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ABSTRACT

To address the challenges of high complexity, poor real-time performance, and low detection rates for small target
vehicles in existing vehicle object detection algorithms, this paper proposes a real-time lightweight architecture
based on You Only Look Once (YOLO) v5m. Firstly, a lightweight upsampling operator called Content-Aware
Reassembly of Features (CARAFE) is introduced in the feature fusion layer of the network to maximize the
extraction of deep-level features for small target vehicles, reducing the missed detection rate and false detection
rate. Secondly, a new prediction layer for tiny targets is added, and the feature fusion network is redesigned
to enhance the detection capability for small targets. Finally, this paper applies L1 regularization to train the
improved network, followed by pruning and fine-tuning operations to remove redundant channels, reducing
computational and parameter complexity and enhancing the detection efficiency of the network. Training is
conducted on the VisDrone2019-DET dataset. The experimental results show that the proposed algorithm reduces
parameters and computation by 63.8% and 65.8%, respectively. The average detection accuracy improves by 5.15%,
and the detection speed reaches 47 images per second, satisfying real-time requirements. Compared with existing
approaches, including YOLOv5m and classical vehicle detection algorithms, our method achieves higher accuracy
and faster speed for real-time detection of small target vehicles in edge computing.
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1 Introduction

Recently, urban traffic is increasingly being transformed into smart systems due to the accelerated
development of smart city construction and the explosive growth of vehicle ownership. Object
detection is essential in computer vision, and is a prerequisite technology for many practical problems,
such as traffic scene analysis, intelligent driving, and security monitoring [1]. Therefore, vehicle object
detection is recognized as a key technology and core content in the research of intelligent vehicle
systems and intelligent transportation systems, and it has significant research value and practical
significance.

The development of Vehicle object detection has undergone two main stages: traditional algo-
rithms and deep learning-based methods [2–4]. Traditional vehicle detection algorithms mostly rely on
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sliding windows and manually designed complex feature representations to accomplish the detection
task, but the performance of this method is often limited by the quality and quantity of the manually
designed features. It is also computationally expensive and less robust in complex scenarios. In
comparison, deep learning-based vehicle detection algorithms can achieve better performance in
various computer vision problems by learning high-level feature representations. They have advantages
like high accuracy, fast speed, and strong robustness in complex conditions. With the advancement
of convolutional neural networks, the current trend in vehicle detection algorithms is to develop
deeper and more complex networks to achieve higher accuracy. However, improving accuracy often
comes at a cost. The existing vehicle detection algorithms exhibit high complexity, parameter count,
and computational requirements, rendering them unsuitable for deployment on mobile and terminal
devices with limited hardware resources. Moreover, real-world scenarios pose challenges for vehicle
detection, including small-sized targets, high speed, complex scenes, limited extractable features, and
significant scale variations. These issues render existing detection algorithms inadequate for detecting
small vehicle targets. Therefore, the purpose of this study is to propose an optimized model for vehicle
detection, specifically addressing the shortcomings of previous studies, such as high detection costs,
poor detection rates, and inaccurate detection of small-sized vehicle targets [5,6], based on analyzing
and comparing existing deep learning object detection models.

The organization of the remaining files is as shown below. In Section 2, this paper introduced some
related research on vehicle object detection. Section 3 provides the benchmark detection model this
article selected. Section 4 describes the specific improvement plan in detail. The detailed experimental
settings, experimental results, experimental analysis, and comparison with other models are presented
in Section 5. The final section presents the conclusion.

2 Related Works

Currently, vehicle object detection algorithms based on deep learning can be grouped into two
types based on their detection methods. The first type is the two-stage detection algorithm using
candidate boxes, with RCNN as its typical representative [7]. It predicts the final target box by
generating a set of candidate boxes, and then classifying and regressing these boxes. The second type
is the one-stage detection algorithm using regression, with YOLO as its typical representative [8–11].
It directly convolves and pools the image to generate candidate boxes, and performs classification and
regression at the same time to detect the vehicle object. The two-stage detection algorithm is more
accurate but poorer detection speed and higher computational complexity. In contrast, the one-stage
detection algorithm focuses more on the balance between detection speed and accuracy. It is widely
used for vehicle detection.

Yang et al. [12] proposed an improved vehicle detection system that combines the YOLOv2
detection algorithm with the long short-term memory (LSTM) model. Initially, all vehicle categories
were amalgamated and low-level features were removed. The detected targets were then enhanced by
a dual-layer LSTM model (dLSTM) to improve the accuracy of detecting vehicle objects. However,
the improved model is somewhat unwieldy and does not effectively reduce computational load.
Stuparu et al. [13] proposed a high-performance single-stage vehicle detection model based on the
RetinaNet architecture and the Cars Overhead With Context dataset (COWC). The model is accuracy
improved to 0.7232, and the detection time is approximately 300 ms. Zhang et al. [14] proposed a
vehicle detection network (SGMFNet) using self-attention. This network is enhanced by adding the
Global-Local Feature Guidance (GLFG) module, Parallel Sample Feature Fusion (PSFF) module,
and Inverted-residual Feature Enhancement (IFE) module to improve the feature extraction capability
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and multi-scale feature fusion effect of small vehicle targets. However, the network is too large to
be deployed on embedded devices. Zhao et al. [15] proposed an attention-based inverted residual
block structure called ESGBlock to replace the original backbone network in YOLOv5 detection
algorithm. This method effectively reduces parameters and computation. The GSConv module is
introduced in the feature fusion layer with knowledge distillation to address the problem of high-
dimensional feature information loss and complexity. Although the improved algorithm is more in
line with the requirements of lightweight deployment on embedded devices, it sacrifices part of the
detection accuracy and does not improve detection of small objects. Mao et al. [16] introduced the
Spatial Pyramid Pooling (SPP) module based on the YOLOv3 detection algorithm, and combined
it with Soft Non-Maximum Suppression (Soft-NMS) and the inverted residual technology to detect
small and occluded vehicles better. However, the network structure of the model is too complex, which
makes training difficult. Cheng et al. [17] optimized the YOLOv4 detection algorithm by introducing
lightweight backbone networks such as MobileNetV3, as well as the Multiscale-PANet and soft-merge
modules, which improved the mAP index to 90.62% while achieving 54 FPS and 11.54 M parameters.
These optimization measures have simplified the model and accelerated the detection speed. However,
the model’s detection accuracy did not improve significantly. Liu et al. [18] proposed a lightweight
feature extraction network, Light CarNet, based on the YOLOv4 detection algorithm. According
to the characteristics of detecting vehicle targets at different scales, a four-scale feature bidirectional
weighted fusion module was designed for classification and regression. The experiments demonstrated
a 1.14% increase in mAP value and improved detection of small vehicle targets while maintaining real-
time detection. However, this method also increased the complexity and number of parameters of the
model.

