
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.046478

ARTICLE

Strengthening Network Security: Deep Learning Models for Intrusion
Detection with Optimized Feature Subset and Effective Imbalance Handling

Bayi Xu1, Lei Sun2,*, Xiuqing Mao2, Chengwei Liu3 and Zhiyi Ding2

1School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450000, China
2Three Academy, Information Engineering University, Zhengzhou, 450001, China
3The 3rd Research Department, Nanjing Research Institute of Electronic Engineering, Nanjing, 210007, China

*Corresponding Author: Lei Sun. Email: sl20230221@163.com

Received: 03 October 2023 Accepted: 20 November 2023 Published: 27 February 2024

ABSTRACT

In recent years, frequent network attacks have highlighted the importance of efficient detection methods for
ensuring cyberspace security. This paper presents a novel intrusion detection system consisting of a data prepro-
cessing stage and a deep learning model for accurately identifying network attacks. We have proposed four deep
neural network models, which are constructed using architectures such as Convolutional Neural Networks (CNN),
Bi-directional Long Short-Term Memory (BiLSTM), Bidirectional Gate Recurrent Unit (BiGRU), and Attention
mechanism. These models have been evaluated for their detection performance on the NSL-KDD dataset.To
enhance the compatibility between the data and the models, we apply various preprocessing techniques and employ
the particle swarm optimization algorithm to perform feature selection on the NSL-KDD dataset, resulting in an
optimized feature subset. Moreover, we address class imbalance in the dataset using focal loss. Finally, we employ the
BO-TPE algorithm to optimize the hyperparameters of the four models, maximizing their detection performance.
The test results demonstrate that the proposed model is capable of extracting the spatiotemporal features of network
traffic data effectively. In binary and multiclass experiments, it achieved accuracy rates of 0.999158 and 0.999091,
respectively, surpassing other state-of-the-art methods.

KEYWORDS
Intrusion detection; CNN; BiLSTM; BiGRU; attention

1 Introduction

With the rapid development of Internet technology, there has been an increase in network attacks,
drawing significant attention to network security [1]. The main objective of cyber attacks is to tamper
with or steal sensitive data. Network attacks are classified into active attacks and passive attacks.
Active attacks compromise system integrity and availability, while passive attacks involve hackers
collecting system information by scanning open ports and vulnerabilities [2–4]. Intrusion detection
systems serve as an active defense mechanism by capturing network traffic packets and analyzing
them, ensuring the security of computer systems [5].

Since Denning [6] introduced the first intrusion detection system, many methods have been used
in the field of network security. According to recent research, mainstream IDSs are primarily divided

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.046478
https://www.techscience.com/doi/10.32604/cmc.2023.046478
mailto:sl20230221@163.com

1996 CMC, 2024, vol.78, no.2

into two parts. The first part involves data preprocessing, including feature engineering and handling
data set imbalances. The second part entails the construction of classifiers.

On the other hand, intrusion detection typically faces two scenarios. In the first scenario,
regression-based machine learning methods can be used for intrusion detection and prevention by
analyzing changes in network parameters. For example, historical network data and related intrusion
data can be used for training to build a regression model for predicting changes in network parameters
(e.g., k-barrier [7]). By monitoring real-time network data and comparing it with the predicted results,
potential intrusion behaviors can be detected promptly, and appropriate preventive measures can be
taken, such as blocking abnormal network connections or notifying system administrators.

In the second scenario, machine learning is primarily used for intrusion classification. Intrusion
classification is a supervised learning problem that requires training with known intrusion samples
to establish a classification model that can categorize input data into different intrusion categories.
These intrusion categories may include network scans, malware, denial of service attacks, and more.
Once trained, this model can be used for real-time monitoring of traffic in systems and networks,
categorizing it as normal behavior or potential intrusion behavior for timely response. To enhance
the accuracy of intrusion detection, various machine learning algorithms such as decision trees,
support vector machines, random forests, and more can be utilized. Furthermore, techniques like
feature selection, data preprocessing, and ensemble learning can be employed to further improve the
performance of intrusion detection systems. This paper focuses on the second scenario.

