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ABSTRACT

To improve the productivity, the resource utilization and reduce the production cost of flexible job shops, this paper
designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem
of flexible job shop considering workpiece batching. Firstly, a mathematical model is established to minimize
the maximum completion time. Secondly, an improved two-layer optimization algorithm is designed: the outer
layer algorithm uses an improved PSO (Particle Swarm Optimization) to solve the workpiece batching problem,
and the inner layer algorithm uses an improved GA (Genetic Algorithm) to solve the dual-resource scheduling
problem. Then, a rescheduling method is designed to solve the task disturbance problem, represented by machine
failures, occurring in the workshop production process. Finally, the superiority and effectiveness of the improved
two-layer optimization algorithm are verified by two typical cases. The case results show that the improved two-
layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer
optimization algorithm. By setting the different numbers of AGVs (Automated Guided Vehicles) and analyzing
the impact on the production cycle of the whole order, this paper uses two indicators, the maximum completion
time decreasing rate and the average AGV load time, to obtain the optimal number of AGVs, which saves the cost
of production while ensuring the production efficiency. This research combines the solved problem with the real
production process, which improves the productivity and reduces the production cost of the flexible job shop, and
provides new ideas for the subsequent research.
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1 Introduction

With the increasing automatic level in the manufacturing industry and the constant changes
in market demand, it is necessary to improve manufacturing flexibility and resource utilization, as
well as reduce the production cycle to meet the gradually formed market demand characterized by
multi-variety, small batch, product customization and short production cycle [1]. The production
mode of manufacturing enterprises has also shifted from the traditional special line production to
the flexible multi-variety and small batch mixed-flow production mode [2]. The flexible workshop,
which combines the advantages of traditional production run and flexible production, can fit the
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product variety, differentiated mixed line production well, and it has become a mainstream mode that
manufacturing enterprises use to deal with multi-variety and small batch mixed line production [3],
especially in the military, aerospace, automotive fields.

In the flexible production mode, most parts are processed and transferred according to a certain
batch size, except for some large or special equipment parts that need to be produced in a single piece
[4]. AGVs are widely used in the production process of flexible workshops to complete the transfer
task of parts in the production process because of their automation, high efficiency and flexibility [5].
The quality of the workpiece batching and the transfer efficiency of AGVs will have a great impact
on the job shop scheduling. Therefore, the flexible job shop scheduling problem considering AGV
transportation and workpiece batching constraints has certain theoretical significance and engineering
application value.

Flexible Job Shop Scheduling Problem (FJSP) is an extension of the Job Shop Scheduling
Problem (JSP), which breaks through the limitation of JSP that each process is machined only on
one determined machine tool. For FJSP, each process can be machined on multiple optional machine
tools [6], which is more in line with actual production needs. Research on FJSP has generally focused
on solving the problem of machine optimal scheduling, i.e., choosing a reasonable processing machine
for each process of each workpiece and formulating a reasonable processing sequence to optimize
production [7,8]. However, most studies of FJSP scheduling optimization are mainly based on single-
piece scheduling [9–11], ignoring the fact that the flow and transportation process of the workpieces
among different processes and the machining and transshipment processes of most parts are carried
out according to a certain batch in the flexible production mode, which is not in line with the actual
production process.

In summary, although FJSP can solve sub-problems such as process sequencing and machine
selection in a way that a certain batch of workpieces is regarded as a whole, the division of the batch in
production has a greater impact on optimization objectives such as the completion time [12]. Therefore,
the study of the workpiece batch scheduling problem of the flexible job shop is of great significance in
guiding the actual production and improving the utilization of machine tools. This problem is more
complex than the traditional FJSP, and the solution should not only consider process sequencing,
machine selection but also consider batch division including the number of batches and the batch size
of each sub-batch [13]. The job shop scheduling problem considering workpiece batching has received
academic attention in recent years; however, the overall research is relatively scarce. Wang et al. [14]
proposed the Hybrid Particle Swarm Algorithm to solve the batch scheduling problem in solar cell
manufacturing, stating that machine allocation, batch determination and production sequencing
for each batch were linked and needed to be jointly optimized. Low et al. [15] demonstrated that
batch scheduling of workpieces could improve productivity and solved the common batch scheduling
problem in production. Sun et al. [16] proposed the Genetic Algorithm for batch scheduling workpieces
in equal quantities, which could optimize the batch division and the machining order of sub-batches
simultaneously. Yan et al. [17] used the PSO and the improved PSO to solve the variable batch flow
shop problem. And this result showed that the improved PSO increased the range, depth and speed
of particle search; therefore, the optimal solution capability and stability of the improved PSO were
better than the standard PSO and other methods. Although the above studies have achieved some
results in batch division, they have neglected the link between the batch requirements of the product
and the dual resource (machine tools and AGVs) constraints.

Integrating machine tools with AGVs for scheduling will speed up the material flow and improve
the production management efficiency of the workshop. Therefore, more and more scholars are
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starting to integrate AGVs and machine tools for scheduling. In the research of dual-resource
scheduling problems, most scholars use intelligent algorithms to solve them. Liu et al. [18] established a
mathematical model of dual-resource scheduling containing machine tools and AGVs for the problem
of segment AGV flexible job shop scheduling optimization. They designed an improved genetic
algorithm to solve the problem and verified the superiority of the algorithm through a standard
case. Zhu et al. [19] studied flexible job shop scheduling containing AGVs to minimize the maximum
completion time. They proposed an improved genetic algorithm and compared it with two classical
heuristic algorithms in experiments to verify the feasibility and effectiveness of the new algorithm.
Sanches et al. [20] proposed to use an adaptive GA to solve the scheduling problem when considering
the simultaneous use of machines and AGVs to minimize the manufacturing cycle time. They verified
the computational results in larger scenarios and compared the adaptive GA with other methods,
which obtained better results. However, the above studies only consider the static constraints of
machine tools and AGVs, ignoring the fact that dynamic abnormal disturbance events will inevitably
occur during the actual production process, such as equipment failures, emergency order insertion,
delivery time changes and other uncertain disturbance factors [21], which affects the reliable and
stable operation of the production system. And these uncertainties have a greater impact on the
original production plan and even cause the scheduling program formulated in advance to be no longer
effective. With the continuous application of IoT information technology in the production process,
such as sensors, machine vision, etc., the relevant information in workshop production can be sensed
in real-time by a series of intelligent workshop devices [22]. These technological means can summarize
and analyze the real-time production data to help the enterprise to master the real-time production
status of the workshop in order to prevent the impact of the dynamic abnormal disturbance events on
the production in advance, so the study of the flexible job shop rescheduling is of great significance.

