlooker bees were labeled as “Bee B,” and the scouters were described as “Bee C”.

Step 1: Initialize the relevant parameters, set the maximum number of iterations of the popu-
lation, the number of nectar sources and the maximum number of exploitation, the number of bee
populations, etc., where Bee A and Bee B account each for half.

Step 2: Initialize the population by generating random initial solutions according to Eq. (5) and
assign cloud tasks to corresponding virtual machines.

Step 3: Bee A performs neighborhood searches on honey sources, generating new honey source
search solutions. These new solutions are compared with the original solutions mapped into virtual
machine allocation schemes to select the solution with a shorter resource scheduling time.

Step 4: Bee B, guided by the “waggle dance” of Bee A, chooses nectar sources based on probability.
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Step 5: Bee B continues to exploit the selected nectar sources. They repeat Step 3, crossing
the solutions from the neighborhood search with the global optimum solution and introducing
perturbation. The better solution is selected based on a greedy principle.

Step 6: If the maximum number of nectar sources has been mined, only one Bee A will transform
into Bee C to produce new nectar sources and reinitialize.

Step 7: If the termination condition has been reached, find the optimal solution and the optimal
resource allocation solution found by all the current bees.

Step 8: Incorporate the obtained allocation plans into both heterogeneous and homogeneous
resource allocation, output the results, and analyze them.

Figure 2: The flow chart of our proposed EABC algorithm

The maximum number of iterations is set as T, and the current number of iterations is t. Based on
the above theory, the EABC algorithm is implemented below.

Algorithm: EABC
Input: Task
Output: mapping solutions
1. BEGIN
2. Initialize the parameters
3. Divide the bee colony into two parts //Employed bees and onlooker bees
4. while t ≤ T do
5. Generate random initial solutions //Described in Section 2.2.1, Eq. (5)

(Continued)
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Algorithm (continued)
6. while the nectar source has not been depleted do
7. if in the employed bees phase then //Described in Section 2.2.2, Eq. (6)
8. explore the search space and evaluate the fitness value
9. conduct a neighborhood search
10. calculate fitness
11. if the fitness value is better than the best fitness value (pBest) in history then
12. set the current value as the new pBest
13. end if
14. choose the best fitness value as the gBest
15. end if
16. if in the onlooker bees phase then //Onlooker bees continue their search based on the results of the

employed bees’ search
17. interaction between onlooker bees and employed bees //Described in Section 2.2.2, Eq. (8) and

Section 2.2.3, Eq. (10)
18. calculate fitness
19. if the fitness value is better than the best fitness value (pBest) in history then
20. set current value as the new pBest
21. end if
22. choose the best fitness value as the gBest
23. end if
24. end while
25. one employed bee transforms into a scouter //Reset the nectar source, mentioned in Section 2.2.4,

Step 6
26. t++
27. end while
28. return gBest

2.3 Cloud Computing Resource Scheduling Algorithm Based on Hierarchical Particle Swarm
Optimization-Evolutionary Artificial Bee Colony Algorithm
In fact, for our proposed EABC algorithm, there are still some shortcomings that need to be

improved, including

(a) Difficult to model heterogeneous resources. As for the heterogeneous resources, there are many
different performance metrics and usage constraints, like CPU, memory, bandwidth, etc. It is hard
for our EABC to model these different resource attributes effectively, which leads to trouble in fully
utilizing the resource characteristics.

(b) Excessive search space. In some resource scheduling, the search space is usually very large and
high complexity. It makes the EABC face inefficient searches, and failure to find the optimal solution
in a limited time.

(c) Difficult adjustment of algorithm parameters. The EABC depends largely on the setting
parameters of population size, number of iterations, local search, and so on. Furthermore, these
parameters are difficult to adjust effectively for the heterogeneous resource scheduling, which will
cause lower efficiency and valid performance of the algorithm.
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Fortunately, PSO has a global search capability. It can find the global optimal solution in the
multi-dimensional search space. Besides handling complex resource scheduling, it also can search for
the optimal solution quickly, improving scheduling efficiency.

