
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.046304

ARTICLE

MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for
Task Scheduling in Cloud Computing

Chirag Chandrashekar1, Pradeep Krishnadoss1,*, Vijayakumar Kedalu Poornachary1 and
Balasundaram Ananthakrishnan1,2

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
2Center for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai,
600127, India

*Corresponding Author: Pradeep Krishnadoss. Email: pradeep.k@vit.ac.in

Received: 26 September 2023 Accepted: 14 December 2023 Published: 27 February 2024

ABSTRACT

Cloud computing provides a diverse and adaptable resource pool over the internet, allowing users to tap into
various resources as needed. It has been seen as a robust solution to relevant challenges. A significant delay
can hamper the performance of IoT-enabled cloud platforms. However, efficient task scheduling can lower the
cloud infrastructure’s energy consumption, thus maximizing the service provider’s revenue by decreasing user
job processing times. The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-
Whale Optimization Algorithm (MCWOA), combines elements of the Chimp Optimization Algorithm (COA)
and the Whale Optimization Algorithm (WOA). To enhance MCWOA’s identification precision, the Sobol
sequence is used in the population initialization phase, ensuring an even distribution of the population across
the solution space. Moreover, the traditional MCWOA’s local search capabilities are augmented by incorporating
the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-
updating process. This study demonstrates the effectiveness of the proposed approach using a two-story rigid
frame and a simply supported beam model. Simulated outcomes reveal that the new method outperforms the
original MCWOA, especially in multi-damage detection scenarios. MCWOA excels in avoiding false positives and
enhancing computational speed, making it an optimal choice for structural damage detection. The efficiency of the
proposed MCWOA is assessed against metrics such as energy usage, computational expense, task duration, and
delay. The simulated data indicates that the new MCWOA outpaces other methods across all metrics. The study
also references the Whale Optimization Algorithm (WOA), Chimp Algorithm (CA), Ant Lion Optimizer (ALO),
Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO).

KEYWORDS
Cloud computing; scheduling; chimp optimization algorithm; whale optimization algorithm

1 Introduction

Cloud computing has revolutionized the way businesses and individuals’ access and utilize
computational resources. It offers a diverse and adaptable resource pool accessible over the internet,

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046304
https://www.techscience.com/doi/10.32604/cmc.2024.046304
mailto:pradeep.k@vit.ac.in


2594 CMC, 2024, vol.78, no.2

providing users with the flexibility to tap into a wide array of resources as per their requirements. This
paradigm shift in computing has been perceived as a robust solution to tackle an array of challenges in
a world that demands scalability, efficiency, and accessibility [1–4]. In the context of cloud computing,
Service Level Agreements (SLAs) play a pivotal role in ensuring customer satisfaction and maintaining
a competitive edge. SLAs are contractual agreements that delineate the quality of service expected
from the service providers, establishing a binding commitment between the provider and the customer.
Within this framework, two critical parameters that SLAs predominantly focus on are makespan,
which is the time taken to complete a particular service requested by a user, and energy consumption
associated with executing the process, along with latency, which signifies the waiting time associated
with each task. It is paramount for these service providers to offer superior service quality to maintain
customer loyalty and uphold their reputation in the highly competitive cloud computing environment
[5–9].

Cloud computing, although a promising technology, faces several inherent challenges, and one of
the most prominent among them is the scheduling of tasks. Task scheduling in cloud computing is a
complex and computationally intensive problem that falls under the category of NP-hard problems
[10–13]. The objective is to optimally allocate computing resources to execute multiple tasks while
meeting the stringent SLAs and minimizing operational costs. This is where the realm of meta-heuristic
algorithms comes into play. These algorithms are employed to address the intricate task scheduling
challenges in the cloud environment. Meta-heuristic algorithms are optimization techniques that guide
the search for an optimal solution by iteratively exploring and exploiting the search space. They have
been widely adopted due to their adaptability and effectiveness in handling complex and dynamic
environments.

Each of these algorithms has its advantages and disadvantages, and they may encounter unique
challenges depending on the problem characteristics and the optimization objectives. Some of the
challenges faced by these algorithms in the context of task scheduling in cloud computing include:

1. Balancing the trade-off between exploration and exploitation which involves avoiding being
trapped in local optima while also exploiting promising regions of the search space.

2. Adapting to the dynamic and uncertain nature of cloud environments: This requires the
algorithms to adjust to changes in resource availability, task arrival rate, network latency, and
other factors that influence the scheduling process.

3. Handling the multi-objective and multi-constrained nature of task scheduling problems: This
entails optimizing multiple conflicting objectives (such as makespan, cost, energy consump-
tion, reliability, etc.) while satisfying various constraints (such as deadlines, budget, security
levels, etc.).

In light of these challenges, this research paper proposes a novel solution to enhance task
scheduling in cloud computing. Moreover, the motivation behind developing the Modified Chimp-
Whale Optimization Algorithm (MCWOA) arises from the common goal of task-scheduling algo-
rithms to enhance cloud computing performance. Existing algorithms, particularly those categorized
as deadline-sensitive task-schedulers, face limitations in selecting parameters like makespan, energy
consumption, and latency due to their time-sensitive nature. To overcome the challenges of complex
search spaces and time consumption associated with current algorithms, MCWOA is introduced.
The proposed algorithm, known as the Modified Chimp-Whale Optimization Algorithm (MCWOA),
combines elements of the Chimp Optimization Algorithm (COA) and the Whale Optimization
Algorithm (WOA) to address the intricate task scheduling problems. MCWOA aims to strike an
optimal balance by minimizing the triad of key metrics: makespan, energy consumption, and latency.



CMC, 2024, vol.78, no.2 2595

Unlike rudimentary heuristics, MCWOA leverages a fusion of nature-inspired tactics and compu-
tational intelligence, making it a tailor-made solution for the intricate demands of contemporary
cloud ecosystems. In the subsequent sections, this paper provides a detailed exposition of MCWOA,
explaining its intricate design and its potent ability to recalibrate the paradigms of task scheduling
in cloud computing. Furthermore, to ensure the efficient initialization of the population, MCWOA
employs the Sobol sequence, which ensures an even distribution of the population across the solution
space. The use of this sequence contributes to the algorithm’s ability to explore the search space
effectively from the outset. In the following sections of this research, we will present the detailed
mechanics of MCWOA and the results of comprehensive experimental evaluations. The comparative
analysis against benchmark algorithms will provide insights into the efficiency and effectiveness of
MCWOA. This paper aims to establish MCWOA not as just another alternative, but as an efficient
algorithm that can yield optimal solutions in the context of task scheduling for cloud computing
environments. Through rigorous testing and thorough evaluations, the contributions of this article
become apparent, as it endeavors to advance the state of the art in cloud computing task scheduling.
Therefore, the following are some of the contributions that this article aims to provide:

1. The introduction of the Modified Chimp-Whale Optimization Algorithm (MCWOA) is the
main contribution of this research. This novel algorithm offers a strong answer to the
challenging task scheduling problems in cloud computing by fusing components of the Whale
Optimization Algorithm (WOA) and the Chimp Optimization Algorithm (COA). The goal of
MCWOA is to provide a unique method that surpasses conventional heuristics by finding the
ideal compromise between makespan, energy consumption, and latency.

2. Moreover, the Modified Chimp-Whale Optimization Algorithm (MCWOA) is meticulously
designed to function as a deadline-sensitive task scheduler, emphasizing the efficiency of task
processing and the generation of an optimal solution set within minimal time constraints. In
its role as a deadline-sensitive scheduler, MCWOA prioritizes the timely execution of tasks,
aiming to fulfill predefined deadlines while simultaneously optimizing critical performance
parameters such as makespan, energy consumption, and latency.

3. By using the features from WOA and COA, the proposed algorithm is able to navigate and
exploit diverse regions of the solution space and produce a better optimized solution-set. In
addition to this, MCWOA aims to overcome the local minimal trap, a common concern in
optimization problems where algorithms may get stuck in suboptimal solutions.

4. By offering a thorough analysis of MCWOA and contrasting it with benchmark algorithms
such as the Whale Optimization Algorithm (WOA), Chimp Algorithm (CA), Ant Lion
Optimizer (ALO), Genetic Algorithm (GA), and Grey Wolf Optimizer (GWO), the research
paper advances the field. The comparative analysis demonstrates MCWOA’s superiority and
verifies its efficacy and efficiency in resolving cloud computing task scheduling issues. Thus,
the study provides insightful information about the algorithm’s functionality and potential
applications in real-world settings.

The subsequent portions of this document are structured as follows: Section 2 delves into a review
of prior studies and literature. Section 3 is dedicated to the presentation and discussion of the newly
proposed algorithm. In Section 4, a recap of the experimental results is provided, and Section 5 rounds
off the document with conclusions and directions for future research.



2596 CMC, 2024, vol.78, no.2

2 Related Works

Several research endeavors have been conducted to enhance the efficiency of resource consump-
tion and task scheduling in cloud computing environments. All of these efforts have focused on
optimization, aiming to find the ideal resource configuration that minimizes Quality of Services
(QoS) parameters and enhances task scheduling performance while considering various workload
constraints like budget and deadlines. While progress has been made in resource scheduling research,
the anticipated results have not been fully achieved. This section provides an overview of the most
commonly used multi-objective scheduling strategies and reviews the relevant literature in our research
domain.

