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ABSTRACT

The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in
manufacturing systems. It involves determining the optimal execution sequences for a set of jobs on various
machines to maximize production efficiency and meet multiple objectives. The Non-dominated Sorting Genetic
Algorithm III (NSGA-III) is an effective approach for solving the multi-objective job shop scheduling problem.
Nevertheless, it has some limitations in solving scheduling problems, including inadequate global search capability,
susceptibility to premature convergence, and challenges in balancing convergence and diversity. To enhance its
performance, this paper introduces a strengthened dominance relation NSGA-III algorithm based on differential
evolution (NSGA-III-SD). By incorporating constrained differential evolution and simulated binary crossover
genetic operators, this algorithm effectively improves NSGA-III’s global search capability while mitigating pre-
mature convergence issues. Furthermore, it introduces a reinforced dominance relation to address the trade-
off between convergence and diversity in NSGA-III. Additionally, effective encoding and decoding methods for
discrete job shop scheduling are proposed, which can improve the overall performance of the algorithm without
complex computation. To validate the algorithm’s effectiveness, NSGA-III-SD is extensively compared with other
advanced multi-objective optimization algorithms using 20 job shop scheduling test instances. The experimental
results demonstrate that NSGA-III-SD achieves better solution quality and diversity, proving its effectiveness in
solving the multi-objective job shop scheduling problem.

KEYWORDS
Multi-objective job shop scheduling; non-dominated sorting genetic algorithm; differential evolution; simulated
binary crossover

1 Introduction

The Job Shop Scheduling Problem (JSSP) refers to a class of problems where the objective is
to optimize scheduling by arranging the processing sequence of operations within a set of tasks,
while adhering to task-specific constraints and precedence relations among operations [1]. Job shop
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scheduling, as a critical component of the intelligent manufacturing industry, plays a vital role in
resolving the conflicts between shop floor production and optimization objectives [2]. It facilitates the
methodical advancement of production processes while adhering to constraints imposed by multiple
resources. Concurrently, effective scheduling of the manufacturing process can significantly enhance
resource utilization and production efficiency [3].

JSSP, a prominent focus in intelligent manufacturing research, exemplifies a classic NP-hard
combinatorial optimization challenge, rendering its resolution exceedingly arduous [4]. Due to the
excessive time costs associated with traditional exact methods for solving JSSP, they have become less
practical. Therefore, researchers have turned to heuristic algorithms, such as the Firefly Algorithm [5],
Gray Wolf Optimization (GWO) [6], NSGA-III Algorithm [7], and others to address these intricate
problems. Drawing from the existing research, it becomes evident that heuristic algorithms are effective
in solving JSSP, characterized by swift execution and superior optimization performance. As a result,
they play a pivotal role in the domain of enterprise production scheduling. At the same time, those
algorithms play an important role in the path planning of unmanned aerial vehicles [8], pedestrian
and vehicle detection [9] and other fields. However, existing algorithms often suffer from issues
such as excessive reliance on parameters, poor global search capability, and significant performance
degradation when faced with complex scheduling problems. This paper aims to propose a high-
performance algorithm that reduces the dependence on parameters and incorporates efficient search
methods, allowing it to maintain efficient performance in complex multi-objective JSSP and achieve
thorough exploration of the solution space.

In classical JSSP models, the primary optimization objective has traditionally focused on mini-
mizing the single criterion of the makespan. However, with the advancement of factory automation, a
single scheduling criterion can no longer meet the diverse production requirements. Therefore, in this
paper, we consider a total of five objectives to solve the Multi-Objective Job Shop Scheduling Problem
(MO-JSSP). These objectives encompass total flow time, total tardiness time, average machine idle
time, and implementing a Just-in-Time (JIT) production mode, in addition to the traditional objective
of makespan. When there are too many objectives, traditional algorithms struggle to find suitable
trade-offs and equilibrium points among multiple objectives. Moreover, the solution space of MO-
JSSP is vast, which may lead to computational complexity and long computation time for traditional
optimization algorithms.

The NSGA-III algorithm, proposed by Deb et al. [7] in 2013, represents a significant category of
meta-heuristic evolutionary algorithm. It, as a classical multi-objective optimization algorithm, can be
applied to solve various multi-objective optimization problems. It has shown excellent performance,
particularly when dealing with problems involving three or more objectives, and has garnered
considerable attention from scholars worldwide. However, when addressing the MO-JSSP, traditional
NSGA-III employs the Simulated Binary Crossover (SBX) operator as its crossover mechanism,
leading to limitations, including constrained global search capability and susceptibility to premature
convergence. Additionally, the dominance relation exhibits a poor balance between convergence and
diversity, often leading to a concentration of solutions in a small portion of the Pareto front. To
address these issues and achieve a more favorable equilibrium between the convergence and diversity
aspect of multi-objective optimization problems, this paper introduces enhancements to the traditional
NSGA-III. These algorithm improvements primarily concentrate on three key aspects: evolutionary
genetic operator, dominance relation among non-dominated solution sets, and encoding and decoding
methods tailored for job shop scheduling instances. Through experimental verification, the improved
algorithm shows strong superiority in the MO-JSSP instances.
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The main contributions of this paper are as follows:

• Proposed hybrid constraint differential evolution and simulated binary crossover to enhance
the searchability of NSGA-III and avoid premature convergence.