Therefore, to overcome the shortcomings of EABC, PSO is used to improve the velocity update
formula of particles and to stratify the particles. That is HPSO, and it is also fused with the EABC
algorithm, giving rise to the HPSO-EABC algorithm.

2.3.1 Description of the HPSO Algorithm

To improve our algorithm, we have done more in-depth research on PSO [26–28]. In [26], to solve
the many-objective optimization problem, the author proposed a binary particle swarm optimization
with a two-level particle cooperation strategy. A many-objective reset operation is also done to enable
the algorithm to jump out of the local optimum. In [27], an improved localized FS approach based on
multi-objective binary PSO was proposed, it addressed fault diagnosis from a novel perspective that
takes advantage of the local distribution of data without balancing strategies. In [28], a cooperative
coevolutionary algorithm based on the genetic algorithm (GA) and PSO was proposed to search for
the feature subsets with and without entropy-based cut points simultaneously. Enlightened by these
works, the HPSO is proposed here based on the standard PSO.

For PSO, the velocity and position update equations are exhibited in Eqs. (11) and (12).

vk1+1
id = vk1

id + c1r3(p
k1
id − xk1

id ) + c2r4(p
k1
gd − xk1

id ) (11)

and

xk1+1
id = xk1

id + vk1+1
id (12)

where vk1
id and xk1

id respectively represent the d-dimensional component of the velocity and position
vector of particle i in the k1th iteration, pk1

id indicates the optimal value of the d-dimensional component
of the position vector of particle i since the k1th iteration, i.e., the local optimal value, pk1

gd indicates the
optimal value of the d-dimensional component of the position vector of all particles since the k1th
iteration, i.e., the global optimal value, c1 represents the cognitive term factor, c2 represents the social
term factor that regulates the maximum step size of learning, and r3 and r4 represent two random
numbers. Eq. (11) consists of three components the inertial term, the cognitive term, and the social
term. Then the velocity update formula was improved as

vk1+1
id = vk1

id + c1r3(μpk1
id + (1 − μ)pk1

gd − xk1
id ) + c2r4(p

k1
gd − xk1

id ) (13)

where μ represents the ratio of the current optimal value to the global optimal value and is defined as

μ = pk1
id /pk1

gd (14)

As a result, the guidance of the global optimal solution can be obtained, when the particles
perform cognitive term learning. The increase in value μ may indicate the pk1

id is close to pk1
gd , and

the guidance of pk1
gd to the particles is weakened. The particles are more inclined to the local optimal

position pk1
id , and vice versa to the global optimal position pk1

gd . The ability to jump out of the local
optimal solution for the particles is improved, which also enhances the diversity and global search
capability of the population.

Besides, the particles will be stratified according to the number of iterations, and are further labeled
as the pre-particle, mid-particle, and post-particle, respectively. The particles in different layers will be
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given different Inertia weighting factors ω as their separate inertia terms. The improved velocity update
formula can be described as

vk1+1
id = ωvk1

id + c1r3(μpk1
id + (1 − μ)pk1

gd − xk1
id ) + c2r4(p

k1
gd − xk1

id ) (15)

where ω is dynamically decreasing and discontinuous. It satisfies the Eq. (16).

ω =

⎧⎪⎨
⎪⎩

λ − λ1k1/n
λ2 + n/(λ3k1)

λ4

k1/n < 1/3
1/3 ≤ k1/n ≤ 2/3

k1/n > 2/3
(16)

where λ, λ1, λ2, λ3, λ4 are the different coefficients, k1 is the current number of iterations, and n
represents the maximum number of iterations. When the number of iterations of the population reaches
n/3, the corresponding particle is regarded as the pre-particle. Currently, to make the particle expand
the search range and increase the development of the algorithm, the value of ω is set to linear decrease
largely. After testing, the value of λ may be set as 0.9, and that of λ1 can be set to 1.5 for the best
effect. With the increase in the number of iterations, the ratio of the current number to n is over 1/3,
while less than 2/3, the population enters the middle one, and the particle becomes the middle one.
After the pre-search, to reduce the particle search range fluctuation and increase the stability of the
algorithm, the ω will decrease slowly and tend to smooth with the iteration number, which follows an
inverse proportional function. Additionally, when the particle just enters the middle stage, ω should
be no much difference in value from the end of the previous period. Otherwise, it may lead to a large
change in the trajectory of the particles. As a test result, the optimized value of λ2 is set to 0.1. The
value of λ3 determines the smoothness of the curves. It is set to 10 after many tests, which is the most
favorable. Meanwhile, the ω has already reached a much lower value after the initial two downward
evolutions. If ω continues to decrease, it will lead to a decrease in the quality of the optimal solution
due to the lack of particle search range. Thus, when the particle enters the later stage, the λ4 is set as
a constant. As mentioned above, since the inertia factor for the two stages should not vary so much,
λ4 is set as 0.2. To show it more intuitively, the trend of ω with n in the range of 0 to 10000 is plotted,
and shown in Fig. 3.