To address issues of load balancing, energy consumption, latency, and computational costs
in the cloud environment, the Dueling Deep Q-Learning Based Chaotic Levy Flight (DDQ-CLF)
algorithm proposed in [14] is used in a secure healthcare system with IoT, fog, and cloud tiers for
effective data processing and secure transmission, evaluated for factors like energy consumption,
latency, and network usage. A new hybrid algorithm merges a Chaotic Grasshopper Optimization
Algorithm (CGOA) with a genetic algorithm (GA) for Fog-tier scheduling and is used in [15] to
overcome challenges using chaos theory and opposition-based learning principles. Tested on the
Google trace dataset for efficiency. The Hybrid Fuzzy Archimedes (HFA) algorithm introduced in
[16] optimizes Mobile Edge Computing (MEC) node selection for cost and security. It combines
with LGBM and XGBoost to reduce energy usage and latency in task scheduling. HFA refines
Archimedes by introducing fuzzy factors and a normalized objective function, prioritizing security
and cost efficiency. Light Gradient Boosting Machine LGBM-XGBoost minimizes energy and latency,
considering makespan and energy metrics. The approach’s effectiveness is evaluated using resource
usage, completion time, rate, and Computation Workload Completion Rate.

A layer fit algorithm is presented for task distribution between fog and cloud based on priorities
in [17]. It combines with Modified Harris-Hawks Optimization (MHHO) to minimize makespan, task
cost, and power usage while enhancing resource efficiency in both layers. Simulations using iFogSim
reveal that MHHO surpasses traditional algorithms such as Ant Colony Optimization (ACO), Harris-
Hawks Optimization (HHO), Firefly Algorithm (FA), and Particle Swarm Optimization (PSO) in
energy, cost, and makespan. The Enhancing Container-Based Task Scheduling algorithm (ECBTSA-
IRA) algorithm in [18] balances performance, cost, and energy efficiency. It assesses workloads for
scheduling and shows task interdependencies using a Directed acyclic graph (DAG). Workloads are
prioritized by an efficiency factor, which divides them up among processing nodes (FN or cloud)
according to schedule duration, cost, and energy. Furthermore, Markov Decision Process (MDP)-
based reinforcement learning finds the best resources.

The study proposed in [19] focuses on a resource-constrained fog system managing diverse real-
time tasks. It introduces two modules: Task Classification and Buffering (TCB) for task categorization
and buffering, and Task Offloading and Optimal Resource Allocation (TOORA) for efficient task
delegation and resource allocation. It also presents a new algorithm, Whale Optimized Resource
Allocation (WORA), compared to established models for performance evaluation. EPRAM, designed
in [20] is for healthcare applications in Fog environments, which addresses resource management
challenges. EPRAM integrates real-time resource allocation and a prediction algorithm. It comprises
three modules: Resource Allocation Module (RAM), Effective Prediction Module (EPM), and Data
Preprocessing Module (DPM). EPM employs PNN for forecasting, like predicting heart attacks based
on IoT user data to minimize latency and enhance QoS metrics. The HHOLS algorithm proposed
in [21] is an energy-focused metaheuristic that aims to enhance Task Scheduling in Fog Computing



CMC, 2024, vol.78, no.2 2597

(TSFC) for improved Industrial Internet of Things (IIoT) Quality of Service (QoS). It addresses
complex challenges through techniques like normalization and scaling. HHOLS is compared to other
metaheuristics for performance evaluation.

A heuristic load balancing strategy is presented in [22] to improve the efficiency of cloud services
by reducing makespan and task completion time. This dynamic task allocation approach takes energy
efficiency, latency, and bandwidth into account for networks. Experiments with synthetic data are
conducted to compare it with a queue-based approach, and the results show significant improvements
in terms of energy, cost, and time savings in task scheduling when compared to current approaches.
The study presents a task offloading strategy for wearable computing in [23], taking into account task
requirements, mobility, cloud and network resources, and user payment patterns. Experimental results
demonstrate significant improvements in many metrics when compared to baseline methods.

A smart edge-cloud model for efficient data processing is introduced in [24]. To process data
between the cloud and IoT devices, it makes use of an edge node close to IoT nodes. A Deep Q-
Network (DQN) minimizes makespan and energy by optimizing workflow scheduling in the device-
edge-cloud continuum. ELECT is verified by a SHM service simulation in remote areas. The outcomes
demonstrate how well ELECT reduced communication, energy, and makespan costs. The study done in
[25], introduces a Multi-Objectives Particle Swarm Optimization (MOPSO) algorithm, incorporating
a non-dominance sort, aimed at addressing the scheduling issues of time-sensitive business processes
with several conflicting objectives. The algorithm endeavors to optimize three conflicting factors:
makespan (total execution time), financial costs, and energy usage, all while respecting the budgetary
and temporal restrictions of the business process. The work carried out in [26] proposed a framework
called Subspace Clustering using Evolutionary algorithm, Off-Spring generation and Multi-Objective
Optimization (SCEOMOO) to find the optimal subspace clusters.

Based on the conducted study, it can be deduced that all task-scheduling algorithms share a
common goal, which is to improve the performance of cloud computing environments. To achieve
this objective, these algorithms consider various parameters. However, when it comes to selecting
specific parameters such as makespan, energy consumption, and latency, the options are limited.
This limitation arises from the time-sensitive nature of these parameters, categorizing such algorithms
as deadline-sensitive task-schedulers. In simpler terms, these algorithms aim to execute requested
tasks within an expected time frame, indicating that latency should be minimized for each task, and
energy consumption should be kept to a minimum. While there are several algorithms designed for
deadline-sensitive task scheduling, they often involve complex search space mechanisms that consume
a significant amount of time to identify the optimal results. To address this challenge, a novel algorithm
is introduced to achieve the same optimal results but with reduced time consumption. This enhanced
task-scheduling algorithm takes into account the minimization of makespan, energy consumption, and
latency from various perspectives, including ecological and economic considerations. The algorithm,
known as the Modified Chimp-Whale Optimization Algorithm (MCWOA), focuses on optimizing
task scheduling and resource allocation among virtual machines in the cloud environment. MCWOA
builds upon the Chimp Optimization Algorithm (COA) and the Whale Optimization Algorithm
(WOA) to streamline the time and energy constraints, effectively fulfilling the intended objectives.
Therefore, the algorithm is aptly named the Modified Chimp-Whale Optimization Algorithm.

The subsequent sections of this research paper are structured as follows: Section 3 delves into the
theoretical formulation of the introduced MCWOA algorithm for enhancing task scheduling methods.
Section 4 outlines the results obtained and their subsequent analysis. Finally, Section 5 provides a
summary of the conclusions drawn from this work.



2598 CMC, 2024, vol.78, no.2

3 Proposed System

Cloud service providers have devised a cloud environment featuring both Physical Machines
(PMs) and Virtual Machines (VMs), complete with a public-access interface for task submission.
Once tasks are submitted, a resource manager collects, supervises, and maintains updates of all cloud
resources, spanning CPU, storage, and memory. Efficiency hinges on optimal resource utilization,
necessitating constant monitoring and updates. After resource management, the scheduler assumes
control, aiming to schedule tasks in a way that minimizes the resultant fitness function. The scheduling
process only begins when the scheduler has received all necessary data from the virtual machine
manager and resource manager, aiding in optimal scheduling decisions. After data collation, the
decision-making process determines which tasks should be assigned to which virtual machines. This
assignment process can be significantly enhanced by knowing the exact position of the VMs and
having a complete list of the tasks. Incorporating such data streamlines the process, leading to
reductions in migration costs, total task execution time, load utilization, and overall cost. Effective task
management and scheduling, combined with a comprehensive understanding of available resources
and task specifics, can enhance efficiency and result in substantial cost savings. This leads to an
optimized, user-friendly, and cost-effective cloud environment, maximizing resource utilization.

3.1 Architecture

In summary, within the sphere of cloud computing, when users delegate a specific task to the
cloud with the expectation of a result, a series of dedicated processes and methodologies are enacted.
These ensure that the task carried out by the cloud is executed both effectively and efficiently.
Work distribution is evident within the cloud environment to manage distinct tasks, optimizing
performance and throughput. When end-users send their specific tasks to the cloud framework, the
task manager takes charge. This entity is entrusted with monitoring and archiving all tasks incoming
from different users. Following this, a task scheduler algorithm is implemented to arrange the tasks. In
this context, a newly introduced algorithm, named the MCWO algorithm, is applied. Key parameters
such as makespan, latency, and energy consumption are taken into consideration when assessing the
performance of the algorithm. Subsequently, control is transferred to the cloud service provider, which
hosts a multitude of processes like resource management, and resource monitoring, among others.
Following this, each task is directed to a data center equipped with a set of Virtual Machines (VMs).
Here, each task is executed by the appropriate virtual machine as determined by the task scheduler.
Consequently, the cloud is equipped to handle various tasks from users and assign the correct VMs to
each task using the introduced task scheduler. This systematic approach ensures an efficient allocation
and execution of tasks within the cloud environment. The below diagram Fig. 1 shows the architecture
diagram of the cloud with MCWOA implemented in the task scheduler section.