• Introduced a new reinforced dominance relation to improve the convergence and diversity of
the algorithm.

• Designed effective encoding and decoding methods for MO-JSSP.

The rest of the paper is organized as follows: Section 2 presents the existing related research
work. Section 3 introduces the model of MO-JSSP. Section 4 introduces the algorithm proposed in this
paper. Section 5 conducts comparative tests on the performance of the algorithm. Section 6 provides
a summary of the work in this paper and future research directions.

2 Related Work

JSSP has remained a focal point of research for numerous years, and scholars have undertaken
extensive investigations to find efficient solutions. For the single-objective JSSP, the primary methods
include mathematical programming and metaheuristics. For instance, Meng et al. [10] devised a
novel integer linear programming approach for JSSP. Liu [11] proposed an enhanced metaheuristic
algorithm that effectively improves the resolution capability of candidate solutions, leading to efficient
solutions for the single-objective JSSP.

With the rapid development of the manufacturing industry and the increasing complexity of
customer requirements, traditional single-objective JSSP struggles to accommodate today’s diverse
production requirements. Consequently, more and more scholars have embarked on research into the
multi-objective JSSP. For instance, Liu et al. [12] proposed a genetic algorithm based on a multi-
population multi-objective framework to comprehensively consider scheduling problems with five
interconnected workshops. The effectiveness of the proposed algorithm is evaluated by analyzing the
evaluation metrics. Tan et al. [13] introduced an improved NSGA-II algorithm to address the dual-
resource-constrained flexible job shop scheduling problem. It aims to alleviate production fatigue
and enhance efficiency by jointly scheduling machines and workers. Xu et al. [14] presented a
three-layer coded hybrid algorithm to solve MO-JSSP, accounting for job outsourcing and carbon
emission, effectively addressing pressing environmental issues. Wang et al. [15] proposed a multi-
objective dual-population algorithm capable of continuously improving scheduling solutions during
optimization interaction. Based on previous research, it has been found that many algorithms contain a
significant number of simple crossover and mutation operations, resulting in inefficient search patterns.
Additionally, some algorithms tend to get trapped in local optima, which prevents them from finding
the global optimum solution.

NSGA-III is considered a favorite algorithm for solving multi-objective problems due to its
efficient crossover and mutation operations. These operations help overcome the inefficiency of simple
crossover and mutation patterns found in many algorithms. Many scholars have dedicated their efforts
to improving the NSGA-III algorithm for efficient resolution of MO-JSSP. Wu et al. [16] designed a
flexible job shop scheduling model considering energy factors, combining a dual-control strategy with
the NSGA-III algorithm to enhance the efficiency of the entire JSSP optimization process. Similarly,
Sun et al. [17] proposed a multi-population co-evolution and natural selection NSGA-III algorithm,
capable of effectively optimizing makespan and energy consumption in MO-JSSP. However, these
algorithms are not suitable for handling MO-JSSP with a large number of objectives. They also have
limitations in maintaining the diversity and distribution of solutions as they primarily rely on reference
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points for individual selection. They may struggle to provide a well-distributed set of solutions across
the Pareto front.

In summary, the methods mentioned above have made notable advancements. However, they still
possess certain limitations. As a result, researchers continue to explore new approaches to tackle the
MO-JSSP. The objective of this paper is to present an enhanced NSGA-III algorithm that incorporates
efficient crossover and mutation mechanisms, along with a more effective individual selection method.
These enhancements will enable the algorithm to meet diverse production requirements and effectively
solve the MO-JSSP problem.

3 Multi-Objective Job Shop Scheduling Model
3.1 Problem Description

MO-JSSP can be described as m processing machines {M1, M2, M3, . . . , Mm} for n jobs to be
processed, of which each job i (i = 1, 2, . . . , n) has ni operations. The j-th operation of job i is processed
on a specified machine M, according to a certain process sequence. Denote the j-th operation of job i
by Oij. The processing time Tij for process Oij is determined by the specific performance of the machine
π(Oij) being processed, and the delivery time of job i is Di. The scheduling task is to determine
the optimal machining sequence of n jobs on each machine, subject to all constraints, such that the
optimization objective of the scheduling model is optimal.