Figure 3: Trend of ω
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2.3.2 Description of the HPSO-EABC Algorithm

The Particle Swarm Optimization algorithm with Inertia Weight Optimization demonstrates
increased adaptability following inertia weight optimization. Combining it with EABC allows for the
synergistic utilization of their respective advantages, further enhancing the robustness and ensuring
the stability of resource scheduling solutions. It also increases scalability to meet resource scheduling
requirements in various environments.

In this integrated algorithm, the HPSO is responsible for generating initial solutions after the
initialization by the EABC. During the EABC initialization, the particle population transformed into
a new type of bee species named “initial bees.” These initial bees inherit the learning attributes of
particles in the EABC algorithm. As per Eqs. (12) and (13), each initial bee undergoes position and
velocity updates, while the inertia weight is updated according to Eq. (15). The final positions obtained
by the initial bees after a full iteration cycle serve as the initial nectar source position in the artificial
bee colony algorithm. In essence, the HPSO algorithm is executed first, and its solutions are integrated
into the EABC one.

In contrast to Eq. (5), the solutions obtained from the initial bees inherit the high stability
characteristic of the PSO algorithm. It enables the bee colony to have both a clear sense of direc-
tion and randomness at the beginning of iterations. This fused algorithm effectively addresses the
neighborhood-search limitation of the bee colony algorithm and avoids falling into local optima.

2.3.3 Steps of the HPSO-EABC Algorithm

The HPSO-EABC is a two-stage optimization approach. First, the HPSO algorithm is initialized
with specific parameters. Initial velocities and positions are assigned to each particle, and then the
individual and global best solutions are updated. The particle velocities are updated iteratively, and
such process continues until a specified number of iterations is reached. The best solution is recorded
and named the “initial bee”. Next, the “initial bee” which represents the result from the previous
HPSO, serves as the initial source position for the EABC algorithm and further is initialized with its
parameters. After that, the population is divided into employed bees and onlooker bees. The employed
bees perform neighborhood searches based on the “initial bee” position, and the results obtained are
communicated to the onlooker bees. The onlooker bees then continue to explore When a honey source
reaches its maximum exploitation limit, a randomly employed bee will be transformed into a scouter
to reset the nectar source.

These processes mentioned above are repeated until the best solution is found. The HPSO-EABC
algorithm initially leverages the HPSO optimization to benefit from its strong exploitation capabilities,
improving efficiency and robustness. Then it combines the concurrency of the EABC algorithm to
ensure stability in later-stage solutions. As a result, the merged algorithm exhibits higher scalability
and can adapt to resource scheduling in different environments. The specific flowchart of the HPSO-
EABC algorithm is shown in Fig. 4.
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Figure 4: The flow chart of the HPSO-EABC

Since the subsequent HPSO algorithm is similar to that of the EABC algorithm, it will not be
repeated here. Even so, early on the HPSO algorithm is implemented below in detail.