3.2 Objective Function

Consider a set of ′a′ tasks denoted as T = {T1, T2, . . . , Ta} that are required to be carried out. There
is also a set of ′b′ Virtual Machines (VMs), represented as VM = {vm1, vm2, . . . , vmb}, where every VM
possesses the capability to process and execute the task allocated to it. Therefore, the scheduling of
the task process can be symbolized by the function f: T → V. The fundamental goal is to construct a
novel deadline task scheduling algorithm that not only results in a minimal makespan but also incurs
a lower energy consumption and at the same time has low latency.

Objective function = Norm
(∑a

k=1
Tk (MS + EC + LA)

)
(1)



CMC, 2024, vol.78, no.2 2599

Figure 1: Architecture diagram

Based on the provided equation, the term Tk signifies a task chosen from the set T , and the value
of k spans between [1, a], where ‘a’ denotes the count of tasks at hand. The variable MS denotes the
makespan value which is calculated using Eq. (2), the variable EC represents the energy consumption
which is calculated using Eq. (7), and the variable LA represents the latency value which is calculated
using Eq. (8). The final value is normalized by Norm() to a range between 0 and 1 with seven decimal
places, using the norm variable. This is done to evaluate the proposed algorithm with the mentioned
parameters. Normalization (Norm()) is needed because EC has a much higher range than MS and LA,
which have very small values. Norm() balances the weight of each variable.



2600 CMC, 2024, vol.78, no.2

3.2.1 Makespan Calculation Formula

MS = Min
[∑b

q=1

(
STq + Wtq

)]
(2)

In this context, STq signifies the duration required to submit one particular task to the ‘qth’ virtual
machine. Similarly, Wtq stands for the waiting time experienced by that task to be carried out by the
‘qth’ virtual machine. And finally, the Min() is used to select the minimum value from the given set.

3.2.2 Energy Consumption Formula

Typically, multiple components contribute to energy consumption in a cloud environment. These
include host machines, electrical and network components, cooling systems, and storage devices.
Among these, Host Machines (HMs), which are characterized by components like Central Processing
Unit (CPU), Random Access Memory (RAM), and disk storage, are the primary contributors to
energy consumption. The energy usage of HMs can be divided into two distinct categories: static energy
(Estatic) and dynamic power (Edynamic). Static energy refers to the energy consumed by a machine even
when idle, while dynamic power represents the energy consumption associated with active processes.
Interestingly, an idle host machine can consume roughly 67.89% of the energy expended by a host
operating at full CPU speed.

The total energy consumed within a cloud environment is the cumulative sum of both static
and dynamic energies. This combined energy consumption encapsulates the entire power usage,
accounting for both idle and active operational states of the host machines. Therefore, both these
energy categories play a pivotal role in understanding and managing the overall energy consumption
in a cloud environment.

Etotal = Estatic + Edynamic (3)

This study primarily concentrates on the dynamic energy (Edynamic), a type of energy that is directly
influenced by the square of the supply voltage (vk)

2, and its corresponding frequency (fk). The
proportionality constant in this context is (αk), which is computed using Eq. (5). In this equation,
the variable ‘k’ signifies the kth Host Machine. Thus, the formula employed to calculate Edynamic is
illustrated below:

Edynamic = αk. (vk)
2 . (fk) (4)

Let, μk be the power ratio for the kth Host machine when idle Hidle
k , f max

k is Hk’s maximal frequency
and Emax

k is the maximum energy consumed by Hk. The proportionality constant αk of Hk can be
computed as

αk = (1 − μk) .Emax
k

(f max
k )2

(5)

Now for the static energy, the energy is directly proportional to the energy it consumes in its idle
state. Moreover, a set St ⊆ (1,0) is used which indicates the status of the Host machine Hk at a given
time t, where 1 represents Hk is active and 0 represents Hk is idle.

Estatic = μk.E
max
k . (St) (6)



CMC, 2024, vol.78, no.2 2601

Therefore, the final energy consumption formula combining Eqs. (4) and (6) can be expressed as:

Etotal =
∫ tf

ts

αk.Emax
k . (St) + (1 − μk) .Emax

k

(f max
k )2

(vk)
2 . (fk) dt (7)

3.2.3 Latency Calculation Formula

LA = Min
[∑b

q=1

(
α.Etq

)]
(8)

In the above-mentioned equation, the variable Etq signifies the duration required for a specific
task to be executed by the ‘qth’ virtual machine. Meanwhile, the variable α is employed to normalize
the timestamp values for each task. The normalization is necessary to obtain consistent values as
these timestamps could fluctuate based on several factors, such as the number of iterations, and the
availability of resources, among others. b represents the total virtual machine and finally, the Min() is
used to select the minimum value from the given set.

3.3 Task Scheduling Process Using MCWO Algorithm

The algorithm being proposed in this research is a confluence of principles and strategies derived
from two well-established optimization algorithms, namely, the Chimp Optimization Algorithm
(COA) and the Whale Optimization Algorithm (WOA). Each of these algorithms is known for its
unique merits, with the COA recognized for its superior search capabilities, global optimization ability,
and other beneficial features. A distinguishing feature of the COA is its capability to adeptly balance
between exploration (wide-ranging search) and exploitation (focused search). This equilibrium is
integral to preserving the diversity of solutions while facilitating a steady convergence speed. Such
a dynamic interplay allows the COA to generate accurate results consistently while delivering an
impressive level of throughput. Despite its myriad of advantages, the COA is not without limitations. It
encounters issues relating to local search constraints, as well as difficulties with updating the position of
its four core category variables. Conversely, the WOA, another widely used algorithm in optimization
problems, boasts of its high performance and swift convergence speed. However, its proficiency tends
to decrease as the number of tasks increases, indicating a predilection for optimal performance with
smaller tasks. Aiming to address the identified drawbacks of both the COA and WOA, this research
introduces an innovative algorithm known as the Modified Chimp-Whale Optimization (MCWO)
algorithm. This novel algorithm is not merely a patchwork of the two preceding algorithms; instead,
it ingeniously builds upon the strengths of both COA and WOA. The MCWO algorithm aspires to
consistently generate high-performance results and sustain throughput, regardless of the size of the
task at hand. Its inherent design principles and mechanisms have been honed to respond efficiently to
any situation, ensuring it remains versatile and adaptable.

Furthermore, this algorithm leverages exploration and exploitation procedures at the onset of
every iteration, aimed at reducing the overall time to reach the desired solution. The primary novelty in
the proposed algorithm lies in its superior performance and throughput concerning energy consump-
tion, makespan, and latency (Quality of Service parameters), as compared to the two foundational
algorithms. Additionally, due to its hybrid approach, the algorithm adeptly manages complexities such
as heterogeneous resources, fluctuating workloads, inter-task dependencies, and real-time constraints.
Most notably, it serves as a deadline-sensitive algorithm, ensuring tasks are completed within their
specified timeframes. The following sections are the breakdown and explanation of the proposed
MCWO algorithms.



2602 CMC, 2024, vol.78, no.2

3.3.1 Chimp Optimization Algorithm (COA)

The Chimp Optimization Algorithm (COA) is an ingenious bio-inspired optimization method
used for task scheduling in cloud computing, drawing inspiration from the food-foraging behavior
of chimpanzees [27]. In the wild, chimpanzees use a balance of exploration, exploiting known food
sources, and exploration, searching for new ones. Similarly, COA employs this principle of balancing
exploration (global search) and exploitation (local search), ensuring a dynamic approach towards
finding optimal solutions for complex computational problems. In the realm of task scheduling within
cloud computing, the COA operates by assigning tasks (indicated as food sources) to virtual machines
(similar to chimpanzees). In this ecosystem, each task represents a job to be executed, and each virtual
machine serves as a computational resource with the capacity to perform these tasks. The algorithm
begins with random initialization, where each virtual machine is assigned a task randomly. This
scenario mirrors the way a group of chimpanzees would disperse in different directions to find food.

The key to COA’s efficacy is its dynamic adaptation ability. Just as a chimpanzee may switch
from exploiting a known food source to exploring new sources based on various factors, the COA also
strategically shifts between exploration and exploitation based on the problem’s characteristics and the
stage of optimization. During the exploration phase, the algorithm allows for a wide-ranging search
of the solution space. This phase is crucial to avoid being trapped in local optima and to ensure diverse
solutions are considered. In the exploitation phase, the algorithm fine-tunes the solutions, converging
towards the optimal solution. Moreover, the COA incorporates a social hierarchy behavior observed
in chimpanzee groups, further enhancing its optimization capabilities. It classifies solutions into four
categories, namely, driver, barrier, chaser, and attackers, representing the lowest to the highest quality
solutions, respectively. These categories influence the search strategy, with higher-ranked solutions
contributing more to the global search phase and lower-ranked ones contributing more to the local
search phase.