The above-mentioned method has contributed to vehicle target detection, but three important
issues still need to be urgently addressed.

(1) Detection of vehicles with small targets and fuzzy targets is poor.

(2) Faced with complex network structures, the models need a lot of computing resources and
costly model training.

(3) In practical applications, it is essential to not only meet the requirement for high accuracy but
also consider real-time performance.

To address the above-mentioned issues, this paper proposes a real-time and efficient small
target vehicle detection algorithm based on the YOLOv5m detection algorithm, with lightweight
improvements to enhance the detection ability for small target vehicles. In conclusion, the following
are the contributions made by this paper.

(1) To enhance the model’s utilization of deep semantic information, this paper proposes the use of
a lightweight upsampling operator instead of the traditional nearest-neighbor interpolation operator.
By reorganizing contextual features, it effectively improves the detection of vehicle objects in complex
scenes.

(2) To improve the detection of small target vehicles, this paper introduces a dedicated small target
prediction layer within the model’s output prediction layers. This enhances the model’s focus on small
target vehicles.

(3) This paper proposes an enhanced FPN + PANet architecture to improve the fusion capability
of the model for small target vehicle features.

(4) Based on the contribution of model channels to model performance, this paper applies
channel pruning and compression operations to the improved YOLOv5m network model. It removes
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redundant channels, thereby reducing model complexity while further improving network detection
performance.

3 YOLOv5m Algorithm

The YOLO series of network models has become one of the top-performing models in object
detection due to its balance of speed and accuracy. YOLOv5 is the fifth generation of the YOLO series
algorithm [19–21], proposed by Ultralytics in May 2020. There are five pre-trained models of YOLOv5,
which differ by the width and depth parameters and are named YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. Table 1 shows the width and depth parameters and the corresponding
model sizes for each pre-trained model.

Table 1: Summary of the network model parameters for the YOLOv5 algorithm

Parameter categories YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Width 0.25 0.50 0.75 1.0 1.25
Depth 0.33 0.33 0.67 1.0 1.33
Model size 3.87 MB 14.1 MB 40.8 MB 89.3 MB 166 MB

Among the five pre-trained models, as the model size and detection accuracy increase, the
detection rate decreases. Therefore, taking into account detection rate, accuracy, and model size,
this research selects the YOLOv5m-6.0 architecture as the basis for optimizing and improving the
small target vehicle detection algorithm. Fig. 1 depicts the network structure of YOLOv5m-6.0, which
comprises four main parts: input, backbone, neck, and prediction. The training images have a size of
640 pixels by 640 pixels and consist of three color channels.

The input network applies mosaic data enhancement to the input vehicle image by simultaneously
reading in four images and randomly scaling, cropping, and arranging them before stitching them
together. By incorporating information from these diverse images, the model’s dataset is enriched,
improving its robust performance and enhancing small target vehicle detection in this paper. Moreover,
the network employs adaptive anchor box calculation methods to set the optimal initial anchor boxes,
facilitating iterative optimization of network parameters during training. Additionally, the original
image is preprocessed to a size of 640×640×3 using adaptive image scaling, which reduces redundant
information and improves model inference speed compared to traditional resize operations.

The backbone network of YOLOv5m-6.0 has three primary components: the CBS (kernel size
(k) = 6, stride (s) = 2, padding (p) = 2) module, CSPDarkNet53, and the Spatial Pyramid Pooling
Fast (SPPF) module. In this context, k = 6 represents a convolution kernel size of 6 × 6, s = 2
indicates that the kernel slides 2 pixels at a time, and p = 2 signifies zero-padding of 2 pixels around
the input image. Compared to the old version, YOLOv5m-6.0 replaces the focus module for ease of
model export and employs multiple small pooling kernels in the SPPF module, rather than a single
large kernel in the SPP module. This enhances the network’s ability to recognize fuzzy small targets
in complex backgrounds while also improving its computational speed. Furthermore, YOLOv5m-6.0
uses Leaky Rectified Linear Unit (Leaky ReLU) as the activation function, with its calculation formula
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and derivatives shown in Eqs. (1) and (2).

Leaky ReLU (x) =
{

x, x > 0
αx, x ≤ 0

(1)

Leaky ReLU (x) ′ =
{

1, x > 0
α, x ≤ 0

(2)

where α is generally set to 0.01, and its corresponding function and derivative function curves are
shown in Fig. 2.