Therefore, this paper designs an improved two-layer optimization algorithm for the dual-resource
scheduling optimization problem of flexible job shops considering workpiece batching to minimize
the maximum completion time. The outer algorithm uses the improved PSO to solve the workpiece
batching problem and uses the obtained workpiece batching scheme as an input to the inner algorithm.
The inner layer algorithm uses an improved GA to solve the dual-resource scheduling problem.
Moreover, a rescheduling method is designed for disturbance events during the production process.
The effectiveness of the two-layer optimization algorithm is verified by a typical case. The impacts of
different numbers of AGVs on the production process are analyzed, and the optimal number of AGVs
is determined by the maximum completion time decreasing rate index.

The contributions of this paper to the dual resource scheduling optimization problem of flexible
job shop considering workpiece batching are as follows:

1. For the dual-resource scheduling optimization problem of flexible job shop considering
workpiece batching, a dual-resource scheduling optimization model considering workpiece batching
is established to minimize the maximum completion time.

2. Combining the advantages of PSO and GA, this paper designs an improved two-layer opti-
mization algorithm to solve the dual-resource scheduling problem considering workpiece batching.
For the outer algorithm PSO, it is improved by using linearly decreasing inertia weights, time-varying
acceleration factors, etc. For the inner algorithm GA, a three-layer coding method is designed, and the
Hill-Climbing strategy, the hybrid selection strategy of roulette and tournament, adaptive crossover,
adaptive variation and other improve methods are also added. The case results show that compared to
the ordinary two-layer optimization algorithm, the improved two-layer optimization algorithm takes
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less time and has a higher average productivity in solving the dual-resource scheduling optimization
problem for flexible job shop considering workpiece batching.

3. Due to the uncertainty of the scheduling environment, some abnormal events may occur in real
industry production, which may cause the initial scheduling scheme to be unexecuted. This paper takes
the failure of processing equipments as the disturbance event, and designs a rescheduling method. The
simulation results of the test case show that a better result can be achieved, which is more in line with
the real production process.

The other parts of the work are as follows:

Section 2 describes and analyzes the dual-resource scheduling optimization problem of flexible job
shop considering workpieces batching and constructs a mathematical optimization model; Section 3
designs an improved two-layer optimization algorithm for solving the dual-resource scheduling
optimization problem of flexible job shop considering workpieces batching; Section 4 verifies the
validity of the algorithm through a typical case study, and gives a recommendation on the number
of AGVs; Section 5 summarizes and discusses the research content of this paper.

2 Problem Description and Modeling

The dual-resource scheduling optimization problem of flexible job shop considering workpiece
batching can be described as:

When a flexible job shop is performing a production task, there are n types of workpieces
J = {J1, J2, . . . , Jn}, which need to be processed on m machine tools M = {M1, M2, . . . , Mm}; there
are k AGVs that are responsible for the workpiece transfer task V = {V1, V2, . . . , Vk}; each type of
workpiece is divided into a certain number of production batch B = {B1, B2, . . . , Bn}; each sub-batch
of production will be taken as a whole for the transfer and processing task; each workpiece has at least
one process and each process can choose any machine tool that meets the machining requirements.

Assumptions:

1. Each production sub-batch is transported and processed as a whole;
2. Different production sub-batches can be processed in parallel without being subject to the

process sequence constraint;
3. Only one production sub-batch can be processed on one machine tool at the same time;
4. After the machine tool has started machining, the process cannot be interrupted unless there

is a malfunction in that machine tool;
5. All machine tools have unlimited material buffer capacity, and only one AGV can be parked

at a time;
6. The AGV travels at a constant speed, independent of its unloaded and loaded transportation

status;
7. The AGV shall not be interrupted during the transfer of workpieces unless there is a conflict

or malfunction;
8. The machining process does not take into account switching times for different workpieces in

the same production sub-batch;
9. The installing material time and the removing material time of the machine tools are included

in the corresponding machining time;
10. The installing material time and the removing material time of the AGVs are included in the

corresponding transportation time;
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11. In the initial state, the workpiece rough is in the warehouse, and the AGVs are parked at the
outbound platform in the warehouse;

12. No consideration of the AGV power constraint.

To facilitate the establishment of the mathematical model, according to the above assumptions,
the introduced parameter symbols and decision variables are defined in Table 1.

Table 1: Symbols and their definitions

Symbols Definitions

n Number of workpiece types
m Number of machines
k Number of AGVs
J Set of job categories
M Set of machines
V Set of AGVs
b Batch program b = {b1, b2, . . . , bn}
Ji The ith type of workpieces, i ∈ {1, 2, 3, . . . , n}
Mi The ith type of machine tools, i ∈ {1, 2, 3, . . . , m}
Vi The ith AGV, i ∈ {1, 2, 3, . . . , k}
NJi Total quantity of the workpiece type i
Bi Number of production sub-batches divided by workpiece type i
NBij Number of workpieces in production sub-batch j of the workpiece type i
NOi Total number of processes of the workpiece type i
Oijq Process q of the jth production sub-batch of workpiece type i
MOiq Set of optional machining tools of the qth process of workpiece type i
Mijq Machining machine tool selected for the qth process of the jth production

sub-batch of workpiece type i
Tiqc Machining time on machine tool c for the qth process of workpiece type i
ZijqVa The ath AGV is responsible for performing the transfer task of process Oijq

TnoS
ZijqVa

Unload start time for the ath AGV to perform the transfer task of process Oijq

Ts
ZijqVa

Unload end time for the ath AGV to perform the transfer task of process Oijq

TZijqVa Time consumed by the ath AGV to perform the transfer task of process Oijq

TcS
Oijq

Machining start time of process Oijq on machine tool c
TcE

Oijq
Machining end time of process Oijq on machine tool c

ETi Completion time of workpiece type i
FAGV Maximum carrying capacity of AGV
C A sufficiently large positive integer
D Order lead time
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Decision variables:

αc
Oijq

=
{

1, Oijq is procesesd on c
0, other cases

(1)

βc
Oijqfgh

=
{

1, Oijq is procesesd on c before Ofgh

0, other cases
(2)

χ a
Oijq

=
{

1, Oijq is transported by the ath AGV
0, other cases

(3)

δa
Oijqfgh

=
{

1, Oijq is transported by ath AGV before Ofgh

0, other cases
(4)

where, i, f = 1, 2, . . . , n; q, h = 1, 2, . . . , NOi; c = 1, 2, . . . , m; a = 1, 2, . . . , k; j, g = 1, 2, . . . , Bi.

Objective function:

Tmin = min
(
maxn

i=1ETi

)
(5)

where, maxn
i=1ETi denotes the one with the largest completion time among all types of workpieces.