3.4 Mathematical Model Related to COA

In the following section, the equations and formulas used in the Chimp optimization algorithm
are discussed. As mentioned earlier, there are 4 different independent groups of chimps involved, each
of which is driving, blocking, chasing, and attacking groups. The objective of these groups is to obtain
the required solution (here the correct mapping of a user-defined task to the available virtual machine).
The complete COA is divided into 2 stages which are the exploration and exploitation stage.

3.4.1 Exploration Stage

The exploration stage suggests the process of global search within the solution space. It
is the phase where the algorithm conducts a widespread search to discover new potential solutions.
The exploration stage is inspired by the behavior of chimpanzees when they are searching for food in
the wild. In this phase, each “chimp” (a potential solution in the algorithm) embarks on a search for
“food” (the optimal solution). This is achieved by creating new potential solutions through random
perturbations of the current solutions, akin to a chimpanzee moving in different directions in search of
food. The objective during this stage is to ensure diversity in the search process and to avoid premature
convergence to a suboptimal solution. By exploring a broad scope of the solution space, the algorithm
is more likely to discover global optima. To perform this process and discover the potential solution,
the following equations are utilized:

dis = ∣∣c.yprey (t) − mt.ychimp (t)
∣∣ (9)



CMC, 2024, vol.78, no.2 2603

yprey (t + 1) = yprey (t) − a.dis (10)

In the above Eq. (9), dis refers to the distance between prey (potential solution) and chimp. Here
the variable yprey indicates the location vector of the potential solution/prey, variable ychimp indicated
the location vector of the chimp and variable t indicates the iteration number. Eq. (10) is used to
update the position of the prey based on the distance calculated in the previous iteration. Apart
from this, variables such as mt, c, and a represent the coefficient vectors which are calculated using
Eqs. (11)–(13).

a = 2.f .r1 − f (11)

c = 2.r2 (12)

mt+1 = λ/ mt (1 − mt) (13)

In the equations mentioned above, the variable f undergoes a nonlinear reduction from 2.5 to 0
throughout the iterative process, which includes both the exploration and exploitation phases. Here,
r1, r2 and r3 are random vectors that exist within the range [0, 1]. Lastly, mt denotes a chaotic vector
computed based on different chaotic values from the preceding iteration. This calculation employs
logistic mapping to enhance the hunting process of the chimp, thereby making the algorithm more
effective. And λ/ represent the chaotic vector-based learning rate with value between 0 and 1.

3.4.2 Exploitation Stage

The exploitation stage in the Chimp Optimization Algorithm (COA) is the phase where the algo-
rithm focuses on refining the current best solutions to find local optima. This phase draws inspiration
from the behavior of chimpanzees when they are exploiting a known food source, concentrating on
gathering as much as possible from it. During the exploitation phase, the algorithm takes the current
best solutions (often represented by the driving, blocking, chasing, and attacking group solutions
in the COA) and generates new potential solutions in their vicinity. This is done by applying small
perturbations to the current best solutions, effectively probing the solution space around these points
to find even better solutions. The goal here is to locate a near-optimal or optimal solution once a
promising region of the solution space has been identified. To perform this process, equations similar
to the ones seen in the exploration stage are utilized.

disattack = |c1.yatttack (t) − mt1.y (t) |, dischase = |c2.ychase (t) − mt2.y (t) |disblock = |c3.yblock (t) − mt3.y (t) |,
disdrive = |c4.ydrive (t) − mt4.y (t) | (14)

y1 (t) = yattack (t) − a1.disattack, y2 (t) = ychase (t) − a2.dischase (15)

y3 (t) = yblock (t) − a3.disblock, y4 (t) = ydrive (t) − a4.disdrive

y (t) = y1 (t) + y2 (t) + y3 (t) + y4 (t)
4

(16)

As previously mentioned, in the last phase, the chimps launch their attack and end the hunt
when the prey ceases movement. The mathematical modeling of this attacking process involves
reducing the value of f . It is worth emphasizing that the variation values of the variable a are also
constricted by f . Essentially, a stands for a random variable within the span of [−2 f , 2 f ], and the
magnitude of f diminishes from 2.5 to 0 as iterations progress. Moreover, similar to Eq. (9), mti, ci,
and ai(value i from 1 to 4) represent the coefficient vectors which are calculated using Eqs. (11)–(13).



2604 CMC, 2024, vol.78, no.2

When the stochastic values of a fall within the interval of [−1,1], the subsequent placement of a chimp
can range anywhere between its current location and the location of the prey. Based on the operators
mentioned earlier, the Chimp Optimization Algorithm (ChOA) facilitates the chimps in modifying
their positions, correlating with the stances of the attacking, barrier, chasing, and driving chimps,
ultimately initiating a pursuit on the prey.

The above two mentioned stages are the most important stages that display the mathematical
working of the Chimp Optimization algorithm. An important fact of the COA in task scheduling is
its effectiveness in handling various complexities inherent in cloud computing environments. These
include the heterogeneity of resources, where different virtual machines may have varying capabilities,
and the dynamic nature of workloads, where the number and characteristics of tasks can change
over time. The COA’s flexible and adaptive nature allows it to effectively navigate these complexities,
dynamically adjusting its search strategy based on the current state of the system and the tasks at hand.

3.5 Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm (WOA) is an optimization technique rooted in nature,
specifically designed for task scheduling in cloud computing [28]. It takes cues from the hunting
patterns of humpback whales. Notably, the algorithm emulates the bubble-net hunting strategy, where
whales ascend in a spiral motion and exhale bubbles to create a ‘net’, effectively entrapping their
target. In the realm of task scheduling in cloud computing, the WOA is adept at efficiently allocating
tasks to virtual machines (VMs) to optimize specific objectives, such as minimizing total execution
time, reducing cost, or balancing load. In the WOA, each whale represents a potential solution or a
specific task-to-VM assignment in the context of task scheduling. The WOA begins with a population
of whales dispersed randomly in the search space. It then performs a series of mathematical operations
to model the hunting behavior of the whales. These operations involve shrinking encircling and spiral
updating positions that correspond to the formation of the bubble-net and the spiraling behavior of
the whales, respectively.

3.5.1 Mathematical Model Related to WOA

In the subsequent segment, we delve into the mathematical underpinnings and formulas inherent
to the Whale Optimization Algorithm. The WOA, tailored for task scheduling within cloud comput-
ing, incorporates various mathematical principles, drawing inspiration from the predatory patterns
of humpback whales. The algorithm’s initiation comprises a collection of prospective solutions, each
epitomized as a point within a multi-faceted space. Every such point denotes a distinct task assignment
to a Virtual Machine (VM).

3.5.2 Encircling Prey

During the exploitation phase, the whales (potential solutions) encircle their prey (the current
best solution). This behavior is mathematically modeled by gradually updating the position of each
whale towards the location of the optimal result found so far. This is done using equations that shrink
the distance between each prey and whale over time, driving the whales to converge towards the best
solution. the equation used in this stage is similar to Eqs. (9) and (10).

3.5.3 Bubble-Net Attacking Method

In the exploration phase, the WOA uses a mathematical model of the spiral-shaped bubble-net
hunting behavior of whales. This is modeled using a logarithmic spiral equation that generates a spiral



CMC, 2024, vol.78, no.2 2605

path moving toward the best solution. This allows the algorithm to conduct a local search around the
current best solution while also maintaining some degree of exploration. In the Logarithmic Spiral
position updating System approach, Initially, humpback whales embark on an exploration of their
prey, assessing the distance that separates them. Following this, they engage in a distinctive logarithmic
spiral motion akin to a cone’s shape to pursue their prey. Each whale adjusts its position in sync with
this spiral movement path. The mathematical representation of this strategy is provided as follows:

dis = |c.Y (t) − y (t)| (17)

Y(t + 1) = dis.ebl. cos (2π l) + c.Y (t) (18)

In this context, Eq. (17) delineates the distance between the tth whale and its prey. The term Y (t)
stands for the position vector of the chosen whale during the tth iteration, whereas y (t) indicates the
position vector of the prospective solution, often referred to as the prey. Moving to Eq. (18), l is
a random value falling within the interval [−1,1], and b serves as a constant that sketches out the
logarithmic spiral patterns. Beyond their circular maneuvering around the prey, humpback whales
also adopt a conical logarithmic spiral movement to corner their prey simultaneously. The revamped
positions of the humpback whales are outlined by Eq. (18). Both methods of movement hold an
equivalent probability of 50%, expressed as follows:

Y (t + 1) =
{

Y (t) − a.dis if p < 0.5
dis.ebl. cos (2πl) + Y (t) if p > 0.5

(19)

In the aforementioned description, p denotes a random variable situated between 0 and 1. Beyond
their bubble-net attack approach, humpback whales also engage in a random search tactic to identify
their prey. The subsequent section offers a detailed mathematical portrayal of this randomized search
method employed by the whales.