In recent years, machine learning methods have seen rapid development and have become the
mainstream technology in intrusion detection. Machine learning-based intrusion detection systems
face four challenges that affect the performance of model detection. These challenges include high
data dimensionality with a large number of redundant features, data set imbalances, insufficient feature
extraction by classifiers, and classifier hyperparameter issues.

Feature engineering plays a crucial role in reducing dimensionality, training time, and computa-
tional costs associated with dataset features, while also enhancing model performance [8]. Redundant
features within the dataset can cause overfitting during the learning process, resulting in reduced
detection performance of the model [9]. To address the issue of feature redundancy, feature selection
is deemed as the optimal solution. Feature selection involves selecting the most appropriate subset of
features from the dataset to facilitate more effective model training. There are two primary approaches
to feature selection: filters and wrappers. The filter approach utilizes variable ranking techniques
to rank the feature variables, irrespective of the classifier type, and removes irrelevant variables by
applying predefined thresholds [10]. On the other hand, the wrapper approach relies on a classifier
and leverages its predictions to select the most relevant subset of features.

Intrusion detection research often relies on laboratory datasets. However, these datasets often
suffer from data imbalance issues in accurately representing real-world network traffic. Typically, the
number of normal network traffic instances in the dataset far surpasses the instances of attack traffic
belonging to specific categories. Classifiers trained on unbalanced datasets may struggle to identify
minority classes. Therefore, most researchers employ resampling techniques to balance the dataset [11].
However, oversampling and undersampling can lead to overfitting or underfitting problems during
model training.

Network attacks against Internet devices occur frequently, and network attack methods are
constantly updated and upgraded, adding significant detection pressure to intrusion detection systems.
Traditional machine learning-based technologies, such as k-Nearest Neighbors and Naïve Bayes, are
no longer capable [12]. Deep learning technology has shown promise in effectively detecting complex

CMC, 2024, vol.78, no.2 1997

and evolving network attacks. However, it still faces challenges, such as insufficient feature extraction
from network traffic [13,14].

To address these challenges, this paper proposes four deep neural network models: Multi-
Conv1d, Multi-Conv1d-Self-attention, Mulit-Conv1d-BiLSTM-Attenion, and Mulit-Conv1d-BiGRU
-Attention. These models fully extract network traffic characteristics and effectively detect various
types of network attacks. They specialize in extracting either spatial or spatio-temporal features from
network traffic data, focusing on key features. Additionally, to tackle the class imbalance problem, we
incorporate focal loss to adjust instance weights, making the model concentrate on difficult-to-classify
samples and improving the detection rate of minority classes.

The main contributions of this paper are as follows:

1. Dimensionality reduction and feature selection using the particle swarm optimization algorithm
to enhance model accuracy, generalization, and running speed.

2. Proposal of four deep learning models that efficiently detect network attacks. Multi-Conv1d,
BiLSTM (BiGRU), and Attention mechanisms are combined to extract spatial and temporal char-
acteristics of network traffic. Attention guidance is employed to prioritize key feature information,
thereby improving model performance and achieving efficient detection.

3. Hyperparameter optimization techniques are employed to achieve the highest model perfor-
mance.

4. Utilization of focal loss function for training the neural network model, addressing the data
set’s imbalance problem.

5. Evaluation of the proposed models on the NSL-KDD dataset, demonstrating superior results
in binary and multi-class experiments compared to other state-of-the-art methods.

The remainder of this article is organized as follows: Section 2 introduces relevant literature on
intrusion detection; Section 3 presents our proposed method; Section 4 describes the experimental
setup and analysis; and finally, Section 5 summarizes our work.