Constraint conditions:

1 < NBij ≤ min (FAGV , NJi) (6)

�
Bi
j=1NBij = NJi (7)

TcS
Ofgh

+ C
(

1 − βc
Oijqfgh

)
≥ TcE

Oijq
(8)

�m
c=1α

c
Oijq

= 1 (9)

TnoS
ZfghVa

+ C
(

1 − δa
Oijqfgh

)
≥ TE

ZijqVa
(10)

�k
a=1χ

a
Oijq

= 1 (11)

TcS
Ofgh

≥ max
(

TcE
Oijq

×
(

1 − βc
Oijqfgh

)
, TE

ZfghVa

)
(12)

TS
ZijqVa

≥ max
(

TnoS
ZijqVa

, TcS
Oij(q−1)

)
(13)

Mijq ∈ MOiq (14)

TcE
Oijq

≤ TcS
Oij(q+1)

(15)

TcE
Oijq

= TcS
Oijq

+ Tikc × NBij (16)

TcE
ZijqVa

= TS
ZijqVa

+ TZijqVa (17)

maxn
i=1ETi ≤ D (18)
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Eq. (6) represents the workpiece batch constraint, i.e., the number of workpieces in any production
sub-batch should be less than or equal to the minimum value of both the AGV’s single maximum load
capacity and the total number of workpieces in that category. And the number of workpieces in any
production sub-batch should be greater than one. Eq. (7) indicates that the sum of workpieces in the
different sub-batches after workpiece batching should be equal to the total number of workpieces of
that type. Eq. (8) indicates that only one production sub-batch can be processed on one machine tool
at the same time. Eq. (9) indicates that a process in any production sub-batch can only be machined on
one machine tool at the same time. Eq. (10) indicates that one AGV can only transfer workpieces of one
production sub-batch at the same time. Eq. (11) indicates that the workpieces of any production sub-
batch can be only transferred by one AGV at the same time. Eq. (12) represents the process start time
constraint, i.e., the start processing time of any process should be greater than or equal to the maximum
value of both the end time of the AGV loaded transferring the process and the end time of the current
machine tool processing the previous task. Eq. (13) represents the AGV loaded transfer start time
constraint, i.e., the start time of any process of the AGV’s load transfer should be greater than or
equal to the maximum value of both the unload end time of the AGV and the end time of the previous
process. Eq. (14) represents the machine tool selection constraint, i.e., any process must choose a
machine tool from the set of available machine tools. Eq. (15) represents the process constraints, i.e.,
any workpiece can be added to the next process only after its current process is completed. Eq. (16)
indicates that the machine tool is not allowed to be interrupted during machining. Eq. (17) indicates
that the AGV is not allowed to be interrupted during the transfer task. Eq. (18) represents the delivery
period constraint, i.e., the maximum completion time cannot exceed the delivery period.

3 Design of Improved Two-Layer Optimization Algorithm

In this section, an improved two-layer optimization algorithm is designed to solve the dual-
resource scheduling optimization problem of flexible job shop considering workpiece batching by
combining the advantages of the PSO and the GA. The outer layer algorithm adopts the improved PSO
to solve the workpiece batching problem, and the inner layer adopts the improved GA to solve the dual
resource scheduling problem. The basic solution flowchart of the improved two-layer optimization
algorithm is shown in Fig. 1.

3.1 Design of Outer Layer Batch Optimization Algorithm

The outer layer algorithm in this paper uses the PSO to solve the problem of workpiece batching.
And the solved workpiece batching scheme is used as the input to the inner layer dual-resource
scheduling algorithm to solve the dual-resource scheduling scheme under this batching scheme. Then
the fitness of the dual-resource scheduling scheme solved by the inner layer algorithm is used as the
fitness of the outer layer algorithm to evaluate the quality of that batching scheme.

Commonly used heuristic optimization algorithms include intelligent optimization algorithms
such as the Simulated Annealing (SA), the GA, and the PSO. The principle of the PSO is simple and
easy to implement, and fewer parameters need to be adjusted. The PSO also has fast convergence and
high efficiency. The outer layer batch optimization algorithm is based on the PSO for solving, but the
algorithm’s global search ability is relatively poor, and it is easy to fall into the local optimum [23,24].
Therefore, the PSO is improved as follows.

Each particle i in PSO algorithm contains a D-dimensional velocity vector vij = [vi1, vi2, . . . , viD]
and a position vector xij = [xi1, xi2, . . . , xiD], and in each round of iterations, the particle continuously
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updates its position and velocity by two optimal values. The equations for updating the velocity and
position of a particle are shown in Eqs. (19) and (20).

vt+1
ij = ωvt

ij + c1r1

(
pt

ij − xt
ij

) + c2r2

(
pt

gj − xt
ij

)
(19)

xt+1
ij = xt

ij + vt+1
ij (20)

where, vij is the velocity vector; xij is the position vector; t is the number of current evolutionary
generations; ω is the inertia weight; c1 and c2 are the individual learning factor and the group learning
factor, respectively; r1 and r2 are random numbers between [0, 1].

Algorithm Initialization &
population Initialization

Start

End

Inner layer algorithm

Update the historical optimal solution(pi)
& global optimal solution(pg)

Iteration finisheded?

Output best result
job batching scheme(b_best) &

dual resource scheduling
scheme(S_best)

Update the vi & xi

Take the first b as the input to the inner
algorithm respectively

population initialization

Calculate the fitness of
the chromosome(Fc)

Iteration finisheded?

Return to the best scheme S to the outer
layer under this batching scheme

Is all b calculated?

Yes

No

Workpiece batching
schemes {b} set

Fitness of {b} set

Yes

Yes

No

No

Workpiece batching
schemes {b} set

Fitness of {b} set

Take the next b as the input of
the inner layer algorithm

respectively

Selecting
Crossover
Mutation

(b) Inner layer algorithm(a) Outer layer algorithm

Figure 1: Flow chart of dual-resource batch scheduling optimization in flexible job shop

This paper refers to the linearly decreasing inertia weights proposed by Shi et al. [25] to improve
ω. The aim is to enable the algorithm to search globally as much as possible in the early iteration and
gradually converge to a better local region to conduct a finer search at a later stage, thus finding the
global optimal solution. The improved inertia weighting formula is shown in Eq. (21). In addition,
this paper refers to the time-varying acceleration factor proposed by Ratnaweera et al. [26] to improve
c1 and c2 in the algorithm. In the early iteration of the algorithm, setting a larger c1 and a smaller c2

allows individuals to traverse the entire search space and does not converge to the local optimal region
quickly; while in the late iteration of the algorithm, a smaller c1 and a larger c2, can motivate the
particles to converge to the global optimal region. The improved learning factor calculation formulas
are shown in Eqs. (22) and (23).