3.2 Multi-Objective Scheduling Optimization Model

This model evaluates the production efficiency of the entire scheduling model based on objectives
such as makespan, flow time, tradiness time, average machine idle time and the Just-in-Time (JIT)
production mode. The optimization objective set can be represented as min (f 1, f 2, f 3, f 4, f 5), where
minimizing the makespan and minimizing the total flow time aim to reduce job processing time
and improve the overall efficiency of the production workshop. Minimizing total tardiness time and
adhering to the JIT production mode are intended to maximize customer satisfaction by ensuring
on-time delivery, thereby enhancing the company’s reputation. Minimizing average machine idle time
aims to maximize machine utilization and shorten the overall project duration. The formulas for the
objective functions are as follows:

Makespan:

f1 = min(maxCi) i ∈ {1, 2, . . . , n} (1)

Total flow time:

f2 = min
(∑n

i=1
Ci

)
(2)

Total tradiness time:

f3 = min
(∑n

i=1
max (0, (Ci − Di))

)
(3)

Average machine idle time:

f4 =
(∑m

i=1
Cm −

∑n

i=1
Ci

)
/n (4)
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Just in Time (JIT) production mode time:

f5 = min
(∑n

i=1
(0.5 ∗ max (0, (EE − Ci)) + 0.5 ∗ max (0, (Ci − TT)))

)
(5)

S.T.

Sij2π(Oij) × Zij2π(Oij) − Sij1π(Oij) × Zij1π(Oij) ≥ Tij1π(Oij) × Zij1π(Oij) i ∈ {1, 2, · · · n} , j ∈ {1, 2, · · · ni} (6)

Si(j+1)π(Oij)2
× Zi(j+1)π(Oij)2

− Sijπ(Oij)1
× Zijπ(Oij)1

≥ Tijπ(Oij)1
× Zijπ(Oij)1

i ∈ {1, 2, · · · n} , j ∈ { 1, 2, · · · ni} (7)∑n

i=1

∑ni

j=1
Zijπ(Oij) = 1 (8)

Ci in Eqs. (1) and (2) denotes the time taken by the i-th job to finish the last operation; Di in
Eq. (3) represents the delivery period, which is set to be 1.5 times the completion time of the job on
the machine; In Eq. (4), Cm represents the time required for the m-th machine to complete the last
process of the i-th job; In Eq. (5), EE represents the earliest delivery date, which is set to be 1.2 times
the processing completion time of the job on the machine, and TT represents the latest delivery date,
which is set to 1.8 times the processing completion time of the job on the machine.

In Eqs. (6) and (7), S
(
i, j, π

(
Oij

))
denotes the start time of Oij on the optional processing machine.

Z
(
i, j, π

(
Oij

))
is processed on this machine or not, yes is 1, otherwise 0. Eq. (6) enforces the machine

constraint, ensuring that each machine can process only one operation at a time. Eq. (7) addresses the
job process constraint, ensuring that different operations of a job cannot be processed simultaneously.
Eq. (8) indicates that only one optional machine is selected for an operation, that is, the machine
selected for Oij process is π (Oij).

4 NSGA-III-SD Algorithm for Solving MO-JSSP
4.1 Encoding

In scheduling, an effective encoding method is crucial for the overall optimization of scheduling
solutions [18]. For JSSP, this paper employs a process-based encoding method. In this approach, a
feasible sequence of operations is encoded as [1 2 2 4 3 1 1 2 3 3 4 4], where the number indicates the
job number and the frequency of each number represents the number of operations for that job. For
example, in the encoding scheme, the first “1” represents the first operation for job 1, the first “2”
represents the first operation for job 2, and the second “2” represents the second operation for job 2.
The total length of a sequence of operation codes corresponds to the total number of operations for
the task. Fig. 1 provides an example of a feasible schedule for JSSP.

The key issue of JSSP in Fig. 1 is to properly handle the processing sequence of the operations on
machines M1 and M2. For example, the processing sequence of O12 must be after O11. The processing
sequence of M1 is {O11, O32, O22, O42, O51}, and the processing sequence of M2 is {O52, O41, O31, O12,
O21}.

4.2 Decoding

Since the NSGA-III algorithm is primarily designed for solving continuous optimization problems
and cannot be directly applied to typical discrete combinatorial JSSP, it is necessary to decode the
solutions into operation code formats at the end of each iteration. Furthermore, it is essential to
handle any illegal solutions generated during the decoding process. In this regard, the paper has
devised an effective decoding method to facilitate the transition between the population positions in
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the continuous solution space and the discrete JSSP encoding of operations, as depicted in Fig. 2. The
steps for achieving an effective decoding scheme are as follows:

(1) Obtain the individual position X = [x1, x2, . . . , xL] in the continuous solution space (L is the
total number of processes in the procedure);

(2) The individual positions of the continuous solution are converted to job individual position
codes by rounding down;

(3) Handle the generated illegal solutions effectively, following these steps:

i) Determine whether the number of operations for each job equals the maximum allowed. If it
does, no illegal solutions are generated.

ii) If the number exceeds the maximum, identify the positions of all jobs with an excessive
number of operations, and randomly replace the operations exceeding the maximum with operations
from adjacent jobs, adjusting the counts accordingly.

iii) If the number does not exceed the maximum, randomly select positions outside the index of
the illegal job and fill the missing operations with operations from that job.