2 Related Works

With the rapid development of machine learning, it is widely used in the field of intrusion detection
to protect the security of computer networks. Some researchers have utilized classical machine learning
algorithms such as RF, SVM, Naïve Bayes (NB), and DT for intrusion detection [15]. Furthermore,
deep learning algorithms such as CNN and RNN have also been applied in this domain [15].This
section provides a review of recent literature pertaining to intrusion detection.

Malibari et al. [16] proposed a novel intrusion detection system. They began by preprocessing
the data using Z-score normalization, employed an improved arithmetic optimization algorithm for
dimensionality reduction and feature selection, used the deep wavelet neural network (DWNN) model
as the foundational classifier, and finally optimized the model’s parameters using quantum behaved
particle swarm optimization (QPSO). Experimental validation was conducted on the CIC-IDS2017
dataset, and the results demonstrated that the proposed approach outperformed other state-of-the-
art methods.

Murali Mohan et al. [17] introduced a new intrusion detection system for cloud environments. It is
primarily divided into four stages: data preprocessing, optimal clustering, feature selection, and attack

1998 CMC, 2024, vol.78, no.2

detection. They utilized an optimized Deep Belief Network (DBN) to detect attack types and fine-
tuned the DBN using a new hybrid optimization model (SMSLO). In the validation phase, excellent
results were achieved.

Sukumar et al. [18] introduced an efficient intrusion detection system that utilizes the Improved
Genetic K-means (IGKM) algorithm for detecting attack traffic. Experimental findings demonstrate
that the K-means clustering algorithm achieves higher accuracy when applied to larger datasets.

Kasongo et al. [19] employed a feature selection method based on XGBoost to mitigate the impact
of high-dimensional data on IDS detection performance. By selecting 19 optimal features, the decision
tree (DT) achieved a 2.72% improvement in test accuracy for binary classification.

Ustebay et al. [20] used a random forest classifier combined with recursive feature elimination
to reduce dataset dimensionality and efficiently detect attack traffic in computer networks. Through
experiments conducted on the CIC-IDS2017 dataset, using a Deep Multilayer Perceptron as a
classifier, they achieved an accuracy rate of 91%.

Wu et al. [21] proposed a novel hybrid sampling method to address the issue of detection result
inaccuracies caused by data imbalance. The K-means clustering algorithm and the SMOTE algorithm
were utilized to balance the dataset. Experiments on the NSL-KDD dataset showed that when
enhanced random forest was used as a classifier, the training and test set achieved accuracy rates of
99.72% and 78.47%, respectively.

Man et al. [22] introduced a network intrusion detection model based on residual blocks to tackle
the diminishing detection performance as the number of layers increased in deep neural network-based
intrusion detection systems. By converting network traffic into images and utilizing residual blocks to
construct a deep convolutional neural network, they achieved high performance on the UNSW-NB15
dataset.

El-Ghamry et al. [15] aimed to safeguard the network security of intelligent agricultural equip-
ment. They utilized recursive feature elimination to select important features, converted network
traffic into color images, and inputted them into models such as VGG, Inception, and Xception while
optimizing the hyperparameters using the PSO optimizer. The resulting optimized model achieved a
Precision F1-score on the NSL-KDD dataset with an accuracy exceeding 99%.

Ding et al. [23] addressed the inefficiency of traditional oversampling methods in generating real
samples by proposing a new generative adversarial network model called TACGAN. This model
was used to generate tabular data that simulates real data. Excellent results were obtained through
experiments on the KDDCUP99, UNSW-NB15, and CICIDS2017 datasets.

Laghrissi et al. [24] utilized LSTM for network attack detection and applied PCA and MI to
eliminate irrelevant features. LSTM-PCA achieved outstanding performance on the KDD99 dataset,
with a two-class accuracy of 99.44% and a multi-class accuracy of 99.39%.