ωt = ωs − ωs − ωe

K
· t (21)

where, K is the total number of evolutionary generations; ωt is the corresponding inertia weight of the
current number of evolutionary generations; ωs is the initial inertia weight of the algorithm, ωe is the
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final inertia weight of the algorithm, generally based on experience: ωs = 0.9, ωe = 0.4.

c1 = c1s +
(

1 − t
K

)
· (c1e − c1s) (22)

c2 = c2s + t
K

· (c2e − c2s) (23)

where, c1s and c2s are respectively the initial values of c1 and c2; c1e and c2e are respectively the final
values of c1 and c2, generally based on experience: c1s = c2s = 0.5, c1e = c2e = 2.

In this paper, the workpiece batching method uses the equal batching principle under the relevant
constraints of Eqs. (6)–(18). For workpieces of type a with a total production volume NJa that is a
composite number, equalization of batches must be possible; However for workpieces with NJa that
is a prime number, it is not possible to equalize the batches accurately. Therefore, this paper uses the
following method for approximation: Firstly, the NJa of the workpiece is subtracted by one to obtain
the idealized NJa. Secondly, the equal batch operation is carried out following the idealized NJa to
obtain all the divisible batch numbers Bi that can be divided by the idealized NJa. For the different
divisible batch numbers, one of the production sub-batches is randomly selected to be added one to
satisfy the actual total production of the workpieces. The basic solution flow is shown in Fig. 2.

Start

The number of workpieces
of type a (NJa)

NJa is composite number?

NJa-1

The number of legitimate batches
of workpieces of type a

End

Equal batch operation

Randomly select the number of a sub-batch + 1

Equal batch operation
Yes

No

Figure 2: Flow chart of workpiece batching method

The specific steps of the outer layer improved particle swarm algorithm for solving the workpiece
batching scheme are as follows:

Step 1: Initialize the total number of evolutionary generations K and the population size N of the
outer layer algorithm. Calculate the number of legal batches into which n types of workpieces can be
divided.

Step 2: Set the current evolutionary generation t = 1, and randomly initialize the velocity vi and
position xi of all particles i according to the number of legal batches, where the initial position xi of
each particle i forms the set B of the initial workpiece batching scheme.
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Step 3: Sequentially take the workpiece batching schemes [b1, b2, . . . , bn] from set B as the inputs to
the inner layer dual-resource scheduling algorithm, and use the fitness F(xi) of the best dual-resource
scheduling scheme searched under each workpiece batching scheme as the fitness of that workpiece
batching scheme.

Step 4: Update the historical optimal solution pi = [pi1, pi2, . . . , pin] for each particle i and the
global optimal solution pg = [pg1, pg2, . . . , pgn] for the population.

Step 5: Check whether the termination condition of the algorithm t = K is satisfied. If so,
output the optimal workpiece batching schemes bbest = [b1_best, b2_best, . . . , bn_best] and the dual-resource
scheduling scheme S, and the algorithm iteration is finished; otherwise, go to Step 6.

Step 6: Within the legal search space, update vi and xi according to Eqs. (19)–(23).

Step 7: The updated workpiece batching schemes [b1, b2, . . . , bn] are all passed into the inner layer
dual-resource scheduling algorithm and F(xi) is computed by calling the inner layer algorithm.

Step 8: Go to Step 4 and perform t++.

3.2 Design of Inner Lay Dual-Resource Scheduling Algorithm

The inner dual resource scheduling algorithm is based on the GA because it has strong global
search ability, and the GA is easy to combine with other algorithms, which can solve nonlinear
and discontinuous problems. However, the GA coding and decoding are more complex, slower
convergence, and the GA is more dependent on the initial population [27,28]. Therefore, the dual
resource scheduling scheme is solved by the improved GA in this section, as follows.

3.2.1 Encoding

Each chromosome is encoded in three layers: the Order Select (OS) layer, the Machine Select (MS)
layer, and the AGV Select (AS) layer.

The OS layer adopts decimal coding. The specific coding rule for each gene of the chromosome
is in the form of “a.b”, where a indicates the workpiece number and b indicates the batch number.
The times that a number appears on the chromosome indicates the total number of processes of the
workpiece. The order in which the numbers appear indicates the corresponding processes. All processes
of all workpieces from different batches are randomly combined into a complete OS layer chromosome.
As shown in Fig. 3, if a chromosome sequence contains 12 genes {a1, a2, . . . , a12}, the first occurrence
of the number “2.1” on the gene a1 means “Workpiece 2 Batch 1 Process 1”, and the decimal “2.1”
occurs three times, meaning that “Workpiece 2 Batch 1” has three processes, and so on.

2.1 1.2 2.21.1 2.1 1.2 2.2 1.1 2.1 2.1 1.2 1.1

Figure 3: Example of the OS layer coding scheme

MS layer adopts integer coding mode, and the chromosome length of MS layer is the same as the
OS layer. The numbers on each gene represent the machine tools of the corresponding process. MS
layer coding mode is shown in Fig. 4: the three processes of the number “workpiece 1 batch 1” on
the first three genes of the chromosome choose machine tool 2, machine tool 5, and machine tool 6,
respectively. And so on, we can get the selected machine tools for all the processes of all the workpieces
of different batches.
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2 5 46 5 7 1 8 3 3 7 6

Workpiece 1
batch 1

Workpiece 1 
batch 2

Workpiece 2
batch 1

Workpiece 2 
batch 2

Figure 4: Example of the MS layer coding scheme

The AS layer uses integer coding, and each of its genes corresponds to the OS layer one by one.
The AS layer coding is shown in Fig. 5. The number “2” on the gene a1 indicates “Workpiece 2 Batch
1”, which chooses AGV No. 2 to perform the transfer task, and so on, to obtain the AGV selection
scheme for all processes.

2 1 13 3 2 1 3 2 3 1 2

Figure 5: Example of the AS layer coding scheme

3.2.2 Population Initialization

To improve the quality of the initial population of the genetic algorithm and maintain the diversity
of the population, this paper designs different initialization methods for the three-layer coding method.
The OS layer chromosomes are first initialized through a completely random way, and then further
optimized using the Hill-Climbing Algorithm, which effectively improve the quality of the initial
solution and the convergence speed of the algorithm.

The MS layer chromosomes are initialized through a combination of a random selection strategy
and a global selection strategy, where the random selection ensures the diversity of the population and
improves the global search capability of the algorithm, and the global selection strategy ensures the
load balancing of the machine tool.