(4) Establish a valid correspondence between individual positions and operation encoding.

J5
O51

O52

J2
O21

O22

M1 M2

O21

O51

M1

M2
O41

J4 O41

O42

O31J3
O32

O31
O12

J1 O12

O11

O22O32O11

O52

O42

Operations processing sequence

Machine processing distribution scheme

Figure 1: JSSP scheduling example
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Figure 2: Effective decoding scheduling scheme

Fig. 2 shows an example of the FT06 illegal solution processing scheme. FT06 data set has a scale
of 6 × 6. If the number of jobs in the encoding method exceeds the maximum number of operations
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for this job, it means that there is an illegal solution individual. The effective processing is completed
according to the illegal solution processing steps, which can damage the processing sequence of other
operations to a lesser extent.

After adopting this encoding and decoding scheme, each set of encoding schemes can be regarded
as a chromosome, which facilitates the algorithm to perform corresponding crossover and mutation,
thereby gradually optimizing the scheduling results. Moreover, the proposed approach in this paper
allows for the rapid transformation of individual positions into valid discrete encodings, without
introducing complex calculations that would burden the algorithm. It is a simple and efficient method.

4.3 Simulated Binary Crossover

The Simulated Binary Crossover (SBX) [19] first simulates the single-point crossover process in
binary encoding and then applies this process to the chromosome genes in real-valued encoding. Genes
from parent chromosomes are passed to the next generation through the SBX crossover, where the
crossover probability is set to 1. Assuming that in the population, the parent chromosomes are P1 and
P2, and two offspring are generated through SBX, resulting in chromosomes X 1 and X 2.⎧⎪⎪⎨
⎪⎪⎩

X1 = 1
2

(
P1,i+P2,j

) + βSBX

2

(
P1,i−P2,j

)
(i ∈ (1, 2, · · · N/2) , j ∈ (N/2 + 1, · · · N))

X2 = 1
2

(
P1,i+P2,j

) − βSBX

2

(
P1,i−P2,j

)
(i ∈ (1, 2, · · · N/2) , j ∈ (N/2 + 1, · · · N))

(9)

In Eq. (9), βSBX is a random variable generated as:

βSBX =
⎧⎨
⎩(2μ)

1
γ+1 , μ ≤ 0.5

[2 (1 − μ)]−
1

γ+1 , μ > 0.5
(10)

In Eq. (10), μ is a random number distributed evenly over the interval (0,1) and γ is the
distribution index set to 20.

4.4 Polynomial Mutation

The probability of polynomial mutation is 1/D [20], where D represents the number of all
operations. The form of the mutation operator is P′ = P+X (ui − li), where the individual X obtained
after the parent individual P is mutated is:

X =
⎧⎨
⎩

[
2 ∗ μ + (1 − 2 ∗ μ) (1 − δ1)

γ+1
] 1

γ+1 − 1, μ ≤ 0.5

1 − [
2 ∗ (1 − μ) + 2 ∗ (μ − 0.5) (1 − δ2)

γ+1
] 1

γ+1 , μ > 0.5
(11)

where δ1 = P − li

ui − li

, δ2 = ui − P
ui − li

, μ is a random number uniformly distributed on the interval (0,1), ui

and li are the upper and lower bounds of the i-th individual variable, and γ is the distribution index
set to 20.

SBX and Polynomial mutation are the original evolutionary operators of NSGA-III. However,
its overall search performance is poor and prone to premature convergence. Moreover, its dominance
relation performs poorly in balancing convergence and diversity, often resulting in a small portion of
the solution set being concentrated on the Pareto front. To enhance the algorithm’s performance, new
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evolutionary operators and dominance relations have been introduced based on experimental research,
as described in the following text.

4.5 Constrained Differential Evolution Strategy

Introducing Differential Evolution (DE) into the algorithm’s evolution process can effectively
enhance the diversity of solutions. However, it is important to note that traditional DE operators
scale the difference vector based on the differences, which can result in mutation having a high degree
of randomness and a lack of direction [21]. To control the variation intensity of each individual
in the population, upper and lower limit parameter values are set for each variable in this paper.
First, randomly select two different individuals in the population, use the two selected individuals
to calculate the vector difference V , and then carry out the polynomial mutation of Eq. (12) on V
with the probability Pm, and the mutation probability is 0.15. Then restrict the difference vector V , the
restriction method is as Eq. (13).