Figure 1: YOLOv5m-6.0 algorithm network model structure

Since it is a segmented function, it cannot maintain the same relational prediction for positive and
negative input values, resulting in unstable performance results, and there are also intermittent points
in the derivative function.

Therefore, YOLOv5m-6.0 uses the Sigmoid Weighted Linear Unit (SiLU) instead of the old
version of Leaky ReLU as the new activation function. Its calculation formula and derivatives are
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given by Eqs. (3) and (4), and their corresponding function and derivative function curves are shown
in Fig. 3.

SiLU (x) = x
1 + e−x

(3)

SiLU (x) ′ = 1 + e−x + xe−x

(1 + e−x)
2 (4)

Figure 2: Leaky ReLU activation function and its derivatives

Figure 3: SiLU activation function and its derivatives

The SiLU activation function is more suitable for depth models because it is derivable everywhere
and its derivative function satisfies the properties of continuity, smoothness, nonmonotonicity, and
constant greater than 0.

The neck network resides between the backbone network and the prediction network, consisting
of the Feature Pyramid Network (FPN) and the Path Aggregation Network (PANet). As shown in
Fig. 4, where FPN is the top-down propagation path [22]. Firstly, a 2-fold upsampling operation
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is performed on the small-sized feature map. Secondly, a splicing fusion operation is performed on
laterally connected same-sized feature maps. Then the fused feature maps undergo a 3×3 convolution
operation to remove the blending effect caused by upsampling. Repeat the operation stage by stage,
thus transmitting the deep strong semantic information to the shallow layer. And PANet is the bottom-
up propagation path [23]. Firstly, the large-sized feature map is downsampled 2-fold. Then the feature
maps of the same size connected with the lateral ones through splicing fusion and convolution. Repeat
the operation stage by stage, thus transferring the strong localization information from the shallow
layer to the deep layer and further enhancing the network is ability to extract fusion features. The
structure enhances the model’s ability to detect targets of different scales, increases feature diversity,
and improves overall robustness.

Figure 4: FPN and PANet structure

As the output end, the prediction network is used to predict and return the target. YOLOv5m-6.0
contains three prediction layers with dimensions of (80 ∗ 80 ∗ 255), (40 ∗ 40 ∗ 255), and (20 ∗ 20 ∗ 255),
which are used to detect large, medium, and small-scale targets respectively. CIOU_LOSS is used as the
loss function of the prediction frame of the network during training as shown in Eq. (5). It considers
three important geometric factors, which are overlapping area, centroid spacing ratio, and centroid
aspect ratio. Compared with the old version, the speed and precision of the prediction frame regression
have been improved effectively.

CIOU_LOSS = 1 − IOU + distance_22

distance_C2
+ α × V (5)

where the
distance_22

distance_C2
term takes into account the centroid spacing ratio factor, distance_2 represents

the square of the Euclidean distance between the predicted frame and the centroid of the labeled frame,
and is the diagonal length of the smallest closed frame covering both frames.

The term α×V in the equation uses the bounding box aspect ratio scale information, α is a positive
balance parameter, and V is a measure of the consistency of the aspect ratio. It is calculated as follows:

α = V
1 − IOU + V

(6)
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V = 4
π2

(
tanh−1 wgt

hgt
− tanh−1 w

h

)2

(7)

The equation uses the intersection over union (IOU) metric to account for the overlapping area
factor, which is calculated as follows:

IOU = |B ∩ Bgt|
|B ∪ Bgt| (8)

In the equation, B = (x, y, w, h) and Bgt = (xgt, ygt, wgt, hgt) represent the position parameters
contained in the predicted frame and the marked frame, respectively.

To filter the predicted frames, the algorithm uses a weighted Non-Maximum Suppression (NMS)
approach which enables the detection of overlapping targets without requiring additional computa-
tional resources.

Based on the YOLOv5m-6.0 network architecture, it can be observed that the neck feature fusion
network layer, due to the use of nearest-neighbor upsampling, neglects the semantic information
of the extracted vehicle object features, leading to a decrease in the effectiveness of vehicle object
detection. Therefore, it is necessary to replace the upsampling module to enhance the utilization of
vehicle features and redesign an enhanced feature fusion network structure to improve the fusion
capability for small-sized vehicle features. Furthermore, since the output only includes prediction
layers of three scales, the feature extraction performance is poor when detecting vehicle objects with
smaller proportions. Hence, it is crucial to design corresponding anchor boxes for small-sized vehicle
objects to enhance their attention. Additionally, the overall network structure contains a large number
of parameters and computational complexity, necessitating lightweight model compression operations.

4 Methodologies

This section primarily introduces components used to enhance the detection performance of
small target vehicles, including the lightweight upsampling operator CARAFE, small target prediction
layers, and the channel pruning compression process proposed in this paper. Additionally, a detailed
diagram of the improved network model structure is provided.