3.5.4 Search for Prey

If the whales cannot improve their solutions through encircling prey or bubble-net attacks, they
will search for prey randomly. This is modeled by randomly updating the position of the whales within
the search space. Eqs. (20) and (21) represent the search for prey.

dis = ∣∣c.yrand(t) − y(t)
∣∣ (20)

y (t + 1) = yrand (t) − a. dis (21)

In this context, a represents the humpback whales’ action of searching for prey. The value
for the vector a should either exceed 1 or be less than −1. This stage differs from the exploitation stage
as the location of the search agent is adjusted concerning a randomly chosen search agent, rather than
the best agent identified up to that point. The condition a > 1 is incorporated into the WOA algorithm
to facilitate the search for the global optimum and to sidestep the local optimum. The variable yrand (t)
in Eq. (21) is derived from the current generation and represents a random position vector, indicating
a random whale.

3.6 Modified Chimp-Whale Optimization Algorithm

As mentioned before, the proposed algorithm MCWO is based on two optimization algorithms
the COA and WOA. Both these optimization algorithms are nature-inspired algorithms that can solve
the required problem which is to improve the performance of the task scheduler. While the Chimp



2606 CMC, 2024, vol.78, no.2

Optimization Algorithm (COA) offers several advantages in task scheduling for cloud computing,
like all optimization algorithms, it also has certain limitations or drawbacks. While COA is designed to
maintain a balance between exploitation and exploration to avoid local optima, it may still get trapped
in local optima for certain complex or high-dimensional problems. As with any heuristic algorithm,
COA does not guarantee to find the optimal solution. While it may find high-quality solutions in a
reasonable time frame, there is no guarantee that these solutions are globally optimal. Moreover, the
initial population calculation is assumed and there is no actual calculation involved due to which there
is no guarantee of getting optimal solution all the time. Therefore, to enhance the performance of the
COA, this study tries to propose a new algorithm called the modified Chimp-Whale Optimization
algorithm, which tries to jump out of the local extreme value or optima using the technique called
Bubble-net attacking method inspired by WOA. But by doing so the proposed algorithm will be able
to provide a better solution with improved performances and throughput. Moreover, Both COA and
WOA algorithms use random values to initial the population at the beginning, due to which the quality
of the discovered solution reduces and the algorithm becomes less optimal. Thus, to understand the
proposed better the algorithm is divided into 4 stages.

3.6.1 Stage 1–Population Initialization and Sequencing

As previously highlighted, population initialization is an integral component of an optimization
algorithm. This stage involves two distinct yet interrelated processes: the initialization of pertinent
parameters and their subsequent sequencing. The latter is employed to reduce computational time and
strive towards enhanced algorithm performance. Initially, upon defining all the necessary parameters,
such as tasks, available virtual machines, host machines, and so forth, it is essential to assign specific
values to them. In this study, the primary emphasis is on the initialization and sequencing of the
available set of tasks and the identification of the prey, this is done by taking their characteristics
into account. The proposed algorithm utilizes the following equations during this crucial stage:

w =

⎧⎪⎨
⎪⎩

(2.rc)
1

s+1 if rc < 0.5

1 −
[
(2. (1 − rc))

1
s+1

]
if rc > 0.5

(22)

In Eq. (22), the term w signifies the weight initializer, while rc stands for the character-variable,
which is determined based on the selected task’s characteristics. The value of rc ranges between 0
and 1. Meanwhile, the variable s denotes the total count of tasks present at the initialization stage.
This variable bears resemblance to the one utilized in Eq. (1).

δ = min
[
(Xu − X) (X − Xl)

Xu − Xl

]
(23)

X = Tk.(rc)s (24)

In the above Eq. (23), the two variables Xu and Xl refers to the upper limit and lower limit in the
prey set Sprey and min() represents the minimal selection function. At the beginning of the algorithm,
Xu and Xl are assigned values 0 and 1, and later on for each Tk (kth task), it is placed inside the set Sprey

using Eq. (25) which is expressed as:

Sprey = Tk + w.δ (25)



CMC, 2024, vol.78, no.2 2607

From the equations discussed above, the algorithm can derive a set of tasks or prey, determined
by the characteristics of each task. Once this is achieved, the elements of the set Sprey are arranged in
ascending order, a process termed the sequencing process. The advantage of implementing this process
lies in its ability to minimize the time the algorithm spends in determining the next task to be mapped.
This is achieved by reducing the number of processes utilized in the Whale Optimization Algorithm
(WOA) and the Chimp Optimization Algorithm (COA) to identify the subsequent prey. Additionally,
this mechanism allows the algorithm to function effectively in a dynamic environment. It is worth
noting that due to its reduced time consumption and superior performance and throughput, the
algorithm is better equipped to operate in a deadline-sensitive manner. This means it can execute tasks
within a specified timeframe, which is of paramount importance in many cloud computing contexts.
Now once the prey’s location is calculated, the next step is to represent that particular prey/task on an
arbitrary space using its position vector.

3.6.2 Stage 2–Group Division

In stage 2, the available set of chimps or virtual machines is divided into 4 different independent
groups namely, attacking, blocking, chasing, and driving groups. Therefore, the objective of this stage is
to create 4 different groups and assign the available virtual machines to each of these groups depending
on certain properties (like the execution time of a task by the individual virtual machine, energy
consumption, and many more). To create clusters, first, all the available set of virtual machines is
represented in the same arbitrary space as that of the prey. After which 4 points are selected randomly
in the space. These selected points are termed the centroid. Let Cen = {cen1, cen2, cen3, cen4} represent
a set of centroids for each group. Since the centroid represents the midpoint of a cluster, and initially
these points are selected based on a random process, therefore to get the correct midpoint the following
equations are used:

Scp = {
ychimp|if ychimp is near to cenp

}
(26)

cena = 1
|Sca|

∑p

1

(
yp

)
(27)

ap = min||yp − cena||2 (28)

Eq. (26) is executed only once at the beginning after the centroids are selected. The updation of the
centroid value of a cluster is done using Eq. (27), where |Sca| represents the total number of elements
in the set Sca. In Eq. (28), each point is again assigned to a cluster set based on the minimum distance
between the selected point and the centroid value. The updation Eqs. (27) and (28) are executed until
the value obtained from Eq. (28) is similar to the value obtained from the same equation in the previous
iteration. Once the clusters and their centroids are calculated, the next process is to find the coefficient
vectors associated with these groups, that is

ap = 2.fp.r1 − fp (29)

cp = 2.r2 (30)

fp =
(

� ± 2.
( q

t2

) 1
4
)

+ η (31)

where variable ap is the distance coefficient for the cluster p, variable cp represents the outer perimeter
of the cluster p, variable fp represents the cluster search range which is calculated using Eq. (31) and
finally r1 and r2 are random vectors that exist within the range of [0,1]. In Eq. (31), the variables � and



2608 CMC, 2024, vol.78, no.2

η are quadratic and Gauss variables with values varying from [0,1], q represents the total number of
points represented in cluster p and t represents the tth iteration. The main objective of Eq. (31) is to
produce a nonlinear reduction from 3 to 0 throughout the iterative process after the prey comes in the
vicinity of either of the cluster ranges, until the value of fp remains constant.

3.6.3 Stage 3-Bubble-Net Attacking Method

In this stage, the chimps from the different clusters or groups move towards the prey or the task in
a move-defined manner compared to the COA exploration and exploitation stage, as the location of
the prey is not known. However, due to the equation from stages 1 and 2, the locations of the prey as
well as the centroids of the clusters are known. Based on this knowledge the chimps approach the prey
or the target in a Logarithmic Spiral manner so that at any given point in time, the algorithm does
not get trapped in local extreme values. In this methodology, the chimps, or centroids, initially gauge
their distance from the prey. Subsequently, they navigate using a conical logarithmic spiral trajectory to
capture the prey. Every chimp within the groups refines their position anchored to this spiral trajectory.
This technique is articulated mathematically as follows:

dp = ∣∣cp.cenp (t) − sprey (o)
∣∣ (32)

cenp (t + 1) =
⎧⎨
⎩

cenp (t) − ap.dp.eal if dp > cp

dp.e−al. cos (2πl) + cenp (t) if dp ≤ cp

(33)

In Eq. (32), the distance from the centroid of each cluster or group to the prey is calculated, and
based on this value the centroid moves in a spiral manner toward the prey, the cluster which is far
moves faster compared to the cluster which is close to the prey, this will ensure that all the cluster
completer surround the prey after tth iteration. After tth iteration, using Eq. (33) if the value of the
dp ≤ cp (that is the prey is in the range of the cluster p), then the value of the cluster search range
(fp) starts to reduce and the clusters move in a spiral manner toward the prey, and this is done until
dp becomes 0, which indicates that the chimp has successfully captured the prey, or the mapping of
the virtual machine to the task is done. Moreover, as mentioned earlier, Eq. (33) will ensure that the
algorithm moves uniformly in the direction of the prey and does not get trapped in local extreme values
with the proper convergence rate and high performance and throughput.