Laghrissi et al. [2] employed LSTM in combination with an Attention mechanism to efficiently
detect network attacks. They utilized four methods, including Chi-Square, UMAP, PCA, and MI,
for feature selection and dimensionality reduction. Experiments were conducted on the NSL-KDD
dataset, resulting in a two-class accuracy of 99.09% and a multi-class accuracy of 98.49%.

Othman et al. [25] proposed an intrusion detection system based on SVM. They first preprocessed
the data and then used the ChiSqSelector method to select features, reducing data dimensionality while
improving the running speed and accuracy of SVM. Experimental evaluation was performed on the
KDD99 dataset, demonstrating excellent performance.

CMC, 2024, vol.78, no.2 1999

Yin et al. [4] introduced a feature selection method called IGRF-RFE, which involves initial
feature filtering using IG and RF, followed by Recursive Feature Elimination (RFE) for further dimen-
sionality reduction. Experiments on the UNSW-NB15 dataset showed that the multi-classification
accuracy increased from 82.25% to 84.24%.

Akgun et al. [26] proposed a robust intrusion detection system to address security issues in network
communication. They selected the best feature subset using the recursive elimination feature selection
method, preprocessed the data using various preprocessing techniques, and performed experimen-
tal simulations on the CIC-DDoS2019 dataset to detect DDoS attacks. The results demonstrated
exceptional accuracy rates for two-classification (99.99%) and multi-classification (99.30%) using the
proposed CNN model.

3 Proposed Method

The method proposed in this paper is divided into three parts: data preprocessing, model
construction, and experimental verification. Firstly, the dataset is preprocessed. Next, it is fed into the
constructed model. Finally, the trained model is tested and evaluated. The overall structure is depicted
in Fig. 1.

Evaluation

Classification Result

BO-TPE

Multi-CNN

Multi-CNN-Self-attention

Mulit-CNN-BiLSTM-Attenion

Mulit-CNN-BiGRU-Attention

Model

Train Set

Test Set

Dataset

Label Encoding

Normalization

PSO Feature Selection

Optimal Feature Subset

Data Processing Focal Loss

Figure 1: Architectures implemented in this research

3.1 Feature Selection

3.1.1 Particle Swarm Optimization

Recently, metaheuristic algorithms have gained significant prominence in the field of feature
selection due to their exceptional global search capabilities [27]. Commonly used metaheuristic
algorithms include Genetic-Algorithm (GA), Particle Swarm Optimization (PSO) [28], Whale Opti-
mization Algorithm (WOA) [29], Grey Wolf Optimization (GWO) [30], Simulated Annealing (SA),
and more. Among these, the PSO algorithm has garnered significant attention for its simplicity of
implementation, minimal algorithm parameters, fast convergence, and strong optimization abilities.
Kennedy et al. introduced the Particle Swarm Optimization (PSO) algorithm, which draws inspiration
from the collective behavior of bird groups [28]. In the PSO algorithm, particles simulate bird predation
behavior to find the optimal solution within a spatial range. In the search space, a group of particles
is randomly generated, with each particle representing a candidate problem solution. By adjusting
their speed, particles determine their direction and distance of movement. While moving to a new

2000 CMC, 2024, vol.78, no.2

position, particles adjust their state based on their individual best position and the best position of the
group, collectively flying toward the optimal position. Consequently, the entire population discovers
the global optimal solution. Expressing an optimization problem in an N-dimensional space, each
particle explores one dimension to locate the optimum solution. The update process for each particle
is as follows:

Am
i = (am

i1, am
i2, · · · , am

iN) (1)

V m
i = (νm

i1 , νm
i2 , · · ·, νm

iN) (2)

vm+1
ij = kvm

ij + h1s1(pbestm
ij − am

ij) + h2s2(qbestm
j − am

ij) (3)

am+1
ij = am

ij + vm+1
ij , j = 1, 2, . . . , N (4)

Here, h1 and h2 are acceleration coefficients, typically used to adjust the convergence speed of the
particle swarm. s1 and s2 are random numbers ranging between 0 and 1, while k represents the inertia
weight, used for balancing global and local search. m denotes the m-th iteration of the algorithm,
pbestm

ij represents the best position recorded by the i-th particle up to the m-th movement, and qbestm
j

represents the best position recorded by the historical movements of the group particles.