4.1 Lightweight Upsampling Operator CARAFE

The YOLOv5m network utilizes the nearest neighbor interpolation algorithm to upsample feature
maps, as illustrated in Fig. 5. This algorithm maintains pixel values of the transformed pixels to be the
same as those of the nearest input pixel. Eqs. (9) and (10) define the calculations involved, where (srcX ,
srcY ) represents the original image’s pixel coordinates, and (dstX , dstY ) represents the sampled image’s
pixel coordinates. The terms srcWidth, srcHeight, dstWidth, and dstHeight signify the dimensions of
the original and sampled images, and the function round(x) rounds x to the nearest integer using the
principle of rounding half up. Consequently, the sampled pixel values (dstX , dstY ) are equivalent to
the original image’s calculated pixel values (srcX , srcY ).

srcX = round
(

dstX × srcWidth
dstWidth

)
(9)

srcY = round
(

dstY × srcHeight
dstHeight

)
(10)
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Figure 5: Neighbor interpolation algorithm

Therefore, the nearest neighbor interpolation algorithm solely relies on the spatial proximity of
pixel points to establish the upsampling kernel. It fails to leverage the abundant semantic information
within the feature map. Moreover, its perceptual field of vision is very small, only 1 × 1 in size, thus it
underutilizes the surrounding information.

To improve the utilization of feature semantic information while controlling both the number of
parameters and computational complexity, this paper introduces a lightweight upsampling operator
called Content-Aware Reassembly of Features (CARAFE) to improve the network. Assuming input
size is H×W×C and upsampling rate is σ CARAFE generates a new feature map of size σH×σW×C.
The structure of the CARAFE network is shown in Fig. 6.

CARAFE consists of two key modules [24–28]: the kernel prediction module and the content-
aware reassembly module. It can utilize rich contextual information from lower levels to predict the
reassembled kernels and reorganize features within the predetermined neighborhood. Assuming that
the upsampling kernel size is Kup × Kup, the procedure is as follows:

(1) Kernel prediction module

The module generates reconfigured kernels in a content-aware manner via three sub-modules:
channel compressors, content compressors, and kernel normalizer.

Firstly, to reduce the number of parameters and computation, the input feature map F is passed
through a channel compressor composed of 1 × 1 convolutional layers so that the number of input
feature channels is compressed from C to Cm. Secondly, the compressed feature map is fed to the
content encoder, and a 3 × 3 convolution is used to generate a reconstructed kernel with the size
of H × W × (σ 2 × K2

up), and perform a sub-pixelShuffle scaling operation on it to resize it to size
σH ×σW ×K2

up [29]. Finally, to ensure that the distribution of input features remains unchanged, each
Kup × Kup reassembly kernel is normalized along the channel dimension using the softmax function,
ensuring that the weights of each reassembly kernel sum up to 1.

(2) Content-aware reassembly module

The module utilizes the generated reassembly kernels to reassemble the features, outputs a new
feature map F ′ that contains semantic information.

Firstly, the (x, y) coordinates on the output feature map F ′ are correspondingly mapped to
(x′, y′) on the input feature map F . The mapping relationship is shown in Eq. (11). Secondly, the
reshaping operation is performed on the recombined kernel at the corresponding position to generate a
perceptual field with the size of Kup ×Kup. Then, the inner product is performed with the neighborhood
centered at (x′, y′) on the F . It is worth noting that the same reshaping kernel is shared at the same
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position. Finally, the F ′ with the size σH × σW × C is output.

(x′, y′) =

⎧⎪⎨
⎪⎩

x′ =
⌊x

σ

⌋
y′ =

⌊y
σ

⌋ (11)

The �� in the equation represents the floor function, which rounds down to the nearest integer.
The calculation of the lightweight upsampling operator CARAFE is shown in Eq. (12).

2 (C + 1) Cm + 2
(
81Cmσ2 + 1

)
σ2K2

up + 2σ2K2
upC (12)

Figure 6: The overall framework of CARAFE

4.2 Adding Tiny Target Prediction Layers

The YOLOv5m network model before improvement struggles to capture feature information from
small-scale vehicles, impeding learning performance, which makes the detection of small target vehicles
have seriously missed detection and false detection in practice. There are three main reasons:
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(1) The network subsampling multiplier is very large, so small target vehicles can not occupy pixels.

(2) The network perception field is large, which makes the perceived small object features contain
a large number of surrounding worthless features.

(3) The deep and shallow feature maps in the network are not well-balanced in semantic and spatial
attributes.

Therefore, to enhance the attention of the network to small target vehicles and improve the
detection performance, it is proposed to add a tiny target prediction layer with a perceptual field of
4×4 size based on the three target prediction layers of large [30–33], medium and small of the original
network. The corresponding feature fusion network has been redesigned. The improved network with
the prediction frame size settings in each feature layer is presented in Table 2. Fig. 7 shows the structure
of the improved FPN + PANet.

Table 2: Detect feature map information

Feature map Receptive field Anchor box

160 × 160 × 64 4 × 4 [5,6,8,14,15,11]
80 × 80 × 128 8 × 8 [10,13,16,30,33,23]
40 × 40 × 256 16 × 16 [30,61,62,45,59,119]
20 × 20 × 512 32 × 32 [116,90,156,198,373,326]

Figure 7: Improved FPN + PANet structure



314 CMC, 2024, vol.78, no.1

4.3 Channel Pruning Compression

This paper uses the improved YOLOv5m network as the input model and apply channel pruning
and compression operations to reduce computational complexity [34–37], improve generalization
performance, and enhance the network’s accuracy on low-resource devices. Specifically, this article
integrates sparse regularization training to identify and prune the low-performance channels, followed
by fine-tuning to further improve accuracy. Fig. 8 illustrates the implementation flow of our channel
pruning and compression methodology.

Figure 8: Channel pruning and compression flow chart

Step1: Sparse Regularization Training

In modern neural networks, it is common to use Batch Normalization (BN) layers after convolu-
tional layers. The data output by the convolution layer is distributed within a reasonable range through
translation and scaling, to speed up the training and convergence of the network and improve the
generalization performance. Let Zin and Zout be the input and output of the BN layer, respectively.
And μB and σB represent the mean and standard deviation of the input samples within a batch. Then
the BN layer is calculated as shown in Eqs. (13) and (14).