Vi =
{

Vi + (ui − li) ∗
(
(2μ)

1
γ+1 − 1

)
, μ ≤ 0.5

Vi + (ui − li) ∗ [1 − 2 ∗ (1 − μ)]
1

γ+1 , μ > 0.5
(12)

Vi =
⎧⎨
⎩

−υi if Vi < −υi

υi if Vi > υi

Vi otherwise
(13)

υi = ui − li

2
i ∈ {1, 2, · · · N} (14)

The specific constraint differential evolution strategy is shown in Algorithm 1.

Algorithm 1: Constraint differential evolution
Input: Parent population Pt

Output: Offspring population Ot

1: for i = 1 to |Pt| do;
2: Randomly select the indices of two individuals r1 �= r2 �= i;
3: V = Pt

r1 − Pt
r2 ;

4: Eq. (12);
5: Constrained Differential Evolution Vector V ;
6: if rand < Pm then;
7: Yi = Pt

i + Vi;
8: else
9: Yi = Pt

i;
10: end if
11: end for
12: Ot = Y ;

The algorithm enhances the diversity of solutions by introducing a constrained differential
evolution mechanism, which allows for better exploration of the search space. Additionally, by setting
upper and lower parameter limits and using polynomial mutation, NSGA-III-SD can control the
mutation intensity of individuals, thereby balancing the trade-off between exploration and exploitation
during the search process and avoiding getting stuck in local optima. This evolutionary approach
enables NSGA-III-SD to excel in global search and prevent premature convergence.
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4.6 Strengthened Dominance Relation Strategy

Elimination and selection of individuals will inevitably occur during the evolution of algorithms.
In multi-objective optimization, the pareto dominance relation is widely used to distinguish the
superiority and inferiority of candidate solutions. Reviewing the existing dominance relations, there
are four representative classes:

1. The first class of dominance relations aims to improve selection pressure by expanding the
dominance region. Examples include methods like S-CDAS [22] and GPO [23].

2. The second class of dominance relations is based on the grid-based approach in the objective
space, such as � − dominance [24] and pa � − dominance [25].

3. The third class of dominance relations introduces a new dominance relation defined using fuzzy
logic, as seen in L− dominance [26].

4. The fourth class of dominance relations is defined by a set of weight vectors, as seen in θ−
dominance [27].

However, most existing dominance relations increase the algorithm’s selection pressure and strug-
gle to balance the trade-off between convergence and diversity [28]. Therefore, this paper introduces
a new dominance relation called Strengthened Dominance Relation (SDR) to reduce the selection
pressure of NSGA-III while maintaining a good balance between convergence and diversity.

The SDR is defined as follows:⎧⎨
⎩

Con (x) < Con (y) , θxy ≤ θ

Con (x) · θxy

θ
< Con (y) , θxy > θ

(15)

where Con (x) = ∑M

i=1 fi (x) is a measure to measure the degree of convergence of X , θxy =
arccos (f (x) , f (y)) represents the acute angle between the target value of two candidate solutions. θ

represents the niche size of each candidate solution, and its size can be adaptively estimated according
to the distribution of the candidate solution set. In this paper, the θ size is set as follows:{

min
q∈P\{p}

θpq|p ∈ P
}

(16)

where θpq denotes the acute angle between any pair of candidate solutions p and q. It is worth noting
that to better handle JSSP where the ideal point is not the origin or where the number of targets is too
large, the minimum and maximum values of each target in the population are normalized as the ideal
and minimum points, respectively, before computing Con (x) and θxy.

According to the first equation in Eq. (15), if the angle between any x and a candidate solution
y is less than θ , and if the convergence of x is smaller than the convergence of y, then x is said to
dominate y. This implies that within each niche, due to the absence of non-dominated solutions with
angles less than θ , the diversity of the non-dominated solution set is naturally maintained. Conversely,
according to the second equation, if two candidate solutions x and y are not in the same location and
if the convergence of y is much worse than that of x, x can still dominate y, where the probability of
x dominating y is negatively correlated with the angle θxy. This ensures the convergence of the non-
dominated solution set.

To better illustrate this process, Fig. 3 depicts the distribution of dominance region in a two-
objective space. On the one hand, y1 is located within the niche range of x, indicating that its
convergence performance is worse than that of x, and x dominates y1. On the other hand, y2 is located
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outside the niche range of x, indicating that its convergence performance is much worse than that of x,
and x dominates y2. The dominance region of x consists of two parts, as given by Eq. (15). Individuals
within the dominant region will be selected for the next iteration. Due to the adaptability of θ , the
dominant region will also adaptively change.

Figure 3: SDR strategy solution set dominance relation distribution

The non-dominated region identified by SDR covers the entire Pareto front, while other domi-
nance relations often shrink to a small region or fail to comprehensively cover the Pareto front. In
comparison, SDR maintains a better balance between convergence and diversity. Additionally, SDR
does not rely on aggregation functions or weight vectors but can adaptively select candidate solutions
with better convergence and diversity. This adaptability allows SDR to handle Pareto front of various
shapes.