The AS layer chromosomes are initialized by a random method firstly. However, the task
allocation to AGVs during the scheduling process is based on the principles of first-come-first-served
and load-balancing, which specifically means that when there is an idle state AGV waiting for a task to
be allocated, the AGV closest to the task node is selected to perform the transported task; when there
is no idle AGV waiting to be allocated, the task is batched to the AGV with the shortest cumulative
load time.

3.2.3 Selection

The Roulette Selection Method allows lower fitness individuals to have some probability of being
selected, maintaining population diversity to some extent. Tournament Selection is a method of
choosing better-adapted individuals to the next generation based on random selection, thus increasing
the probability of good genes being passed on in the population. This paper adopts a mixed selection
strategy of the roulette selection and the tournament selection to choose half the size of the population
individuals, respectively.

3.2.4 Crossover

The OS layer chromosomes and the AS layer chromosomes use Precedence Operation Crossover
(POX), as shown in the Fig. 6. The MS layer uses Multi-point Crossover (MPX), as shown in the
Fig. 7.
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P_1 1 3 2 4 5 2 1 4 5

C_1 1 3 2 4 5 2 1 4 5

Offspring_1

Parent_1

P_2 2 1 5 3 4 5 2 1 4

C_2 2 1 3 5 4 1 2 5 4

Offspring_2

Parent_2

3

3

3

3

S1={1,3,5}, S2={2,4}

Figure 6: POX crossover process

P_1 3 2 4 5 2 4 1 3 6

C_1 3 6 4 1 3 4 4 3 2

Offspring_1

Parent_1

P_2 2 6 5 1 3 5 4 1 2

C_2 2 2 5 5 2 5 1 1 6

Offspring_2

Parent_2

1

6

1

6

Figure 7: MPX crossover process

Whether a chromosome crosses over is related to the size of the crossover probability Pc. Too large
Pc may lead to the breakage of good individuals in the population; too small Pc leads to a reduction in
the convergence speed of the algorithm and in the global search capability [29]. In this paper, adaptive
crossover probability is used, which is calculated as shown in Eq. (24).

Pc =

⎧⎪⎨
⎪⎩

Pc1 − (Pc1 − Pc2)
(
fbig − favg

)
fmax − favg

, fbig ≥ favg

Pc2, fbig < favg

(24)

where, fmax is the largest fitness of all individuals in the population; favg is the average fitness of all
individuals in the population; fbig is the larger fitness of the two individuals to be crossed; Pc1 and Pc2

are the crossover parameters, generally based on experience: Pc1 = 0.9, Pc2 = 0.6.

3.2.5 Variation

Both the OS and AS layers of the chromosome use the reciprocal variation operation, as shown
in Fig. 8. The gene position is randomly selected on the MS layer chromosome and its corresponding
workpiece number and process number are determined, and then one other machine tool is randomly
selected to replace the current machine tool from machine collection of this process, as shown in Fig. 9.
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P 1 5 2 4 3 5 3 1 4

C 1 5 5 4 3 2 3 1 4

offspring

parent

Figure 8: Interchange mutation operation

P 6 3 2 5 6 4 2 3 5

C 6 4 1 5 6 4 6 3 5

offspring

parent

2

2

J1 J2 J3

3 41 2 5 6

The set of optional machine tools

Figure 9: Multi-point mutation operation

When setting the mutation probability Pm, if Pm is too large, the genetic algorithm will be similar
to the ordinary random search algorithm, thus losing its meaning; however, if Pm is too small, it is not
easy to generate new individuals, which may cause the algorithm to fall into the local optimal solution
during the search process [29]. This paper uses the adaptive mutation probability to solve the above
problem, and the calculation formula is shown as Eq. (25).

Pm =

⎧⎪⎨
⎪⎩

Pm1 − (Pm1 − Pm2)
(
fbig − favg

)
fmax − favg

, fbig ≥ favg

Pm2, fbig < favg

(25)

where, Pm1 and Pm2 are the variation parameters, generally based on experience: Pm1 = 0.1, Pm2 = 0.01.

3.2.6 Selection of Parameters

The selection of parameters for the GA and the PSO algorithm has an impact on many factors,
such as the accuracy and speed of the algorithm and relates to the quality of the results and system
performance [30,31]. Therefore, it is necessary to analyze the parameters in the two-layer optimization
algorithm.

Since the evolutionary generation K and population size N have a large impact on the solution
performance of the improved two-layer optimization algorithm in this paper, these two parameters
need to be adjusted according to the actual situation during the optimization process. The solution
is unstable if K is too small, and the optimization process is very time-consuming if K is too large.
The smaller N is easy to fall into the local optimum; the larger N can improve convergence and find
the global optimal solution faster, but the computational amount of each iteration will also increase
accordingly. Moreover, when N increases to a certain level, continuing to increase N will no longer
have a significant effect. The following paper discusses the sensitivity of K and N.
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3.3 Design of Rescheduling Method Based on Disturbance Events

The scheduling process in a manufacturing shop is full of uncertainties, such as machine failures,
emergency order insertions, etc. [32]. By timely triggering rescheduling to generate a new scheduling
program, the production plan is adjusted according to the new program to ensure the stability of
production process. In this paper, the disturbance event takes machine failure as an example.

3.3.1 Rescheduling Strategy

Rescheduling consists of two main aspects: one is the time of starting a new round of scheduling,
and the other is the method used for the new round of scheduling. In the application case of this paper,
the strategy of rescheduling is to start a new round of scheduling immediately when the disturbance
event occurs. You et al. [33] introduced the sequential deviation and completion time deviation as the
rescheduling evaluation indexes to choose from the two rescheduling methods-right-shift rescheduling
and complete rescheduling. In terms of all aspects of the indexes, the performance of the scheme
obtained from complete rescheduling is better. In this paper, the rescheduling method adopts the
complete rescheduling method, i.e., in a new round of scheduling, all the current unfinished workpieces
are included in the object set of this scheduling.

When a sudden equipment failure occurs, according to the state of each workpiece and each
process in the set of processing objects, the object of rescheduling will be reestablished. According
to the processing state, the workpieces and the working processes are divided into three categories:
completed processes, processing processes and waiting for processing processes. The processes that are
interrupted by equipment failures, as well as the processes of newly arrived workpieces are added to
the set of waiting for processing processes. The rescheduling object is the set of processes that are being
processed and those that are waiting to be processed, and the information about the idle moments of
the equipment is updated at the same time.