Ẑ = Zin − μB√
σ2

B + ε
(13)

Zout = γẐ + β (14)

The BN layer uses learnable scaling factors γ and translation parameters β to normalize the input
values. However, to prevent the possibility of division by zero, a small constant ε is added to the
denominator. When the scaling factor γ tends towards zero, the output of the convolutional module
becomes independent of the input. In such cases, the channel can be considered less important for
model performance, and the weight of γ serves as an indicator of channel importance for potential
pruning. Therefore, γ can be used as an indicator to identify low-performance channels effectively.

Therefore, by sparse regularization of the scale factor γ in the BN layer and joint training of the
network weights, the γ in the BN layer in the neural network converges to 0, and a sparse network
with friendly pruning is obtained. The loss function of sparse training is shown in Eq. (15):

L =
∑
(x,y)

l (f(x, W), y) + λ ‖γ‖1 (15)

The above equation consists of the sum of two terms. The first term is the loss function of the
original YOLOv5m algorithm, where (x, y) represents the training input and label values, W denotes
the network trainable weight parameter, and the second term is the loss function of the sparse training
scale factor γ , where λ is the sparsity rate, the larger the value, the greater the sparsity of the network,
and also has a greater impact on the network accuracy, which is used to balance the loss of the front
and back two terms. In the second term, ‖γ‖1 is the L1 regularization term for the scaling factor. It is
used to drive the scaling factor γ towards 0, thus achieving network sparsity. The calculation of this
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term is shown in Eq. (16), where � represents the set of all scaling factors in the network.

‖γ‖1 =
∑
γ∈Γ

|γ| (16)

Step2: Pruning Operation

After the network is trained by sparse regularization, the scaling factor γ corresponding to
the majority of channels will tend to be 0, which means that the contribution of these channels to
the network performance is very low. Therefore, this paper sorts all the scaling factors γ , then set the
pruning rate and adopt a specific pruning strategy, and finally prune all the inputs and outputs of the
channels below the threshold value, to get a more lightweight compression model.

The channel pruning schematic is shown in Fig. 9. The left image represents a sparse network,
while the right image represents a compressed network after pruning. By performing channel pruning
operations, the channels Ci2 and Ci4 in the left image, where the scaling factors tend towards 0, are
eliminated. Finally, the remaining channels are reorganized to obtain a pruned and compact network.

Figure 9: Schematic diagram of channel pruning

According to the characteristics of the small target vehicle detection network, a global threshold
strategy is adopted to prune, that is, whether to prune the channel or not is decided by introducing
the global threshold γ̂ . Firstly, the scaling factor γ of all channels in the sparse network is sorted, and
then the lower scaling factor γ is selected as the global threshold γ̂ according to the predetermined
pruning rate, and the channels below this threshold in the network are eliminated. In addition, the
single threshold control pruning can cause all channels in a layer of the network to be pruned, thus
destroying the regular structure of the original network. Therefore, it is necessary to introduce a local
safety threshold τ again, that is, to eliminate channels that are less than the global threshold γ̂ and the
local threshold τ layer by layer to prevent excessive pruning.

After pruning, the number of parameters in the network model is significantly reduced, resulting
in a more compact model. However, when targeting fine-grained target detection tasks, increasing the
pruning rate may lead to a slight decline in precision. To address this issue, it is necessary to fine-tune
the pruned model and use the fine-tuned model as the final compressed model.

The pruning algorithm can be classified into two categories based on the pruning operation
process: iterative and one-shot.

Iteration: Pruning is carried out layer by layer, and it needs to be retrained and fine-tuned
after each pruning. However, since this method requires multiple iterations and the consumption of
computational resources increases with the complexity of the network structure. It is not used.

One-shot: After sorting the scale factor γ , the BN layers in the network are pruned simultaneously
to remove the redundant parameters and then retrained. Not only does it reduce the consumption



316 CMC, 2024, vol.78, no.1

of computational resources, but it also significantly improves the detection accuracy. Therefore, this
paper adopts a one-shot approach to prune the model.

4.4 Improved Network Structure Diagram

This paper presents the improved model structure of the YOLOv5m-6.0 algorithm, as shown
in Fig. 10. While retaining the original backbone feature extraction network, this paper replaces
CARAFE with a new upsampling method and add small target prediction layers. This paper also
redesigns the enhanced feature fusion network. Finally, this paper applies channel pruning to the model
structure and use the compressed model as the final improved model.

Figure 10: Improved YOLOv5m-6.0 network model structure diagram

5 Experiments

This section aims to verify the effectiveness and rationality of the improved YOLOv5m algorithm
in small target vehicle detection. To achieve this, this article will introduce the dataset used for
model training, the experimental platform environment, relevant hyperparameters, evaluation metrics,
analyze the results, and show the detection comparison effect.
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5.1 Build the Dataset

To test the method’s feasibility and effectiveness, this study uses the VisDrone2019-DET large
public dataset to train and evaluate the model. The dataset, developed by the AISKYEYE team at
Tianjin university’s machine learning and data mining laboratory, is an open-source dataset for UAV
high-altitude scenes that includes 10 categories of interest, such as cars, people, vans, and others. This
experiment focuses on car detection, and filtering techniques were applied to extract a representative
and diverse sample set of 8178 images for training and detection. Of these, 90% were used to create the
training set consisting of 7275 images, while the remaining 10% were allocated to the test set containing
903 images. The dataset covers various traffic scenarios, including streets, highways, and intersections,
and diverse challenging environmental backgrounds, such as strong light, low light, rainy weather, and
foggy conditions, reflecting typical and relevant real-world conditions. Fig. 11 shows the distribution
of sample label scales in the training set, where the width and height of the label frame are respectively
represented by the horizontal and vertical axes. The distribution of data points indicates the dataset
contains a large number of small-scale target vehicles that meet the requirements of the experimental
training.