3.6.4 Stage 4–Evaluation Using Objective Function

In stage 4, once the mapping of the chimp to the prey is done, the solution is stored in the set
Sol. Since the problem is an optimization problem with lower values, each element in this set Sol is
checked individually to assess whether the obtained result is the best result or not. This is done using
the following Eq. (34):

result =
{

1 if Objective function < threshold

select the next best cluster if Objective function ≥ threshold
(34)

In Eq. (34), the value of the threshold varies from task to task. Therefore, all the formulas and
explanations mentioned above suggest that the proposed algorithm is enhanced compared to the COA
and WOA algorithms. The algorithm for MCWOA is shown below:



CMC, 2024, vol.78, no.2 2609

Algorithm 1: Proposed MCWOA scheduler
Input:

Inputs considered:
Number of Tasks–T1, T2, . . . , Ta
Number of Virtual Machine–VM (1), VM (2), . . . , VM (b)
Maximum iteration-Maxt

Output:
Provide the mapped result-set that includes the optimal pairing of tasks to virtual
machines, ensuring the best possible combination of such pairs.

1 BEGIN
2 Initialization of solution as population and its sequencing using Eqs. (22) and (25)
3 Storing the final result in set Sprey

4 Initial Group Division of the chimps using Eq. (26)
5 WHILE t < Maxt

6 Determine the leader of each group using equations Eqs. (27) and (31)
7 Implementing the bubble-net attacking using equation Eqs. (32) and (33)
8 Obtain the set of solution from the above step in the set Sol
9 WHILE (objective_function_value) (using the Eq. (1))
10 Store the solution pair.
11 Select the next task or prey
12 END WHILE
13 Increment the t value by 1
14 END WHILE
15 Return the set result that has the optimal virtual machine to task pairing.
16 END

4 Experimental Evaluation

In this section, an intricate exploration of the experimental assessment of the Modified Chimp-
Whale Optimization Algorithm is presented. The intention behind this in-depth evaluation is to gain
a clearer understanding of how the algorithm fares under scrutiny, especially when compared with
other renowned meta-heuristic strategies. The techniques chosen for comparison are among the most
widely recognized and esteemed in the research community. These include the Whale Optimization
Algorithm (WOA), the chimp algorithm (CA), the Genetic Algorithm (GA), the Ant Lion Optimizer
(ALO), and, not the Grey Wolf Optimizer (GWO). CloudSim toolkit is identified as the platform for
conducting the simulations. This choice is attributed to its robust capabilities and its recognition in
the research domain for similar projects [29]. This toolkit was vital in verifying that the simulation
results were both valid and reliable. A proper experimental setup is paramount for reproducibility and
comprehension of the conditions under which results were obtained. In this context, the testing was
performed on a formidable desktop computer. This device is driven by an Intel i7 processor, housing
4 CPUs, each operating at a speed of 2 GHz. Furthermore, to cater to the intensive computational
demands of the simulations, the computer is outfitted with 8 GB of RAM. It runs on a Windows
64-bit platform, ensuring a stable and compatible environment for the tests. A central aspect of
the experimental design was the software development environment. Java was the chosen language,
with the Java Development Kit (JDK) employed for constructing the simulator. Java’s selection was



2610 CMC, 2024, vol.78, no.2

influenced by its flexibility, its ubiquity, and the convenience it provides in formulating complex
algorithms and simulation frameworks.

4.1 Initialization of Variables

The input incorporated several variables, as shown in the table below. Specifically, Table 1 lists
these variables and the initial values assigned to them during the setup phase.

Table 1: Breakdown of the simulation specifics for cloud resources

Entity Configuration Values

User Number of users 20
Data centre Number of physical machines 5

Number of data centre 1
Task Each task’s instruction rate 500–2000 MIPS

Number of tasks/cloudlets 400
Number of iteration 5–25

Virtual machine (VM) CPUs core [1–4]
Number of VMs 20, 40 and 60
Operating system used Linux, Windows
VMs type of policy Time Shared
vCPU Frequency [250–1000]
VMM/Hypervisor XEN
RAM size in VMs [512–2048] MB

Physical machine (PM) PMs type of policy Time Shared
PMs cores 16
PMs memory capacity 70 GB
PMs storage 150 TB
PMs frequency 2000

In Table 1, parameters such as the number of iterations and the number of tasks considered for
evaluation under each section are limited to a small value. The reason for this is, by focusing on a
few select quantities of tasks, it becomes easier to benchmark the proposed Modified Chimp-Whale
Optimization Algorithm against existing algorithms which are the Whale Optimization Algorithm
(WOA), the chimp algorithm (CA), the Genetic Algorithm (GA), the Ant Lion Optimizer (ALO) and
Grey Wolf Optimizer (GWO). This allows for a more controlled and direct comparison, enabling a
clear assessment of how the proposed algorithm performs in different scenarios. Moreover, based on
this result, the proposed algorithm can easily be projected to a higher number of iterations and tasks.

4.2 Makespan Evaluation

This section evaluates the performance of the presented algorithm, focusing on its execution time
for a task set. For a comprehensive evaluation, between 100 to 400 tasks are taken into account. The
execution is based on different arrival rates, specifically analyzing makespan at rates of 10 and 40. The
arrival rate indicates the time gap (in microseconds) between tasks reaching the scheduler. Without



CMC, 2024, vol.78, no.2 2611

regulating this rate, there is potential for the scheduler to be overwhelmed by a sudden flood of tasks.
Using varied arrival rate values ensures efficient functioning and maintains low communication bus
bandwidth. The algorithm’s results are compared to others such as WOA, CA, GWO, ALO, and GA.
The outcomes from the experimental simulations are depicted in Figs. 2 and 3.

0.00
20.00
40.00
60.00
80.00

100.00
120.00

M
ak

es
pa

n(
s)

Number of tasks

Makespan Arrival Rate = 10

Figure 2: Makespan for the tasks with an arrival rate of 10

M
ak

es
pa

n(
s)

Number of tasks

Makespan Arrival Rate = 40

Figure 3: Makespan for the tasks with an arrival rate of 40

The performance, measured by task execution time, was evaluated. Simulations used 100 to 400
tasks, all with an arrival rate of 10. The results of the proposed algorithm were benchmarked against
WOA, CA, GWO, ALO, and GA, in terms of the seconds each algorithm takes to complete a particular
set of tasks and displayed in Fig. 2. For 100 tasks, the makespan values for MCWOA, WOA, CA,
GWO, ALO, and GA are 13.78, 15.01, 16.21, 18.9, 15.73 and 32.32 s, respectively. For 200 tasks, the
makespan values for MCWOA, WOA, CA, GWO, ALO, and GA are 25.9, 27.23, 31.09, 34.61, 29.05
and 67 s, respectively. For 300 tasks, the makespan values for MCWOA, WOA, CA, GWO, ALO, and
GA are 36.56, 38.31, 46.31, 50.31, 40.02 and 75.5 s, respectively. Finally, for 400 tasks, the makespan
values for MCWOA, WOA, CA, GWO, ALO, and GA are 50.4, 52.3, 58.42, 66, 53.1 and 124 s,
respectively. From the data provided, it is evident that the MCWOA technique showcases superior
performance in makespan values when compared with other methods like WOA, CA, GWO, ALO,
and GA. Specifically, MCWOA yields improvements in makespan of 4.67%, 16.70%, 25.42%, 8.16%,
and 57.61% when contrasted with the performance of WOA, CA, GWO, ALO, and GA algorithms,
respectively.

The performance, measured by task execution time, was evaluated. Simulations used 100 to 400
tasks, all with an arrival rate of 40. The results of the proposed algorithm were benchmarked against
WOA, CA, GWO, ALO, and GA, in terms of the seconds each algorithm takes to complete a particular
set of tasks and displayed in Fig. 3. For 100 tasks, the makespan values for MCWOA, WOA, CA,
GWO, ALO, and GA are 16.98, 17.01, 19.67, 22.68, 18.786 and 38.784 s, respectively. For 200 tasks,
the makespan values for MCWOA, WOA, CA, GWO, ALO, and GA are 30.76, 32.36, 38.12, 41.53,



2612 CMC, 2024, vol.78, no.2

34.86 and 80.4 s, respectively. For 300 tasks, the makespan values for MCWOA, WOA, CA, GWO,
ALO, and GA are 45.13, 46.12, 55.41, 60.37, 48.02 and 90.6 s, respectively. Finally, for 400 tasks, the
makespan values for MCWOA, WOA, CA, GWO, ALO, and GA are 60.8, 62.3, 71.01, 79.2, 63.98 and
148.8 s, respectively. From the data provided, it is evident that the MCWOA technique showcases
superior performance in makespan values when compared with other methods like WOA, CA, GWO,
ALO, and GA. Specifically, MCWOA yields improvements in makespan of 2.61%, 16.57%, 24.59%,
7.22%, and 57.14% when contrasted with the performance of WOA, CA, GWO, ALO, and GA
algorithms, respectively.

4.3 Energy Consumption

In this segment, the efficiency of the proposed algorithm is gauged based on the energy consumed
by the virtual machine to process a series of tasks. For an in-depth analysis, batches of 200 and 400
tasks are examined. These tasks are carried out according to different iteration values, starting from
the 5th iteration to the 25th iteration. The energy consumption results from this innovative method are
compared with those of alternative algorithms such as WOA, CA, GWO, ALO, and GA. Moreover,
each of the values recorded in this section is expressed in terms of Kilowatt-hour (KWh). The findings
from the experimental simulation are illustrated in Figs. 4 and 5.