3.3.2 Rescheduling Process

Before the disturbance event occurs, the workpiece information and equipment information
are known and will not be changed. The processing of the product is executed according to the
initial scheduling plan until all workpieces have been processed. When a disturbance event occurs,
a rescheduling operation is performed according to the processing status of each workpiece and the
status of each piece of equipment. The rescheduling process is shown in Fig. 10.

4 Case Studies

This section initially compares the improved two-layer optimization algorithm with the ordinary
two-layer optimization algorithm through a case in Section 4.1, and verifies the superiority of the
improved two-layer optimization algorithm of this paper through the solution results. Then, a new
case is added in Section 4.2, and the outputs of the two cases are obtained to mutually corroborate the
effectiveness of the algorithm.

4.1 Algorithmic Superiority Verification

4.1.1 Description of Case 1

The production demand of a production case is 6 kinds of workpieces (J1–J6). The number of each
kind of workpiece is shown in Table 2. The process flow data of each workpiece is shown in Table 3,
where the data indicates the machining time of the process on the corresponding machine tools and the
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“—” indicates that the process cannot be processed on the corresponding machine tools. The distance
between the workshop machine tools, the warehouses and the individual machines is shown in Fig. 11.
There are 8 machine tools involved in this case (M1–M8), where: the blue nodes are machine tools;
the yellow nodes are warehouses; the number between each node indicates the distance between the
nodes. In addition, a total of 4 AGVs perform the workpiece transfer task: the transportation speed
is 30 m/min, and the single load capacity is 10 workpiece.

Enter the production information and
initialize the algorithm parameters

Abnormal events
occurred?

Running dual resource
scheduling algorithm

Output the initial scheme

Determine the workpieces and
machines tool for the next scheduling

Running dual resource
scheduling algorithm

Output the rescheduling
scheme

All workpieces are
machined?

Start

End

No

Yes

Yes

No

Figure 10: Rescheduling process

Table 2: The production batch of each workpiece of case 1

Piece

Workpiece J1 J2 J3 J4 J5 J6

Production quantity 40 30 20 40 30 20

Table 3: Workpiece process flow of case 1

Min
Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J1

1 — 6 — 8 — — 9 7
2 5 — 8 — 7 10 — —
3 7 11 — 6 — — — 9
4 — — 9 — 5 — 8 —

(Continued)
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Table 3 (continued)

Min
Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J2

1 10 — 9 — — 7 — 11
2 — 9 — 8 — 12 — 5
3 8 — 6 10 — — 7 —
4 — 7 — — 12 — 6 8
5 — 8 — 10 — 7 — —

J3

1 5 — 7 — 6 — 8 —
2 — 7 — 9 — — — 9
3 — — 12 6 — 9 — —
4 10 9 — — 8 — 11 —

J4

1 — — 7 11 — 8 — 9
2 — 8 — 9 — — 10 —
3 9 — 10 — 12 — 8 —
4 — 12 — — 10 9 — 7

J5

1 — — 9 — 8 — 5 10
2 7 9 — 11 — — — —
3 10 — 8 — — 6 — 9
4 — 7 11 — 9 — 12 —

J6

1 8 — 5 — — 10 — 7
2 10 — — — 9 8 — 6
3 — — 10 9 7 — 11 —
4 — 8 — 10 — 12 — 9

Figure 11: Electronic map of workshop

4.1.2 Parameter Sensitivity Analysis

Since K and N have an enormous impact on the solution performance of the improved two-
layer optimization algorithm in this paper, a sensitivity analysis of these two important parameters
is conducted here. To analyze the parameter K , N is set to 50 and other parameters keep constant
using the control variable method. The above case is solved by setting different K. Different values of
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K are calculated 10 times, and then, the average of the calculated results is analyzed. The results of
the experimental statistics are shown in Fig. 12. The experimental results show that when K is set too
small, the global optimal solution cannot be searched; when K is set to 100, the algorithm can search
for the global optimal solution in the solution space, but continuing to increase K will only increase
the computation time of the algorithm and will not search for a better solution. Therefore, the optimal
K setting in this paper is 100.

Figure 12: Effect of the K on the optimal fitness

To analyze the parameter N, K is set to 100 and other parameters keep constant using the control
variable method. The above case is solved by setting different N. The experimental results are shown
in Fig. 13. The experimental results show that the global search ability of the algorithm increases as
N increases; However, when N exceeds 50, the global optimal solution searched remains stable as N
continues to increase, only that the number of evolutionary generations of the algorithm decreases.
Therefore, the optimal N in this paper is 50.

Figure 13: Effect of the N on the optimal fitness
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4.1.3 Algorithm Comparison

In the same configuration environment, the above case is solved by the improved two-layer
optimization algorithm and the ordinary two-layer optimization algorithm, respectively.

The outer layer of the ordinary two-layer optimization algorithm uses the traditional PSO
algorithm with particle updating just following Eqs. (19)–(20), whereas the improved PSO algorithm
has particle updating using Eqs. (19)–(23) for each of the parameters. The inner layer algorithm of
the ordinary optimization algorithm adopts the traditional GA algorithm, which uses a completely
randomized method to generate the initial population for the OS, MS and AS layers in the initialization
stage of the population. However, the improved two-layer algorithm in this paper designs different
initialization methods for the three layers of coding methods, where the OS layer is initialized by a
completely randomized method first and then further optimized by a hill-climbing algorithm, and the
MS and AS layers are initialized by a combination of a random selection strategy and a global selection
strategy. The ordinary optimization algorithm only uses roulette selection in the selection phase, and
the improved two-layer algorithm uses a hybrid selection strategy of roulette selection and tournament
selection to select individuals of half the population size separately. The crossover and variation of the
ordinary optimization algorithm are randomized without using Eqs. (24) and (25), where: the c1 and
c2 in the ordinary two-layer optimization algorithm are both set to 2; ω is set to 0.9; Pc and Pm are
set to 0.9 and 0.05, respectively; K is set to 100 and N is set to 50 in both algorithms. The rest of the
parameters are the same. According to the production information of the above case, 10 calculations
are carried out, respectively. The results comparison is shown in Fig. 14. The iteration curve of the
optimal fitness is shown in Fig. 15.

Figure 14: Comparison of the optimal fitness of the two algorithms running 10 times

The solution results of the above two algorithms show that the minimum value of the optimal
solution of the improved two-layer algorithm for 10 runs is 734 min, while the minimum value
of the optimal solution of the ordinary two-layer optimization algorithm is 786 min, which is an
increase in productivity of 6.62%. The average value of the optimal solution of the improved two-layer
optimization algorithm is 754.7 min, while the average value of the optimal solution of the ordinary
two-layer algorithm is 815.4 min, which is an increase in the average productivity of 7.44%. Since the
ordinary two-layer optimization algorithm is easy to fall into the local optimal solution in the iteration
process, its solution effect is relatively poor.
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Figure 15: Curves of the optimal fitness for the two algorithms

4.2 Algorithmic Effectiveness Verification

To prove the validity of the algorithm and the model, and to solve case 1 and case 2 simultaneously,
the operation results of improved two-layer optimization algorithm in different cases are given to verify
each other.