Figure 11: Schematic diagram of the label scale of the training set sample

5.2 Experimental Environment

The experiment used PyTorch on Windows 10. A virtual environment was created using Anaconda
Navigator with Python 3.9, PyTorch 1.10, TensorFlow 2.7.0, and Cuda 11.2 installed. The hardware
configuration included a 6X65-2680 V4 CPU and NVIDIA RTX4000 GPU. The iterative training
utilized a modified YOLOv5m network structure and included an initial learning rate of 0.01, batch
size of 16, 65% pruning rate, 0.0002 sparse rate, and 100 epochs.

5.3 Model Performance Evaluation Metrics

To accurately evaluate the improved YOLOv5m for detecting small target vehicles on the
VisDrone2019-DET dataset, this paper analyzes its lightweight and detection performance using
various metrics. These metrics include the number of parameters, recall, average precision when the
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threshold IOU is 0.5 (mAP@0.5), average precision over IOU thresholds ranging from 0.5 to 0.95 in
increments of 0.05 (mAP@0.5:0.95) [38], Giga FLoating-point Operations Per Second (GFLOPS),
Frames Per Second (FPS), and Model Size. These metrics provide a comprehensive measurement of
the model’s performance from various aspects and perspectives. The calculation formula is as follows:

Recall = TP
TP + FN

(17)

Precision = TP
TP + FP

(18)

AP =
∫ 1

0

P(R)dR (19)

mAP = 1
n

n∑
i=1

AP (20)

GFLOPS = 2 × 10−9HW(CinK2 + 1)Cout (21)

FPS = 1
t

(22)

In the above formula, three dichotomous parameters are selected which are defined in Table 3.
Where 1 and 0 indicate whether the result is a vehicle or not, respectively. True Positives (TP) represents
the number of correctly detected vehicle samples. It refers to the samples where both the ground truth
and the model prediction indicate the presence of vehicles. False Positives (FP) represents the number
of falsely detected vehicle samples. It refers to the samples where the ground truth indicates the absence
of vehicles, but the model incorrectly predicts them as vehicles. False Negatives (FN) represents the
number of missed vehicle samples. It refers to the samples where the ground truth indicates the presence
of vehicles, but the model incorrectly predicts them as non-vehicles. Average Precision (AP) represents
the area under the precision-recall curve. The value of AP is calculated for each class, and n represents
the total number of classes. HW indicates the output feature map size. K denotes the convolutional
kernel size, Cin and Cout represent the input and output channel counts, respectively. FPS is the images
detected per second, and t represents the time consumed for detecting a single image.

Table 3: Definition of second classification parameters

Parameter categories True values Predicted values

TP 1 1
FP 0 1
FN 1 0

5.4 Experimental Results and Analysis

This section provides a detailed introduction to the experimental training results of the improved
algorithm from the perspectives of lightweight performance and testing performance, and analyzes
and verifies them. Finally, a comparison of the detection performance with the current mainstream
vehicle detection algorithm models is conducted under the same experimental environment and
parameters.
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5.4.1 Sparse Regularization Training

As the selection of the sparsity rate directly influences the level of network sparsity, which in
turn affects the effectiveness of subsequent model compression and detection performance, this paper
assesses the network sparsity level across various sparsity rates. The optimal value of the sparsity rate λ

is then chosen based on the application requirements. Fig. 12 illustrates the distribution of the scaling
factor γ in the BN layer of the improved network model after 100 rounds of iterative training using
different sparsity rates λ during sparse regularization training.

Figure 12: Schematic diagram of the variation of the scaling factor for different sparsity rates

When the sparsity rate λ is set to 0, indicating the absence of sparsity training, the scaling factors
γ in each layer follow a normal distribution. As the number of training round increases, the γ values
remain mostly unchanged and centered around 1.0. Consequently, the model cannot be compressed
at this stage.

When the sparsity rate λ = 0.0001, as the network training progresses, the γ values of each layer
gradually approach 0, and the network gradually becomes sparse. After training, the γ values of each
layer are concentrated around 0.73. Consequently, the model can be compressed to a certain extent.

When the sparsity rate λ = 0.0002, the speed of network sparsification increases, and finally, it is
concentrated around 0.49. Consequently, the model can be significantly compressed.

When the sparsity rate λ increases to 0.0003, the degree of network sparsity increases significantly.
After training, the γ values of each layer are concentrated around 0.25. Consequently, the model can
be compressed to an extremely high degree.

Table 4 presents the average detection precision of the sparse-trained models at various sparsity
rates. The results indicate that for sparsity rates of 0, 0.0001, and 0.0002, the average detection precision
remains relatively stable as the network sparsity increases. However, a noticeable decline in the average
detection precision occurs when the sparsity rate reaches 0.0003.

Table 4: The average detection precision of the sparse-trained models under different sparsity rates

λ mAP@0.5 (%)

0 76.88
0.0001 76.15
0.0002 76.22
0.0003 68.58
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Based on the aforementioned experiments, it was observed that a sparsity rate of λ = 0.0001
results in relatively low model sparsity and inadequate compression effect. Conversely, a sparsity rate
of λ = 0.0003 leads to excessive model sparsity and significant precision loss. Thus, to ensure a balance
between compression effect and detection performance, the optimal sparsity rate of λ = 0.0002 is
selected.