Normally, the standard PSO algorithm is employed to solve optimization problems with continu-
ous variables. In contrast, Kennedy and Eberhart proposed a binary PSO for solving discrete problems
[31]. When applied to a binary feature selection problem, ‘1’ indicates the selection of a feature, while ‘0’
signifies the exclusion of a feature. The sigmoid function is utilized to transform the update formula:

am
i,j =

{
1, rand ≤ sigmoid(νm

ij)

0, 1
(5)

sigmoid(νm
ij) = 1

1 + e−νm
ij

(6)

where rand represents a random number drawn from a uniform distribution between 0 and 1. Fig. 2
outlines the basic flowchart of the particle swarm optimization algorithm.

3.2 Network Construction

Fig. 3 illustrates the Conv1d components of the four proposed models, while Fig. 4 provides an
overview of the architecture of these models. The Multi-Conv1d model is a neural network that utilizes
multi-scale one-dimensional convolutions. Each layer of the network consists of three convolution
kernels of different sizes. Conv1d is well-suited for sequence processing as it slides convolution kernels
of varying sizes over the input sequence, allowing it to capture features at different scales, ranging
from local details to global patterns. Smaller kernels are effective at capturing local details, while
larger kernels can identify longer dependencies. Pooling operations are then applied to reduce the
dimensionality of the data, followed by a fully connected layer for classification purposes.

CMC, 2024, vol.78, no.2 2001

Start

Initialize population particles

Calculate the fitness values of each
particle in the population

Update the pbest of each particle and the qbest
of the population based on the fitness value

Update the position of each particle

Whether the termination
conditions are met ?

End

Yes

No

Figure 2: The PSO algorithm flow chart

Input

Conv1d (1x1) Conv1d (3x1) Conv1d (5x1)

BatchNormalization()

Conv1d (1x1) Conv1d (3x1) Conv1d (5x1)

Concatenate()

Concatenate()

BatchNormalization()

Conv1d (7x1)

MaxPooling1D (2)

BatchNormalization()

Input

Conv1d (1x1) Conv1d (3x1) Conv1d (5x1)

Self-Attention

Conv1d (1x1) Conv1d (3x1) Conv1d (5x1)

Concatenate()

Concatenate()

Self-Attention

BatchNormalization()

BatchNormalization()

(a) (b)

Figure 3: (a) Multi-Conv1d-Self-Attention-Head (b) Multi-Conv1d-Head

2002 CMC, 2024, vol.78, no.2

Flatten()

Dense(64)

Dense(5)

Output

BiLSTM/BiGRU

Attention

BatchNormalization()

BiLSTM/BiGRU

Attention

BatchNormalization()

Dropout()

Output

Flatten()

Dense(5)

Output

(a)

(b)

(c)

Multi-CNN-Head Multi-CNN-HeadMulti-CNN-Self-attention-Head

Figure 4: (a) Multi-Conv1d-Self-Attention (b) Multi-Conv1d (c) Multi-Conv1d-BiLSTM/BiGRU-
Attention

The Multi-Conv1d-BiLSTM-Attention model incorporates Multi-Conv1d, BiLSTM, and Atten-
tion components. After preprocessing the data, it is inputted into the model. The convolution operation
extracts local spatial features using a sliding window and reduces the model’s parameter count through
weight sharing. The utilization of multiple convolution kernels enables the detection of local features at
different scales, thereby improving model generalization. The introduction of the BatchNormalization
layer ensures that the input distribution of each layer remains consistent during model training. This
addresses the issue of difficult network training, accelerates model convergence, and helps prevent
overfitting. Considering that network traffic follows a time series pattern, the BiLSTM component is
capable of learning bidirectional time dependencies, facilitating effective processing of time series data
and the extraction of time series features from network traffic. The attention mechanism is employed to
guide the model’s focus towards important traffic features, ultimately improving model performance.
The resulting output is the model’s prediction. The Multi-Conv1d-BiGRU-Attention model operates
on a similar principle to the Multi-Conv1d-BiLSTM-Attention model, but with BiGRU containing
fewer parameters than BiLSTM.