En
er

gy
 C

on
su

m
pt

io
n(

K
W

H
)

Iterations

Number of Task 200

Figure 4: Energy consumption for 200 tasks

En
er

gy
 

Co
ns

um
pt

io
n(

K
W

H
)

Iterations

Number of Task 400

Figure 5: Energy consumption for 400 tasks

4.3.1 Energy Consumption for 200 Tasks

In this context, an energy consumption analysis is undertaken. For this simulation, 200 tasks were
evaluated across diverse iterations. The outcomes of this analysis are showcased in Fig. 4. From the
simulation data, it is clear that the newly introduced MCWOA algorithm effectively reduces energy
consumption. From the graph, it is clear that during the 5th iteration, the consumption of energy for
MCWOA, WOA, CA, GWO, ALO, and GA are 0.15, 0.15, 0.16, 0.17, 0.17 and 0.17 KWH. The
consumption of energy during the 10th iteration for MCWOA, WOA, CA, GWO, ALO, and GA are
0.15, 0.16, 0.16, 0.17, 0.17 and 0.17 KWH. The consumption of energy during the 15th iteration for



CMC, 2024, vol.78, no.2 2613

MCWOA, WOA, CA, GWO, ALO, and GA are 0.13, 0.14, 0.15, 0.16, 0.16 and 0.16 KWH. The
consumption of energy during the 20th iteration for MCWOA, WOA, CA, GWO, ALO, and GA
are 0.15, 0.14, 0.15, 0.16, 0.16 and 0.16 KWH and finally, the consumption of energy during the
25th iteration for MCWOA, WOA, CA, GWO, ALO, and GA are 0.13, 0.13, 0.14, 0.16, 0.16 and
0.16 KWH. From the data presented, it becomes evident that the MCWOA method is more energy-
efficient than its counterparts, namely WOA, CA, GWO, ALO, and GA. When benchmarked against
these methods, MCWOA demonstrated energy consumption of 1.47%, 6.17%, 11.49%, 12.37%, and
13.24% in comparison to WOA, CA, GWO, ALO, and GA, respectively.

4.3.2 Energy Evaluation for 400 Tasks

In this context, an energy consumption analysis is undertaken. For this simulation, 400 tasks were
evaluated across diverse iterations. The outcomes of this analysis are showcased in Fig. 5. From the
simulation data, it is clear that the newly introduced MCWOA algorithm effectively reduces energy
consumption. From the graph, it is clear that during the 5th iteration, the consumption of energy for
MCWOA, WOA, CA, GWO, ALO, and GA are 0.24, 0.25, 0.26, 0.28, 0.28 and 0.28 KWH. The
consumption of energy during the 10th iteration for MCWOA, WOA, CA, GWO, ALO, and GA
are 0.24, 0.25, 0.26, 0.28, 0.28 and 0.28 KWH. The consumption of energy during the 15th iteration
for MCWOA, WOA, CA, GWO, ALO, and GA are 0.22, 0.23, 0.25, 0.26, 0.26 and 0.26 KWH. The
consumption of energy during the 20th iteration for MCWOA, WOA, CA, GWO, ALO, and GA are
0.25, 0.23, 0.24, 0.26, 0.26 and 0.26 KWH. And finally, the consumption of energy during the 25th

iteration for MCWOA, WOA, CA, GWO, ALO, and GA are 0.22, 0.22, 0.24, 0.26, 0.26 KWH and
0.26 KWH. From the data presented, it becomes evident that the MCWOA method is more energy-
efficient than its counterparts, namely WOA, CA, GWO, ALO, and GA. When benchmarked against
these methods, MCWOA demonstrated energy consumption of 1.47%, 6.17%, 11.49%, 12.37%, and
13.24% in comparison to WOA, CA, GWO, ALO, and GA, respectively.

4.4 Latency Evaluation

In this segment, the efficacy of the suggested algorithm is analyzed through its latency, meaning
an examination of its response time performance. The evaluation involves measuring the interval from
when a request is made to when a response is received, or the duration from task submission to its
execution in a cloud setting. This algorithm’s latency values are then compared against those from
benchmark algorithms, namely WOA, CA, GWO, ALO, and GA. To assess the latency across different
algorithms, tasks ranging from 100 to 400 are provided and their average waiting time is expressed
in milliseconds (ms) which is graphically represented in Fig. 6. For 100 tasks, the latency values for
MCWOA, WOA, CA, GWO, ALO, and GA are 7.60, 7.68, 8.14, 8.06, 8.05 and 7.88 ms, respectively.
For 200 tasks, the latency values for MCWOA, WOA, CA, GWO, ALO, and GA are 8.17, 8.26, 8.73,
8.64, 8.62 and 8.45 ms, respectively. For 300 tasks, the latency values for MCWOA, WOA, CA, GWO,
ALO, and GA are 8.53, 8.62, 9.22, 9.13, 9.11 and 8.93 ms, respectively. And finally, for 400 tasks, the
latency values for MCWOA, WOA, CA, GWO, ALO, and GA are 8.91, 9.01, 9.59, 9.50, 9.48 and
9.29 ms, respectively. From the data provided, it is evident that the MCWOA technique showcases
superior performance in latency values when compared with other methods like WOA, CA, GWO,
ALO, and GA. Specifically, MCWOA yields improvements in latency of 1.1%, 6.96%, 6.02%, 5.83%,
and 3.91% when contrasted with the performance of WOA, CA, GWO, ALO, and GA algorithms,
respectively.



2614 CMC, 2024, vol.78, no.2

A
ve

ra
ge

 R
ed

uc
in

g 
ti

m
e 

of
 a

cc
ep

te
d 

w
or

llo
ad

s(
m

s)
 

Delay of Workloads

Latency Evaluation

Figure 6: Latency Evaluation

5 Conclusion

One novel approach to the complex problems of effective task scheduling in cloud computing
environments is the proposed MCWOA (Modified Chimp-Whale Optimization Algorithm). This
novel algorithm functions in the cloud computing environment, where Quality-of-Service (QoS) char-
acteristics—latency, energy consumption, and makespan—are critical to task scheduling. Motivated
by its multi-objective optimization methodology, MCWOA aims to balance these factors, guaranteeing
that cloud-based systems perform at maximum effectiveness while meeting strict QoS requirements.
When MCWOA is compared with a range of popular algorithms, such as the Whale Optimization
Algorithm (WOA), Cuckoo Algorithm (CA), Grey Wolf Optimization (GWO), Ant Lion Optimizer
(ALO), and Genetic Algorithm (GA), its uniqueness becomes evident. Through a series of rigorous
experiments, MCWOA consistently shows the best results; it excels in makespan metrics and energy
efficiency in particular. There were several different scenarios included in these experiments, with task
quantities ranging from 100 to 500 and virtual machine (VM) quantities varying between 20 40, and 60.
Every time, the results of these tests confirm the substantial and ongoing advancements that MCWOA
brings to the field of cloud-based task scheduling. Focusing on the observable advantages that
MCWOA provides to the sector makes it clear that the algorithm has a significant influence that goes
well beyond research and development. Through a significant reduction in task turnaround times and
an improvement in resource utilization, MCWOA embodies efficiency in task execution. Furthermore,
the algorithm’s built-in capacity to reduce waste and conserve energy results in significant cost savings,
which is crucial at a time when operating costs are constantly rising. The operational efficiency of
MCWOA has a cascading effect on various industries and organizations. Companies that frequently
struggle with the constant problem of cost optimization find in MCWOA a dependable ally that not
only speeds up task completion but also significantly lowers operating costs.

Acknowledgement: The authors wish to express their thanks to Vellore Institute of Technology (VIT)
Chennai for their extensive support during this work.

Funding Statement: The authors received no specific funding for this work.

Author Contributions: Conceptualization: C. Chandrashekar and P. Krishnadoss, methodology:
V. K. Poornachary, software: B. Ananthakrishnan, validation: B. Ananthakrishnan and P. Krishnadoss,
formal analysisb: P. Krishnadoss, investigation: P. Krishnadoss, resources: V. K. Poornachary, data
curation: V. K. Poornachary, writing-original draft preparation: P. Krishnadoss, V. K. Poornachary,



CMC, 2024, vol.78, no.2 2615

B. Ananthakrishnan, writing-review and editing: P. Krishnadoss, visualization: P. Krishnadoss,
supervision: V. K. Poornachary, project administration: V. K. Poornachary, funding acquisition: V.
K. Poornachary. All authors have read and agreed to the published version of the manuscript. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data can be shared on valid request made to corresponding
author.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective optimization scheduling method based

on the ant colony algorithm in cloud computing,” IEEE Access, vol. 3, no. 1, pp. 2687–2699, 2015. doi:
10.1109/ACCESS.2015.2508940.

[2] B. G. Batista et al., “Performance evaluation of resource management in cloud computing environments,”
PLoS One, vol. 10, no. 11, pp. e0141914, 2015. doi: 10.1371/journal.pone.0141914.

[3] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning PSO-based deadline constrained task schedul-
ing for hybrid IaaS cloud,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 564–573, 2013. doi:
10.1109/TASE.2013.2272758.