5.4.2 Channel Pruning

After completing sparse regularization training, the selection of the channel pruning rate becomes
crucial. If a channel pruning rate is chosen too small, the model’s lightweight effect may be compro-
mised. Conversely, selecting a channel pruning rate that is too large can potentially have destructive
effects on the model. Hence, this paper pruned the model using various channel pruning rates and
analyzed the average detection precision of the pruned model, as depicted in Fig. 13. The horizontal
axis represents the pruning rate, while the vertical axis represents the corresponding average detection
precision value. From the figure, it is evident that the model’s evaluation detection precision remains
stable when the pruning rate is below 65%. However, there is a rapid decline in the average detection
precision when the pruning rate exceeds 65%. To strike a balance between the network’s detection
precision and lightweight requirements, the experiment ultimately determined the channel pruning
rate as 65%.

Figure 13: The impact of different pruning rates on model accuracy

The statistics of the number of output channels for each layer of the network before and after
pruning are shown in Fig. 14. The red bar chart represents the number of output channels in each layer
of the network before channel pruning, totaling 19,600. The blue bar chart represents the number of
output channels in each layer of the network after channel pruning, totaling 10,560. From the figure,
it can be observed that a total of 9,040 redundant channels were pruned in all layers of the model,
indicating a significant reduction in redundant channels and effective compression of the model.

Fig. 15 shows a comparison of the parameter quantity, calculation quantity, and model size before
and after pruning in a columnar diagram. The red bar represents the values before channel pruning,
while the green bar represents the values after channel pruning. It can be observed from the figure
that after pruning, the number of parameters in the model decreased to 35.26% of the original value,
with a reduction of 64.74% in redundant parameters. The GFLOPS also decreased by 72.18%, and the
size of the pruned model was reduced by 63.25% compared to the original model. Further validation
confirmed that the channel pruning method used in this study effectively compressed the YOLOv5m
network model and saved network resources.
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Figure 14: Comparison of channel number before and after pruning

Figure 15: Lightweight comparison of models before and after pruning

5.4.3 Comparative Analysis of Experiments

To validate the feasibility and robustness of the proposed improvement scheme, three groups of
controlled experiments were conducted for analysis, as shown below:

• This paper conducted ablative experiments comparing the original YOLOv5m network model
(Model A) with Model B, Model C, and Model D. Model B replaced the upsampling operator
with a lightweight bottle operator, while Model C added a small target prediction head on top
of the original model. Model D combined the improvement methods of both Model B and
Model C.

• The original network Model A is compared and analyzed with the final improved Model E.
• This paper compared and analyzed the experimental results of Model E with those of other

classic mainstream vehicle detection algorithms, in order to assess the effectiveness Model E.

Table 5 presents a comparison of lightweight metrics parameters for each model. Meanwhile,
Table 6 includes the experimental results for each model’s training, and a comparison of parameters
for detecting performance indexes.
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Table 5: Lightweight data comparison

Model Parameters GFLOPS Model size/MB

A YOLOv5m 20 871 318 48.2 40.2
B YOLOv5m_CARAFE 21 112 302 49.5 40.7
C YOLOv5m-Small 21 140 264 57.4 41.3
D YOLOv5m_CARAFE-Small 21 437 564 59.3 41.9
E Ours 7 559 170 16.5 15.4
F YOLOv3-tiny 8 669 876 13.0 16.6
G YOLOv5s 7 022 326 15.9 13.7
H YOLOX_s 8 937 682 26.8 34.3
I YOLOv8s 11 135 987 28.6 21.4

Table 6: Testing performance data comparison

Model mAP@0.5 (%) Recall (%) mAP@0.5:0.95 (%) FPS

A YOLOv5m 75.29 69.15 47.22 28
B YOLOv5m_CARAFE 76.28 69.82 47.5 27
C YOLOv5m-Small 78.62 71.03 48.89 25
D YOLOv5m_CARAFE-Small 79.43 71.32 49.90 24
E Ours 80.44 73.73 51.27 47
F YOLOv3-tiny 54.13 49.99 28.43 38
G YOLOv5s 72.92 65.87 44.10 41
H YOLOX_s 70.32 58.77 41.76 30
I YOLOv8s 73.71 67.72 47.76 33

Fig. 16 displays graphs of the network’s average accuracy, loss function, and recall variation during
training. The horizontal axis showing iterations, while the vertical axis showing the corresponding
values of mAP@0.5, loss function, and network recall rate. The green line in the figure represents the
experimental result curve of the final improved model. From the figure, it can be observed that the
improved algorithm achieves higher detection accuracy and recall rate compared to other detection
models. Additionally, it demonstrates faster convergence, further validating the effectiveness of the
improvement method.

The experimental results of Model A and Model B in Tables 4 and 5 show that replacing
the lightweight upsampling module CARAFE has slightly increased the algorithm’s parameter and
computational complexity. However, the average detection accuracy and recall rate have improved by
0.99% and 0.67%, respectively. These results indicate that CARAFE has improved the algorithm’s
detection performance without adding excessive parameter and computational complexity.
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Figure 16: Network average precision, loss function and recall variation curves

According to the experimental results of Model A and Model C in Tables 4 and 5, after adding the
small object detection head in this paper, although the computational complexity of the algorithm has
increased to some extent, the average detection accuracy and recall rate have improved by 3.33% and
1.88%, respectively. This indicates that the small object detection head plays a crucial role in improving
the performance of small object vehicle detection, but it also leads to a more complex model.