Algorithm: HPSO
Input: Task
Output: mapping solutions
1. BEGIN
2. Initialize the parameters
3. for iteration times do
4. for each particle do
5. add ωand calculate particle velocity // The ω here is the hierarchical inertia weight mentioned in
Section 2.3.1, Eq. (16)
6. update particle position
7. calculate fitness value
8. if the fitness value is better than the best fitness value (pBest) in history then
9. set the current value as the new pBest

(Continued)
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Algorithm (continued)
10. end if
11. Choose the particle with the best fitness value of all the particles as the gBest
12. end for
13. end for

3 Simulation Results and Analysis

The CloudSim platform [29] with an Intel i5 processor, a 16 GB RAM, and the Windows 10
operating system were used for simulation. ABC [22], PSO [22], and our proposed EABC, HPSO, and
HPSO-EABC are compared and analyzed within the convergence speed, the task completion time,
and the load balancing degree. For simulated homogeneous resource processing, a uniform mips value
for processing was used. Setting the mips value to fluctuate within a certain range was done for the
heterogeneous resource processing. More specifically, in all the following comparison graphs, the mips
value will be set to 3000 for homogeneous resource processing scenarios, and it fluctuates in the range
of 1000-10000 for heterogeneous ones for ease of display.

Other parameter settings and values used in the simulation are listed in Tables 1 and 2. Since
the parameters used in the hybrid HPSO-EABC algorithm are not changed, Table 2 only shows the
parameters done for the ABC, EABC, PSO, and HPSO algorithms.

Table 1: Experimental parameter settings

Parameter name Parameter value

Task type Homogeneous
Number of tasks 200–1000
Task length 1000–2000
Number of VMS 10
Virtual machine policy Space shared
Number of CPUs 2
mips 1000–10000
Memory RAM 1024 MB
Bandwidth BW 10 MB
Virtual machine execution cost per unit price 3
Virtual machine memory cost per unit price 0.05
Virtual machine bandwidth cost per unit price 0.1

Firstly, the convergence of each algorithm is tested. The initial number of scheduling tasks is set
to 1000. There are 10 computing resources, and the number of iterations varies from 1000 to 10000.
The completion time is calculated with Eq. (4), which is the value of the makespan. As a result, the
iteration number-dependent computing time cost with the ABC, PSO, EABC, HPSO, and HPSO-
EABC algorithms for both homogeneous and heterogeneous resources are displayed respectively in
Figs. 5a and 5b. For a fixed number of tasks, as the number of iterations increases, the convergence of
the algorithm has been improved, resulting in better optimal solutions and corresponding allocation
schemes. Consequently, the overall resource scheduling completion time is reduced.
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Table 2: Algorithm parameter settings

ABC, EABC Parameter value

Population size 60
Employed bees 30
Onlooker bees 30
Scouter When the nectar source reaches the extraction limit, it

is transformed by an employed bee.
The limit 100
PSO, HPSO Parameter value

Population size 40
Inertia weighting factor 0.2–0.9
Cognitive term factor 2
Social term factor 2

Figure 5: Iteration number-dependent convergence comparison for (a) homogeneous and (b) hetero-
geneous task scheduling

As shown in Fig. 5, the HPSO-EABC consistently has a faster convergence speed and shorter
completion time compared to other algorithms no matter for the homogeneous and heterogeneous
environment. The EABC, when compared to the ABC, also improves in terms of convergence speed
with lower completion time. For the homogeneous ask scheduling, the EABC slightly outperforms the
ABC and the PSO. However, as displayed in Fig. 5a, when the progressing iteration number increases
from 3000 to 4000, the decline of the PSO notably diminishes, while that of ABC continues to decrease
steadily. This indicates that the PSO tends to get trapped in local optima, and the quality of the
solutions is without significant improvement. However, the overall runtime has improved considerably.
Introducing a global optimum to the cognitive component and setting appropriate weightings has
effectively addressed the inadequate search scope of the PSO. The tiered inertia weight reduces runtime
in the early stages and helps HPSO maintain stability in the middle and later stages. For the EABC,
though the downward trend is obvious, its task completion time cost in the early iterations is lower
than that of the HPSO. At 1000, 2000, and 3000 iterations, the EABC needs more corresponding
completion time of 0.4, 0.5, and 0.64 s than the HPSO algorithm, respectively. After the 9000th
iteration, the time cost of the EABC is the same as that of the HPSO. Notably, it keeps decreasing
and is slightly less than that of the HPSO after the 10000th iteration, although it is still a divergence.
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Considering experimental deviation and randomness of the task lengths, the HPSO tends to have
a stable completion time between 5000-6000 iterations. Thus, both the EABC and the HPSO have
their advantages and disadvantages for the homogeneous environment. The EABC, with its parallel
processing capability, can steadily approach the optimal solution. However, with a lesser number of
iterations, the solution quality needs to be optimized, and the convergence speed is slower. Although
the HPSO can obtain better solutions earlier, its solution quality in the later stages is slightly lower than
that of the EABC. Therefore, by combining the fast obtaining the optimal solution with the HPSO
and optimizing it with the EABC, the advantages can be effectively taken, resulting in less runtime
and enhancing convergence.