4.7 NSGA-III-SD Algorithm

This algorithm operates within the framework of the NSGA-III algorithm and is executed as
follows:

Step 1: Initialize the population and algorithm parameters.

Step 2: Generate the mating pool using tournament selection. Check if the evaluation count is
less than or equal to one-third of the maximum evaluation count. If it is, use constrained differential
evolution as the genetic operator to generate offspring population. Otherwise, use simulated binary
crossover and polynomial mutation to generate offspring population.

Step 3: Merge the parent and offspring populations.

Step 4: Apply the SDR fast non-dominated sorting strategy to divide the merged population
into non-dominated layers. Use the NSGA-III algorithm based on reference points to select suitable
individuals from the last front to determine the next population.

Step 5: According to the encoding and decoding scheme, the individual position is converted into
the operation encoding.
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Step 6: Check if the termination condition is met. If yes, end the iteration. Otherwise, return to
Step 2.

The specific NSGA-III-SD algorithm is detailed in Algorithm 2.

Algorithm 2: NSGA-III-SD algorithm
Input: Population size (N), Number of evaluation (Emax), Number of reference point (R)
Output: Population(P)
1: Random Initialize (N)→P;
2: Generate reference points (R);
3: St = ∅, i = 1;
4: while e < Emax do
5: P′ = Mating Pool-selection (P) (Tournament selection);
6: if e ≤ 1/3 ∗ Emax then
7: Q = Genetic-operation (P’) (Constrained differential evolution);
8: else
9: Q = Genetic-operation (P’) (Simulated binary crossover and Polynomial mutation);
10: end if
11: S = P ∪ Q;
12: SDR-sort(S)→(F1, F2, . . .);
13: repeat
14: St = St ∪ Fi and i = i + 1;
15: until |St| ≥ N;
16: The last layer is Fl = Fi;
17: if |St| = N then
18: return P
19: else
20: Select the remaining individuals from Fl based on the reference point selection strategy

K = N−∪l−1
j=1Fj

21: end if
22: end while
23: return P

5 Experiment and Discussion
5.1 Test Date and Parameter Setting

This study employs a set of 20 widely recognized job shop scheduling test datasets to validate the
algorithm’s effectiveness. These datasets are sourced from Fisher & Thompson (FT) [29], Lawrence
(LA) [30], Adams & Balas & Zawack (ABZ) [31], and Storer & Wu & Vaccari Hard (SWV) [32]. FT
datasets come in different sizes, including 6 × 6, 10 × 10, and 20 × 5. FT06 has processing time in the
range [1,10], and FT10 and FT20 have processing time in the range [1,99]. The ABZ dataset is of size
20 × 15, with processing time in the range [10,40]. SWV dataset includes three different sizes: 20 ×
10, 20 × 15, and 50 × 10. The processing time falls within the range [1,100]. LA dataset consists of six
different sizes: 10 × 5, 15 × 5, 20 × 5, 15 × 10, 20 × 10, and 30 × 10. Processing time is in the range
[5,99].

To validate the effectiveness of the NSGA-III-SD algorithm, it is compared with five advanced
MOEAs: VaEA [33], SRA [34], MaOEACSS [35], NSGA-III [7], and NSGA-II [36]. The algorithm’s
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parameters align with the optimal configurations mentioned in the original paper. All algorithms share
common crossover and mutation probabilities, set at 0.8 and 1/D [35], respectively, with D denoting
problem dimensionality. Additionally, SRA employs a neighborhood size of 20, while MaOEACSS
utilizes an environmental selection threshold set at 0. All codes are programmed using MATLAB
2019b, and the software is run on a system with an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz
and 64 GB RAM, operating on a Windows 10 system.

To ensure experimental fairness, consistent parameter settings are applied to all algorithms.
According to the parameters mentioned by He et al. [35], all the parameters have been set as follows:
initial population size N = 126, maximum number of iterations G = 100, number of runs R = 20, and
number of evaluations E = N ∗ G.

5.2 Performance Metric

To evaluate the quality, diversity, and distribution of the algorithm’s solutions, two commonly
used multi-objective evaluation metrics, Coverage of two sets (C) [37] and Hypervolume (HV) [38] are
selected for analyzing the results. The specific introductions of these two metrics are as follows.

5.2.1 Coverage of Two Sets (C)

C (X1, X2) = | {a′′ ∈ X2; ∃a′ ∈ X1 : a′�a′′} |
X2

(17)

where X 1 and X 2 represent two different Pareto solution sets, C (X1, X2) denotes the ratio of solutions
in X 2 that are either dominated by or equal to solutions in X 1, and its value ranges between 0 and 1.
Specifically, when C (X1, X2) = 1, it indicates that all solutions in X 2 can be found in X 1, and they are
either dominated by or equal to solutions in X 1. Conversely, when C (X1, X2) = 0, it signifies that no
solution in X 2 is dominated by any solution in X 1.