4.2.1 Description of Case 2

The production requirements for case 2 are shown in Table 4; the process flow data for each
workpiece is shown in Table 5; the e-map still uses Fig. 10, and the number between each node indicates
the distance between nodes. In this case, there are three AGV workpiece transfer tasks, all with a speed
of 30 m/min and a single load capacity of 10 pieces.

Table 4: The production batch of each workpiece of case 2

Workpiece J1 J2 J3 J4 J5 J6

Quantity 40 36 25 40 30 20

Table 5: Workpiece process flow of case 2

Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J1

1 5 — 4 — — 6 — 8
2 — 6 — 9 9 — 6 —
3 5 — 7 — — 8 — —
4 — 5 — 5 — — 6 —
5 — — 6 — — 9 — 8

(Continued)
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Table 5 (continued)

Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J2

1 5 7 — — 7 — — —
2 — — 8 7 — — 8 10
3 6 — — 7 — 8 — —
4 — 8 — 9 — 10 — 8

J3
1 7 — — 6 — 8 — —
2 — 5 6 — 8 — — 4
3 7 — — 8 — — 8 —

J4

1 — — 11 — — 15 — 10
2 — 8 — 8 — — 5 —
3 8 — 9 — — 10 — —
4 — 6 — — 7 — — 8

J5

1 — — 5 — 6 — — 8
2 — 8 — 8 — — 6 —
3 — — — — 8 — — —
4 6 — 8 — — — 9 —
5 — 7 — — 5 — — 10

J6

1 — — 9 — 8 — 11 —
2 6 — — — 8 — — 9
3 — 5 8 — — — 9 —
4 10 — — 8 — 15 — —
5 — 9 — — 11 — — 10

4.2.2 Scheme Demonstration

With minimizing the maximum completion time as the objective function, the improved two-layer
algorithm designed in this paper is used to solve case 1 and case 2, where the number of evolutionary
generations is set to 100 and the population size is set to 50. The iterative curves of the algorithm
are shown in Fig. 16. The batching information of the solution process is shown in Tables 6 and
7. The optimal workpiece batching scheme is shown in Tables 8 and 9. The optimal dual-resource
scheduling scheme is shown in Figs. 17 and 18, where: the rectangles of different colors in the Gantt
chart represent different workpieces; the numbers on top of the rectangle blocks indicate the batch
number; the sequence of the same workpieces appearing in the same batch indicates the process order.

Fig. 19 shows the machine working time and AGV working time for case 1 and case 2, respectively,
where the machine working time is the cumulative machining time of the workpiece, and the AGV
working time is the AGV load traveling time. Meanwhile, both skewness and kurtosis are used to
evaluate machine processing time, AGV load time and the load balancing of them.
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Figure 16: Curves of the algorithm iteration

Table 6: Iterative results of the batch optimization scheme of case 1

Workpiece J1 J2 J3 J4 J5 J6 Completion time (min) Iterations

Batching scheme 10 5 4 8 15 5 915 1
5 10 2 8 5 2 915 2
10 15 5 20 3 4 915 3
8 6 10 10 10 10 867 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 6 4 4 3 5 746 74
4 3 2 4 3 2 744 75
4 3 4 8 5 5 744 76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 5 5 5 6 2 744 100

Table 7: Iterative results of the batch optimization scheme of case 2

Workpiece J1 J2 J3 J4 J5 J6 Completion time (min) Iterations

Batching scheme 10 4 5 20 6 2 1099 1
8 4 5 20 5 2 1099 2
8 4 5 8 6 2 1002 3
5 8 5 20 6 5 1002 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 6 5 10 6 2 869 69
4 4 5 5 5 2 857 70
8 4 5 8 6 2 857 71

(Continued)
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Table 7 (continued)

Workpiece J1 J2 J3 J4 J5 J6 Completion time (min) Iterations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 6 5 10 6 2 857 100

Table 8: Optimal workpiece batching scheme of case 1

Piece

Workpiece J1 J2 J3 J4 J5 J6

Production quantity 40 30 20 40 30 20
Batch divided 4 3 2 4 3 2

Table 9: Optimal workpiece batching scheme of case 2

Piece
Workpiece J1 J2 J3 J4 J5 J6

Production quantity 40 36 25 40 30 20
Batch divided 4 4 5 5 5 2

In statistics, Skewness can be used to measure the asymmetry of the probability distribution of
a random variable and is calculated as Eq. (26). When the value of Skewness is close to 0, it means
that the data is relatively evenly distributed on both sides of the average value, indicating a more even
distribution. Kurtosis measures the kurtosis of the probability distribution of a real random variable
and is calculated as Eq. (27). A Kurtosis above 3 indicates a relatively sharp distribution of data, and
a Kurtosis below 3 indicates a relatively flat distribution of data. During the calculation, Kurtosis is
usually subtracted by 3 to adjust the kurtosis of the normal distribution to 0, i.e., a Kurtosis of less
than 0 indicates that the data are more average.

Skewness = �n
i=1 (xi − x)

3

nd · s3
(26)

Kurtosis = �n
i=1 (xi − x)

4

nd · s4
− 3 (27)

where, x is the average value of the data; s is the standard deviation of the data; nd is the sample size
of the data. After calculation, Skml_case1 ≈ 0.084, Kuml_case1 ≈ −1.439 and Skml_case2 ≈ 0.340, Kuml_case2 ≈
−0.404 for the machine load time. SkAl_case1 ≈ −0.857, KuAl_case1 ≈ −0.864 and SkAl_case2 ≈ −1.500,
KuAl_case2 ≈ −0.172 are for the AGV load time. The resulting data distribution is relatively symmetrical
and more balanced.
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Figure 17: Dual-resource scheduling gantt chart of case 1

Figure 18: Dual-resource scheduling gantt chart of case 2
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Figure 19: Dual resource working time

4.2.3 Demonstration of Rescheduling Scheme

To verify the performance of the algorithm in solving the rescheduling schemes, it is assumed
that machine tool 3 fails at 500 min on case 1 and 400 min on case 2 in the production process of
the workshop, and both the required repair time is 50 min. The Gantt chart of the system after the
rescheduling is shown in Figs. 20 and 21, where the two black dashed lines indicate the start and
end time of the failure, and the black rectangle in between indicates the repair time of the faulty
machine tool.