However, for the heterogeneous resource scheduling, as shown in Fig. 5b, following the MIPS
value changing continuously, both the ABC and the EABC perform worse than PSO and HPSO. This
suggests that swarm algorithms like ABC and EABC are not as effective as particle swarm algorithms.
On the contrary, the PSO can deal with such resources with significant variability. That is, there is lesser
scalability of the ABC and EABC algorithms. For the HPSO, it consistently reduces runtime while
maintaining stability and convergence. Hence, the hybrid HPSO-EABC inherits the advantages of
both the EABC and the HPSO. At the initial iteration, the HPSO-EABC has respective lower runtime
of 26.03, 12.09, 23.13, and 9.1 s than that of the ABC, PSO, EABC, and HPSO, which translates to
percentage improvements of 34.34%, 19.54%, 31.73%, and 15.46%. Around the 8000th iteration, the
HPSO-EABC starts to converge. At the 10000th iteration, its runtime is 24.37, 10.47, 12.55, and 4.97 s
less than that of the ABC, PSO, EABC, and HPSO, respectively, which is a percentage improvement of
39.68%, 22.03%, 25.3%, and 11.83%. Moreover, following the iteration increases from 1000 to 10000,
the reduced runtime for the ABC, PSO, EABC, HPSO, and HPSO-EABC is respective 1.67, 0.78, 1.74,
1.19, and 0.39 s for the homogeneous scenario. Those for the heterogeneous one are 14.38, 14.34, 23.3,
16.85, and 12.72 s, respectively. The lowest runtime reduction of the HPSO-EABC algorithm after
10000 iterations among all algorithms indicates its best stability and convergence.

Different task loads, typical 200, 400, 600, 800, and 1000 tasks are selected with a fixed number
of iterations of 10000 and were used to demonstrate the performance time of each algorithm. The
completion time of the ABC, PSO, EABC, HPSO, and HPSO-EABC is calculated with Eq. (4), and the
results are shown in Figs. 6a and 6b respectively for the homogeneous and heterogeneous sources. For
homogeneous resource scheduling, as shown in Fig. 6a, our proposed EABC and HPSO algorithms
display slightly less virtual machine runtime for each number of tasks. The reduced completion
time for the EABC algorithm may be caused by the improvements in the position updating and
selection strategies. The reduced runtime for the HPSO algorithm is a result of achieving a better
optimal solution from a larger search range and avoiding local optima with the hierarchical approach
of particle search. Moreover, as shown in Fig. 6a, the less time of the EABC algorithm than that
of the HPSO, suggests that the bee colony algorithm is more advantageous than particle swarm
algorithms in processing homogeneous resources. Notably, the HPSO-EABC algorithm reduced the
virtual machine runtime by 0.85, 1.8, 0.5, and 0.65 s for the 1000 tasks, separately compared to the
ABC, PSO, EABC, and HPSO algorithms. This is attributed to the further reduction in the virtual
machine runtime with particle swarm guidance on the base of the EABC algorithm. In the case of
heterogeneous resource scheduling, as shown in Fig. 6b, five algorithms have close runtime for the
lowest 200 tasks. Nevertheless, with the task loads increasing, the runtime with our proposed EABC
and HPSO algorithms are significantly reduced, respectively compared to the traditional ABC and
PSO algorithms. In detail, the EABC algorithm reduces the completion time by 11.82 s compared
with the ABC algorithm, and the HPSO algorithm reduces the completion time by 4.25 s compared
with the PSO algorithm with a task number of 1000. As the dimension of the solution space increases
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with the number of tasks, the random perturbation introduced in the EABC algorithm increases the
possibility of finding the optimal solution, which significantly improves the effectiveness, and leads to
its low runtime. As for the HPSO algorithm, the introduction of the inertial weight effectively avoids
premature convergence and enlarges the search space and dimension of the solution.