Based on the experimental results of Models A and D in Table 6 and Fig. 16, it indicates that
the lightweight upsampling operator CARAFE introduced in this paper and the addition of a tiny
target prediction layer have accelerated the convergence of the network model and improved the
average detection accuracy for small vehicle targets. Compared to the original model, the proposed
approach increased mAP@0.5 by 4.14% and Recall by 2.17%. Furthermore, it addressed the missed
detection problem of small and occluded target vehicles by the network and confirmed the effectiveness
of the proposed improvement plan. According to the lightweight comparison analysis presented in
Table 5, while the proposed approach slightly increased the network’s parameters and computational
complexity, the obtaining improvements in accuracy and detection rates justify this increase.

To achieve model lightweight and reduce the number of parameters and complexity, this article
performed channel pruning on network Model D to obtain the final improved model E. The
comparative analysis of the lightweight data of Model A and Model E in Table 5 shows that the
parameter number of the final improved model E proposed in this article reduced from the original
network Model A is 20,871,318 to 7,559,170, a decrease of up to 63.8%. Additionally, the model size
is reduced by 24.8 MB, and there is a 31.7 GFLOPS reduction, a decrease of up to 65.8%.

Based on the experimental results presented in Table 6 and Fig. 16, it is evident that the improved
Model E significantly enhanced the mAP@0.5 from 75.29% to 80.44%, with an increase of 5.15%,
thereby improving the detection accuracy of small target vehicles. Moreover, the Recall increased by
4.58%, and the FPS increased from 28 to 47, thereby meeting the requirement of real-time detection
speed. Overall, the analysis indicates that the enhanced Model E demonstrates superior detection
precision when compared to the original model. The model has removed numerous redundant channels
to reduce model complexity and improve performance in small vehicle detection. Additionally, the
model has been optimized for real-time detection needs without compromising its lightweight design.

To conduct an in-depth analysis of the enhanced Model E’s detection performance on compact
vehicles, other mainstream detection algorithms in the YOLO series were selected for experimental
comparison under the same parameters and experimental environment. Based on the experimental
findings presented in Table 6 and Fig. 16, it can be observed that the average detection accuracy of
the improved algorithm increased by 7.52%, 10.12%, 26.31%, and 6.73% compared to YOLOv5s,
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YOLOX_s, YOLOv3-tiny, and YOLOv8s, respectively. Furthermore, the network recall rate improved
by 7.86%, 14.96%, 23.74%, and 6.01%, respectively.

Fig. 17 provides a comparative analysis of the detection performance of various algorithms on
the VisDrone2019-DET dataset. This includes the improved algorithm before pruning, as well as the
current mainstream vehicle detection algorithms: YOLOv5m, YOLOv3-tiny, YOLOv5s, YOLOX-s,
and YOLOv8s. The x-axis represents the number of images detected per second, with higher values
indicating faster detection speed. The y-axis represents the average detection accuracy of the models,
with higher values indicating higher average detection accuracy. The ideal position should correspond
to the top right corner of the graph, indicating that the model achieves high accuracy while processing
images quickly. From the figure, it can be observed that the red dot represents the final improved algo-
rithm. Based on our comprehensive analysis, the improved algorithm outperforms other mainstream
detection algorithms in terms of both speed and accuracy. This feature meets the requirements of
real-time and lightweight detection without compromising accuracy. It is better suitable for detecting
vehicle targets with numerous small targets and substantial differences in scale. The analysis was
conducted under the same parameters and experimental environment, making the results reliable and
informative.

Figure 17: Comparative analysis of model detection performance

5.5 Comparative Analysis of Detection Effects

Based on the comparative analysis of various evaluation indicators, model E was ultimately
determined as the improved model in this paper. Fig. 18 displays the original YOLOv5m model’s actual
detection effect before improvement, while Fig. 19 shows the final improved model’s actual detection
effect. The improved model achieves higher detection confidence than the original YOLOv5m model.
It successfully detects small and occluded target vehicles that were missed by the original model, further
confirming the effectiveness of the proposed improvement solution.

After analyzing the detection results, it was found that the improved model proposed in this paper
can more accurately detect small-sized target vehicles at longer distances compared to the baseline
model, while also improving the detection speed. However, there are still certain limitations. For
example, there are still some instances of missed detections for smaller vehicle targets and dense vehicle
targets.
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Figure 18: The original YOLOv5m model detection effect

Figure 19: The effect of the improved model detection is shown

6 Conclusion

To address the issues of deep learning technology in the field of vehicle target detection, this
paper proposes a lightweight vehicle target detection algorithm based on YOLOv5m. By improving
its structure and compressing the model, the average detection accuracy and recall rate were increased
by 5.15% and 4.58%, respectively, compared to the original model, and the FPS reached 47. The
experiments showed that this enhanced algorithm can accurately detect small and occluded objects
in real-time, meeting the requirements of small vehicle detection. Additionally, by cutting redundant
channels and parameters, the algorithm greatly compressed the network model, reducing the param-
eter and computational volume by 63.8% and 65.8%, respectively, and the model size by 24.8 MB.
Overall, this algorithm can effectively detect small and dense vehicle targets, providing valuable
insights for intelligent city construction. However, the algorithm also has certain limitations and room
for improvement. For more complex scenarios, such as small target vehicles with low background
contrast, the detection effect is not ideal, which will be a key research topic in the future.
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