Figure 20: Rescheduling gantt charts of case 1
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Figure 21: Rescheduling gantt charts of case 2

From the above discussion and result analysis, it can be concluded that the improved two-layer
optimization algorithm designed in this paper can effectively solve the dual-resource scheduling
optimization problem of flexible job shop considering workpiece batching, and the solution effect
is significantly better than the ordinary two-layer optimization algorithm. In addition, the algorithm
and rescheduling strategy designed in this paper can deal with the abnormal disturbance events in a
timely and effective manner and obtain good rescheduling results.

4.3 AGV Quantity Analysis

In the actual operation environment of the workshop, although increasing the number of AGVs
can directly improve the operational efficiency, too many AGVs will cause themselves to wait for each
other, which will easily cause congestion in the transportation area. Therefore, reducing the number of
AGVs under the requirement of meeting the task time can effectively reduce the congestion of AGVs
and the probability of waiting for each other [34]. On the other hand, as the number of AGVs increases,
the cost is increasing. Therefore, determining a reasonable number of AGVs under the premise of
meeting the processing requirements is of great significance in reducing the congestion and the cost
of AGVs.

To explore the number of AGVs, an actual production case is analyzed below. There are 6 types
of workpieces to be processed in the case. The production batch of each type of workpiece is shown
in Table 10. The process of workpiece machining flow is shown in Table 11. The electronic map of the
workshop equipment layout is shown in Fig. 10.

There are 8 machine tools in the workshop. The traveling speed of AGV is 25 m/min, and the
maximum single load capacity is 10 pieces. The number of AGVs is changed sequentially from 1–8
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by the enumeration method, and the best scheduling scheme under this number of AGVs is obtained
by iterative optimization of the algorithm. The maximum completion time decreasing rate [35] and
the average AGV load time are used as evaluation indexes for the optimal number of AGVs, and the
formulas for both are Eqs. (28) and (29).

Tagv = �k
k=1Ak

k
(28)

Rd = Tk − Tk+1

Tk

(29)

where, Tagv denotes the average AGV load time; Rd denotes the maximum completion time decreasing
rate; k denotes the number of AGVs; Ak denotes the load time of the kth AGV, i = 1, 2 . . . k; Tk denotes
the maximum completion time of k AGVs.

The above case is solved using the improved two-layer optimization algorithm designed in this
paper with minimizing the maximum completion time as the objective function. The algorithm’s K is
set to 100 and N is set to 50. The optimal workpiece batching scheme is obtained as shown in Table 12.
The optimal solution iteration curves, the effect on maximum completion time are shown in Fig. 22.
The effect on maximum completion time decreasing rate, and the effect on average AGV load time at
different numbers of AGVs are shown in Fig. 23. Figs. 24–27 respectively show the Gantt charts of the
optimal dual-resource scheduling scheme for the cases with the number of AGV configurations of 2,
4, 6, and 8.

The results are analyzed as follows: From Fig. 22, it can be seen that when the number of AGVs
exceeds 6, the increase in the number of AGVs has very little effect on reducing the maximum
completion time. This is because the idle time and the path waiting time of AGVs keep increasing
with the increase in the number of AGVs, while other conditions remain constant. From Fig. 23, it
can be seen that when the number of AGVs exceeds 6, Rd and Tagv of the AVG is very small as the
number of AGVs increases. Taken together, the optimal number of AGVs for this case is 6.

Table 10: The production batch of each workpiece

Piece

Workpiece J1 J2 J3 J4 J5 J6

Production quantity 40 30 20 50 25 36

Table 11: Workpiece process flow

Min
Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J1

1 7 — 9 — — 6 — 8
2 — 5 — 8 — — 6 —
3 — 7 — — 10 8 — 6
4 — — 7 — 9 — 8 —

(Continued)
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Table 11 (continued)

Min
Workpiece Process M1 M2 M3 M4 M5 M6 M7 M8

J2

1 7 — — 5 — — 8 —
2 — 9 8 — 6 11 — 7
3 8 — — 10 — — 7 —
4 10 — 9 — 12 — — 8

J3

1 — 5 7 — 6 — 8 —
2 5 — — 7 — — 6 —
3 — — 12 6 — 9 — —
4 10 11 — — 9 — — 12

J4

1 — — 10 8 — 9 7 —
2 — 7 — 11 — — 9 —
3 9 — 12 — — 10 — 11
4 — 12 — 9 10 — — —
5 — — 8 — 11 — 12 —

J5

1 — 10 — 8 — 7 — 9
2 — 8 — — 9 — 6 —
3 8 — 10 — 11 — — 9
4 11 — — 10 — 9 — —

J6
1 8 — — 7 — 6 — 5
2 — — 11 — 6 — — —
3 — 5 — 6 — — 8 —

Table 12: Optimal workpiece batching scheme

Piece

Workpiece J1 J2 J3 J4 J5 J6

Production quantity 40 30 20 50 25 36
Batch divided 4 3 2 5 5 4
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Figure 22: Simulation results of algorithm performance

Figure 23: Effect of different numbers of AGVs on Rd and Tagv
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Figure 24: Scheduling scheme with 2 AGVs

Figure 25: Scheduling scheme with 4 AGVs
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Figure 26: Scheduling scheme with 6 AGVs

Figure 27: Scheduling scheme with 8 AGVs
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5 Conclusion

To solve the dual-resource scheduling optimization problem of flexible job shops considering
workpiece batching, this paper comprehensively considers workpiece batching, dual-resource schedul-
ing and rescheduling problems. This paper establishes a mathematical model of dual-resource flexible
job shop scheduling considering workpiece batching with the optimization objective of minimizing the
maximum completion time and designs an improved two-layer optimization algorithm. Meanwhile, a
random event-driven rescheduling method is designed for randomly occurring disturbance events in
the workshop production process.

The case shows that:

1. The improved two-layer optimization algorithm is less likely to fall into local optimal solutions
during the iteration process compared to the ordinary two-layer optimization algorithm.

2. The improved two-layer optimization algorithm can handle the disturbing events in the meter
shop well and achieve a good rescheduling program.

3. The improved two-layer optimization algorithm can find the optimal number of AGVs in the
actual operating environment.

The solving method proposed in this study combines with the actual production process, reduces
the production cost of flexible operations to a certain extent and provides a new way of thinking for
subsequent research. Meanwhile, it should be admitted that there are still some defects in the modeling
process and the algorithm design process. In future research, we will increase the constraints to make
it closer to the actual production, such as considering AGV power shortage, so that the disturbance
events will be complete to better fit the actual situation.
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