[4] M. Abdullahi and M. A. Ngadi, “Symbiotic organism search optimization based task scheduling
in cloud computing environment,” Future Gener. Comput. Syst., vol. 56, pp. 640–650, 2016. doi:
10.1016/j.future.2015.08.006.

[5] G. Natesan, N. Manikandan, K. Pradeep, and L. Sherly Puspha Annabel, “Task scheduling based on
minimization of makespan and energy consumption using binary GWO algorithm in cloud environment,”
Peer Peer Netw. Appl., vol. 2023, no. 5, pp. 1–14, 2023.

[6] M. Nanjappan, G. Natesan, and P. Krishnadoss, “HFTO: Hybrid firebug tunicate optimizer for fault
tolerance and dynamic task scheduling in cloud computing,” Wirel. Pers. Commun., vol. 129, no. 1, pp.
323–344, 2023. doi: 10.1007/s11277-022-10099-0.

[7] G. Natesan, J. Ali, P. Krishnadoss, R. Chidambaram, and M. Nanjappan, “Optimization techniques
for task scheduling criteria in IaaS cloud computing atmosphere using nature inspired hybrid spotted
hyena optimization algorithm,” Concurr. Comput. Pract. Exp., vol. 34, no. 24, pp. e7228, 2022. doi:
10.1002/cpe.7228.

[8] F. S. Prity, M. H. Gazi, and K. A. Uddin, “A review of task scheduling in cloud computing based
on nature-inspired optimization algorithm,” Clust. Comput., vol. 26, no. 5, pp. 3037–3067, 2023. doi:
10.1007/s10586-023-04090-y.

[9] P. Krishnadoss, V. K. Poornachary, P. Krishnamoorthy, and L. Shanmugam, “Improvised seagull optimiza-
tion algorithm for scheduling tasks in heterogeneous cloud environment,” Comput. Mater. Contin., vol. 74,
no. 2, pp. 2461–2478, 2023. doi: 10.32604/cmc.2023.031614.

[10] S. Chakraborty, A. K. Saha, and A. Chhabra, “Improving whale optimization algorithm with elite strategy
and its application to engineering-design and cloud task scheduling problems,” Cogn. Comput., vol. 15, pp.
1–29, 2023. doi: 10.1007/s12559-022-10099-z.

[11] S. Mangalampalli, G. R. Karri, and U. Kose, “Multi objective trust aware task scheduling algorithm in
cloud computing using Whale Optimization,” J. King Saud Univ.-Comput. Inf. Sci., vol. 35, no. 2, pp. 791–
809, 2023. doi: 10.1016/j.jksuci.2023.01.016.

[12] A. Y. Hamed, M. K. Elnahary, F. S. Alsubaei, and H. H. El-Sayed, “Optimization task scheduling using
cooperation search algorithm for heterogeneous cloud computing systems,” Comput. Mater. Contin., vol.
74, no. 1, pp. 2133–2148, 2023. doi: 10.32604/cmc.2023.032215.

https://doi.org/10.1109/ACCESS.2015.2508940
https://doi.org/10.1371/journal.pone.0141914
https://doi.org/10.1109/TASE.2013.2272758
https://doi.org/10.1016/j.future.2015.08.006
https://doi.org/10.1007/s11277-022-10099-0
https://doi.org/10.1002/cpe.7228
https://doi.org/10.1007/s10586-023-04090-y
https://doi.org/10.32604/cmc.2023.031614
https://doi.org/10.1007/s12559-022-10099-z
https://doi.org/10.1016/j.jksuci.2023.01.016
https://doi.org/10.32604/cmc.2023.032215


2616 CMC, 2024, vol.78, no.2

[13] P. Pirozmand, H. Jalalinejad, A. A. R. Hosseinabadi, S. Mirkamali, and Y. Li, “An improved particle swarm
optimization algorithm for task scheduling in cloud computing,” J. Ambient Intell. Humaniz. Comput., vol.
14, no. 4, pp. 4313–4327, 2023. doi: 10.1007/s12652-023-04541-9.

[14] V. Gowri and B. Baranidharan, “An energy efficient and secure model using chaotic levy flight deep
q-learning in healthcare system,” Sustain. Comput.: Inform. Syst., vol. 39, pp. 100894, 2023. doi:
10.1016/j.suscom.2023.100894.

[15] S. Singh and D. P. Vidyarthi, “An integrated approach of ML-metaheuristics for secure service placement
in fog-cloud ecosystem,” Internet of Things, vol. 22, no. 9, pp. 100817, 2023. doi: 10.1016/j.iot.2023.100817.

[16] G. Kumaresan, K. Devi, S. Shanthi, B. Muthusenthil, and A. Samydurai, “Hybrid fuzzy archimedes-based
Light GBM-XGBoost model for distributed task scheduling in mobile edge computing,” Trans. Emerg.
Telecommun. Technol., vol. 34, no. 4, pp. e4733, 2023. doi: 10.1002/ett.4733.

[17] I. Z. Yakubu and M. Murali, “An efficient meta-heuristic resource allocation with load balancing in IoT-
Fog-cloud computing environment,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 3, pp. 2981–2992,
2023. doi: 10.1007/s12652-023-04544-6.

[18] V. Sindhu and M. Prakash, “Energy-efficient task scheduling and resource allocation for improv-
ing the performance of a cloud-fog environment,” Symmetry, vol. 14, no. 11, pp. 2340, 2022. doi:
10.3390/sym14112340.

[19] R. Sing, S. K. Bhoi, N. Panigrahi, K. S. Sahoo, N. Jhanjhi and M. A. AlZain, “A whale optimization
algorithm based resource allocation scheme for cloud-fog based IoT applications,” Electronics, vol. 11, no.
19, pp. 3207, 2022. doi: 10.3390/electronics11193207.

[20] F. M. Talaat, “Effective prediction and resource allocation method (EPRAM) in fog computing envi-
ronment for smart healthcare system,” Multimed. Tools Appl., vol. 81, no. 6, pp. 8235–8258, 2022. doi:
10.1007/s11042-022-12223-5.

[21] M. Abdel-Basset, D. El-Shahat, M. Elhoseny, and H. Song, “Energy-aware metaheuristic algorithm for
industrial-Internet-of-Things task scheduling problems in fog computing applications,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12638–12649, 2020. doi: 10.1109/JIOT.2020.3012617.

[22] D. Mukherjee, S. Nandy, S. Mohan, Y. D. Al-Otaibi, and W. S. Alnumay, “Sustainable task
scheduling strategy in cloudlets,” Sustain. Comput.: Inform. Syst., vol. 30, pp. 100513, 2021. doi:
10.1016/j.suscom.2021.100513.

[23] M. Chowdhury, “A prediction and budget-aware offloading scheme for wearable computing,” Int. J. Sens.
Netw., vol. 36, no. 4, pp. 204–215, 2021. doi: 10.1504/ijsnet.2021.117481.

[24] J. Yuan, H. Xiao, Z. Shen, T. Zhang, and J. Jin, “ELECT: Energy-efficient intelligent edge-cloud
collaboration for remote IoT services,” Future Gener. Comput. Syst., vol. 147, pp. 179–194, 2023. doi:
10.1016/j.future.2023.04.030.

[25] F. Fakhfakh, S. Cheikhrouhou, B. Dammak, M. Hamdi, and M. Rekik, “Multi-objective approach for
scheduling time-aware business processes in cloud-fog environment,” J. Supercomput., vol. 79, no. 8, pp.
8153–8177, 2023. doi: 10.1007/s11227-022-04690-2.

[26] R. Khamkar, P. Das, and S. Namasudra, “SCEOMOO: A novel subspace clustering approach using
evolutionary algorithm, off-spring generation and multi-objective optimization,” Appl. Soft Comput., vol.
139, no. 1, pp. 1–11, 2023. doi: 10.1016/j.asoc.2023.110185.

[27] M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Expert Syst. Appl., vol. 149, pp. 113338,
2020. doi: 10.1016/j.eswa.2020.113338.

[28] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv. Eng. Softw., vol. 95, no. 12, pp. 51–67,
2016. doi: 10.1016/j.advengsoft.2016.01.008.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. de Rose, and R. Buyya, “CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms,”
Softw.-Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011. doi: 10.1002/spe.995.

https://doi.org/10.1007/s12652-023-04541-9
https://doi.org/10.1016/j.suscom.2023.100894
https://doi.org/10.1016/j.iot.2023.100817
https://doi.org/10.1002/ett.4733
https://doi.org/10.1007/s12652-023-04544-6
https://doi.org/10.3390/sym14112340
https://doi.org/10.3390/electronics11193207
https://doi.org/10.1007/s11042-022-12223-5
https://doi.org/10.1109/JIOT.2020.3012617
https://doi.org/10.1016/j.suscom.2021.100513
https://doi.org/10.1504/ijsnet.2021.117481
https://doi.org/10.1016/j.future.2023.04.030
https://doi.org/10.1007/s11227-022-04690-2
https://doi.org/10.1016/j.asoc.2023.110185
https://doi.org/10.1016/j.eswa.2020.113338
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1002/spe.995

	MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing
	1 Introduction
	2 Related Works
	3 Proposed System
	4 Experimental Evaluation
	5 Conclusion
	References