Figure 6: Comparison of (a) homogeneous and (b) heterogeneous task completion time

Furthermore, as shown in Fig. 6b, the HPSO-EABC algorithm can reduce the completion time
by 24.49, 10.59, 12.67, and 6.34 s compared to ABC, PSO, EABC, and HPSO algorithms, respectively.
Therefore, such a hybrid algorithm HPSO-EABC not only overcomes the shortcomings mentioned
above but also reduces the completion time. Following the optimal solution obtained by the particle
swarm algorithm, the blindness and randomness of the initial solution obtained by the bee colony
algorithm are improved. As a result, the completion time has been dramatically reduced with the
HPSO-EABC algorithm. To give the load balance of our algorithms, the degree of imbalance (DI) was
defined and used to calculate the imbalance degree among the virtual machines, which is expressed as
Eq. (17).

DI =
√∑n

j=1(Timej − AL)2

n
(17)

where AL is the average load of virtual machines is the average completion time of virtual machines,
Timej is the task completion time on the jth virtual machine, and n is the number of virtual machines.
The smaller the value of DI is, the more balanced the VMs are, and the higher the degree of load
balancing is, the more reasonable the scheduling policy is under this algorithm.

The DI value for each ABC, PSO, EABC, HPSO, and HPSO-EABC algorithm for typical tasks
of 200, 400, 600, 800, and 1000 is calculated and plotted in Figs. 7a and 7b for the homogeneous and
heterogeneous sources, respectively. For a homogeneous environment and as shown in Fig. 7a, the
PSO has the most uneven workload. Its DI is significantly higher than the other algorithms, which
even exceeds 1 at the task of 1000. The EABC has lower DI values than that of the ABC. The new
honey source update strategy introduced in the EABC makes the algorithm more stable when searching
for the optimal solution. In the task range of 200–600, the EABC algorithm performs the best with
a relatively low and steady increased DI value. Additionally, the HPSO also demonstrates a lower DI
value than that of the PSO, which is a result of the introduced inertia weight and the increased stability
as the task dimension increases. However, when the number of tasks is over 800, the HPSO-EABC
algorithm has the lowest DI value and even shows a decreasing trend. This suggests that the hybrid
HPSO-EABC algorithm holds the best balance degree, as a result of inheriting the high concurrency
exploratory and load stability of the EABC algorithm as well as making full use of particle assignment
through gradually following the current global optimal solution.
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Figure 7: Comparison of (a) homogeneous and (b) heterogeneous tasks load balancing

For the heterogeneous environment, as shown in Fig. 7b, the DI value for each algorithm is larger
than that of homogeneous sources, which is due to the fluctuation of the mips value. However, the
DI value of the EABC and HPSO is still lower than that of the traditional ABC and PSO. For the
HPSO-EABC algorithm, its global search ability is improved, which makes it more adaptable and
robust to various types of problems. As a result, the HPSO-EABC exhibited the lowest DI among
all algorithms, as shown in Fig. 7b. Hence, when dealing with fluctuating mips resources, the HPSO-
EABC algorithm achieves the most evenly distributed node loads for virtual machines, with a DI value
that remains stable at less than 5, although the number of tasks reaches 1000. That is, our proposed
hybrid HPSO-EABC algorithm can achieve the most evenly distributed node loads on dealing with
mips resources.