5.2.2 Hypervolume (HV)

HV (P, r) = p∪
x∈p

v (x, r) a (18)

In this equation, P represents the Pareto solution set obtained by each algorithm, and r is
the reference point. x represents a normalized Pareto solution, and v represents the volume of the
hypercube. The HV metric assesses the diversity and distribution of Pareto solutions within the
objective space. A larger HV value signifies superior overall algorithmic performance.

5.3 Comparison Experiment

Table 1 provides a comparative analysis of the NSGA-III-SD algorithm against five other
MOEAs, focusing on the C metric. All data represent the average outcomes from 20 independent runs
for each algorithm, with superior results emphasized. A larger value of C means better convergence
of the algorithm. The final row of the table contains statistical data on how frequently the NSGA-
III-SD algorithm outperformed or underperformed the other comparison algorithms in terms of C
value. Out of 20 test instances, the NSGA-III-SD algorithm obtained 19, 20, 20, 20, and 18 superior
results, while VaEA, SRA, MaOEACSS, NSGA-III, and NSGA-II obtained 1, 0, 0, 0, and 2 superior
results, respectively. It is evident that the NSGA-III-SD algorithm demonstrates strong performance
and yields higher-quality solutions.
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Table 1: C-metric results between the NSGA-III-SD algorithm and other MOEAs

a: NSGA-III-SD b: VaEA c: SRA d: MaOEACSS e: NSGA-III f: NSGA-II

Problem n × m C (a,b) C (b,a) C (a,c) C (c,a) C (a,d) C (d,a) C (a,e) C (e,a) C (a,f) C (f,a)

FT06 6 × 6 0.741 0.855 0.957 0.701 0.832 0.770 0.860 0.789 0.346 0.881
FT10 10 × 10 0.960 0.785 0.998 0.412 0.949 0.759 0.982 0.731 0.244 0.912
FT20 20 × 5 0.979 0.891 0.990 0.776 0.977 0.902 0.982 0.860 0.982 0.868
ABZ7 15 × 20 0.988 0.972 0.996 0.931 0.980 0.965 0.988 0.964 0.984 0.967
ABZ8 15 × 20 0.989 0.946 0.999 0.854 0.986 0.960 0.993 0.960 0.984 0.964
ABZ9 15 × 20 0.983 0.944 0.997 0.816 0.970 0.948 0.983 0.952 0.979 0.960
SWV01 20 × 10 0.985 0.927 0.996 0.854 0.988 0.933 0.989 0.906 0.986 0.926
SWV04 20 × 10 0.985 0.939 0.996 0.840 0.983 0.939 0.989 0.917 0.984 0.925
SWV06 20 × 15 0.983 0.923 0.996 0.810 0.976 0.941 0.985 0.943 0.975 0.950
SWV10 20 × 10 0.986 0.950 0.995 0.910 0.983 0.966 0.993 0.944 0.981 0.973
SWV12 50 × 10 0.988 0.926 0.995 0.877 0.984 0.941 0.989 0.933 0.986 0.950
SWV15 50 × 10 0.988 0.940 0.993 0.911 0.989 0.955 0.988 0.940 0.989 0.953
LA01 10 × 5 0.983 0.787 0.987 0.656 0.973 0.815 0.979 0.768 0.978 0.785
LA06 15 × 5 0.977 0.902 0.986 0.864 0.980 0.914 0.985 0.872 0.973 0.922
LA11 20 × 5 0.973 0.918 0.982 0.886 0.984 0.900 0.982 0.902 0.979 0.918
LA21 15 × 10 0.985 0.935 0.997 0.880 0.986 0.921 0.991 0.936 0.983 0.950
LA26 20 × 10 0.982 0.966 0.994 0.925 0.985 0.956 0.987 0.956 0.987 0.955
LA31 30 × 10 0.982 0.966 0.993 0.912 0.987 0.950 0.985 0.951 0.983 0.962
LA33 30 × 10 0.993 0.962 0.996 0.921 0.990 0.952 0.991 0.960 0.991 0.962
LA35 30 × 10 0.985 0.950 0.992 0.896 0.988 0.935 0.987 0.957 0.985 0.949

NSGA-III-SD VaEA SRA MaOEACSS NSGA-III NSGA-II

>/< 19/1 20/0 20/0 20/0 18/2

These comparative findings underscore the outstanding performance of the NSGA-III-SD algo-
rithm in addressing MO-JSSP, attributed to its exceptional evolutionary strategy. Unlike the singular
search approach of NSGA-III, NSGA-III-SD incorporates advanced evolutionary techniques like
constrained differential evolution and simulated binary crossover. These techniques enable a diverse
evolution mode and robust global exploration capability, mitigating the risk of premature convergence.
The algorithm’s effective exploration of the solution space contributes to the production of higher-
quality solutions and overall performance in addressing the MO-JSSP.