A statistical test on the runtime and the load balance is carried out further to exhibit the
difference between our proposed algorithms and other ones. The task-dependent statistical analysis
results of runtime and standard deviation for each algorithm within homogeneous and heterogeneous
scheduling scenarios are shown in Tables S1 and S2, respectively. The completion time displayed in
Fig. 6 is taken from their average values, while the DI values shown in Fig. 7 correspond to the standard
deviation. As listed in Tables S1 and S2, the EABC surpasses the ABC algorithm, and the HPSO excels
over the PSO one. The enhanced algorithms have reduced the average runtime, as previously discussed.
Moreover, the runtime in the best and worst cases has also improved, with a noticeable reduction in
the difference between the longest and shortest runtime. Consequently, the corresponding standard
deviation has decreased, leading to a more balanced workload. Therefore, the hybrid HPSO-EABC
algorithm, which combines the strengths of both the HPSO and the EABC algorithms, exhibits the best
performance. Although the standard deviation of runtime for the HPSO-EABC algorithm is not the
smallest in initial low tasks as listed in Table S2, suggests that there may still be room for improvement
in such fused algorithms.

Since the EABC algorithm proposed here mainly combines two kinds of improvements: the
location update strategy of neighborhood search of the onlooker bee and the honey source selection
strategy, the ablation experiments were carried out on the EABC algorithm to further verify its rigor.
All the experimental contents and data analysis of this part are provided in the part of Supplementary
Materials of the paper. In detail, all the results are shown in Tables S3-S8. In detail, the experiment
was divided into three groups. For the first one, we only retain the improvement of the location update
strategy in the EABC algorithm, which is recorded as the EABC-A algorithm and compared with the
ABC algorithm. Detailed data are recorded in Tables S3 and S4. For the second group, we only retain
the improvement of the selection strategy in the EABC algorithm, which is recorded as the EABC-
B algorithm and compared with the ABC algorithm. Detailed data are recorded in Tables S5 and
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S6. For the last group, we compare the EABC-A and the EABC-B algorithms, which contain only
one improved strategy, with the EABC algorithm in this paper. Detailed data are recorded in Tables
S7 and S8. The comparison of the first two groups, as listed in lower values shown in Tables S3–S6,
proves that the two improved methods used in the EABC algorithm proposed here are effective. The
comparison results of the third group prove once again that the effect of our EABC algorithm is better
than that of both the EABC-A and EABC-B algorithms, which contain only one improved strategy.

Furthermore, the operating cost of resource scheduling C with a unit of US dollars for each
algorithm was calculated with Eq. (18).

C = c1makespan + c2RAM + c3BW (18)

where the variable c1 represents the unit cost of time running, c2 represents the unit cost of memory,
and c3 represents the unit cost of bandwidth. According to Table 1, the values of c1, c2, and c3 are
respectively 3, 0.05, and 0.1. The calculated C for all five algorithms with different task loads within the
homogeneous and heterogeneous resource scheduling are respectively displayed in Figs. 8a and 8b. On
one side, for the homogeneous resource scheduling shown in Fig. 8a, all algorithms show a close value
of C regardless of the task number, although HPSO-EABC holds a slightly lower value. Nonetheless,
the HPSO-EABC exhibited much less cost. Furthermore, the cost reductions can separately reach
$73.47, $31.77, $38.0, and $19.02 compared to the ABC, PSO, EABC, and HPSO algorithms. It
indicates that HPSO-EABC is more cost-efficient for many tasks.

Figure 8: Comparison of resource scheduling costs for (a) homogeneous and (b) heterogeneous
resources

4 Conclusion and Future Work

In summary, the HPSO-EABC algorithm, as a hybrid HPSO with the EABC algorithm, has
been proposed and used for multi-objective task scheduling optimization in a cloud computing
environment.

• The EABC based on the ABC algorithm has been proposed to make the solution more diverse
to avoid falling into local optimum. As a result of the sensitivity in the free search, the EABC
algorithm has enhanced algorithm parallelism.

• The HPSO has been proposed to accelerate the processing speed of heterogeneous resources on
the base of the traditional PSO algorithm.

• The HPSO-EABC that hybrid EABC and HPSO has been proposed to further improve the
stability and convergence of the algorithm, which is not only robust and easy to develop, but
also can effectively reduce resource scheduling completion time and make the virtual machine
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operating load more balanced with low virtual machine operating costs for both homogeneous
and heterogeneous scenarios.

Considering the integration of other algorithms or modifying the optimization strategies of the
EABC algorithm and the inertia weight strategies of the HPSO algorithm could be explored in future
work. The algorithm proposed here may be expanded to and applied in other fields like path planning,
cluster control, and so on.
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