In addition to conducting a comparative analysis, we performed further analysis to provide a
deeper understanding of the results. This section explores the algorithm’s performance across various
datasets and problem complexities. Notably, the NSGA-III-SD algorithm consistently exhibited
exceptional performance even when faced with an increasing number of jobs and machines. This
indicates its robustness and scalability in handling most instances of the MO-JSSP. Furthermore,
analysis reveals that the competitive edge of the NSGA-III-SD algorithm becomes increasingly
prominent as problem complexity escalates. This suggests that the algorithm’s powerful capacity for
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exploratory endeavors remains potent when confronted with intricate and demanding problems. The
effective exploration of the solution space and the ability to adapt to complex problems contribute to
the NSGA-III-SD algorithm’s superior performance and the production of higher-quality solutions.

Following 20 independent runs of each algorithm, where the average HV values are computed, a
Friedman rank-sum test is performed. Table 2 displays the ranks of all algorithms with a significance
level of 0.05. Among all algorithms, NSGA-III-SD secures the second position, closely following SRA,
and exhibits a remarkably low p-value of 3.2915E-16, indicating significant disparities in the outcomes
across all algorithms. The HV metric serves as an indicator of the solution’s convergence and diversity.
The high ranking of NSGA-III-SD implies that it attains superior convergence and diversity within
its solution set.

Table 2: Friedman ranking of HV for all algorithms

MOEAs HV

Rank P

NSGA-III-SD 4.75 3.2915E-16

VaEA 2.30
SRA 5.55
MaOEACSS 4.70
NSGA-III 1.70
NSGA-II 2.00

The superiority of NSGA-III-SD can be attributed to its strategic utilization of the SDR approach
during individual selection. This approach not only selects individuals with superior fitness but
also takes advantage of individuals with potential benefits. In comparison to methods that solely
rely on dominance relations for individual selection and elimination, SDR incorporates a niche
technique based on candidate solutions. By autonomously determining the niche size according to
the distribution of candidate solutions, NSGA-III-SD maintains a more favorable balance between
convergence and diversity within each niche. This ability allows the algorithm to avoid solution
overcrowding and enhance the diversity of the solution set, especially in complex MO-JSSP scenarios.
Furthermore, NSGA-III-SD’s rank significantly surpasses that of NSGA-III, demonstrating a sub-
stantial improvement in the performance of the enhanced algorithm and effectively illustrating the
effectiveness of various strategies.

In conclusion, the hybrid evolutionary approach of NSGA-III-SD exhibits enhanced search
capability in solving MO-JSSP. Moreover, employing the SDR non-dominance ranking strategy,
instead of the original sorting method in the NSGA-III algorithm, effectively balances the trade-off
between population convergence and diversity.

Of course, this experimental study has certain limitations that should be acknowledged. One of
the limitations is that the scalability of NSGA-III-SD has not been extensively tested, especially when
dealing with hyperscale scheduling problems. Hyperscale problems may involve more complex con-
straints and decision variables, potentially impacting the performance of NSGA-III-SD. Therefore,
further research can explore the performance of NSGA-III-SD on hyper-scale scheduling problems
and evaluate its adaptability in handling highly discontinuous or non-convex Pareto front.
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6 Conclusion

For the MO-JSSP with five objectives: makespan, total flow time, total tardiness time, average
machine idle time, and just-in-time production mode, a strengthened dominance relation NSGA-
III algorithm based on differential evolution, NSGA-III-SD, is proposed. NSGA-III-SD employs
a constrained differential evolution strategy during the initial evolution stage to prevent premature
convergence and enhance the trait of convergence. Furthermore, it replaces the original dominance
relation of NSGA-III with the SDR non-dominance sorting strategy, effectively managing the trade-
off between population convergence and diversity. The experimental results on MO-JSSP tests
undeniably demonstrate the superior performance of NSGA-III-SD. It outperforms other algorithms
in both the C metric and the HV metric, indicating higher-quality solutions as well as improved
diversity and distribution of the solution set. These results highlight the strong overall performance
and practical advantage of NSGA-III-SD in solving MO-JSSP.

The proposed algorithm has significant theoretical implications as it contributes to the under-
standing of multi-objective optimization in job shop scheduling. It provides insights into the effective
utilization of a strengthened dominance relation and the integration of a constrained differential evolu-
tion strategy, contributing to the advancement of optimization algorithms in complex manufacturing
systems.

Due to the need to maintain the Pareto front in NSGA-III-SD, the size of the set increases with the
problem scale. Therefore, for hyperscale problems, NSGA-III-SD may have low convergence accuracy
and require more computational resources. Future research can focus on designing more efficient
evolutionary approaches to address this limitation.

In future work, we plan to further enhance the algorithm and expand its applications. We consider
incorporating a dynamic resource allocation mechanism into the algorithm to solve the flexible
job shop scheduling problem [39], or introducing a workshop allocation mechanism to address the
distributed job shop scheduling problem [40].
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