The Multi-Conv1d-Self-attention model is a neural network that combines multi-scale Conv1d
and Self-attention. The self-attention mechanism provides a distinct advantage by computing the
correlation between each element in the sequence and others, allowing for the identification of
important features. By placing an attention layer after each multi-scale one-dimensional convolutional
layer, the model can benefit from both multi-scale Conv1d and attention mechanisms, enabling the
simultaneous extraction of spatiotemporal features from network traffic.

CMC, 2024, vol.78, no.2 2003

3.2.1 BiLSTM

RNN is effective in processing sequence data, but it faces issues of gradient disappearance and
gradient explosion when training on long sequences. To address these problems, a neural network
model called LSTM [32] has been developed as an improvement on RNN. LSTM units consist of an
input gate, a forget gate, and an output gate, as shown in Fig. 5. They update parameters as follows:

ft = σ(Wf xt + Wf ht−1 + bf) (7)

it = σ(Wixt + Wiht−1 + bi) (8)

ot = σ(Woxt + Woht−1 + bo) (9)

c̃t = tanh(Wcxt + Wcht−1 + bc) (10)

ct = ft ∗ ct−1 + it ∗ c̃t−1 (11)

ht = ot ∗ tanh(ct) (12)

Here, σ represents the sigmoid function, Wf , Wi, Wo and Wc represent the corresponding weight
matrices, and bf , bi, bo and bc represent the corresponding bias terms.

Figure 5: Structure diagram of LSTM

Bidirectional LSTM (BiLSTM) combines two LSTM networks, one for forward propagation and
one for backward propagation. The outputs of these networks are then concatenated to form the
output of BiLSTM:

�ht = C(�Wt, �ht−1, ct−1) (13)
←
ht = C(Wt,

←
ht−1, ct−1) (14)

ht = [�ht,
←
ht] (15)

Here, C represents the hidden layer of LSTM, and ht represents the output of BiLSTM.

3.2.2 BiGRU

The Gated Recurrent Unit (GRU) neural network [33] is a variant of the Recurrent Neural
Network (RNN) and a simplified version of LSTM. It addresses the long-term memory and gradient
problems in backpropagation [34]. GRU combines the input gate and forget gate of LSTM into an

2004 CMC, 2024, vol.78, no.2

update gate, while maintaining the effectiveness of LSTM. The structure is simpler, resulting in faster
model convergence. The structure of GRU is shown in Fig. 6. Parameters in GRU are updated as
follows:

rt = σ(Wr ∗ [ht−1, xt]) (16)

zt = σ(Wz ∗ [ht−1, xt]) (17)

h̃t = tanh(Wh̃ ∗ [rt ∗ ht−1, xt]) (18)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (19)

Here, σ represents the sigmoid activation function, tanh represents the hyperbolic tangent
activation function, rt and zt represent the reset gate and update gate at time t, respectively. Wr, Wz,
and Wh̃ represent the weight matrices of the GRU. ht represents the candidate hidden state at time t,
ht represents the hidden state at time t, and ht−1 represents the hidden state at time (t-1). Fig. 6 shows
the structural diagram of GRU.

Figure 6: Structural diagram of GRU

The traditional GRU only utilizes the previous information of the sequence data. However, by
using BiGRU, we can consider both the past and future states of the time series data when predicting
the current situation. The basic unit of the Bidirectional Gated Recurrent Unit (BiGRU) model
consists of a forward-propagating GRU unit and a backward-propagating GRU unit. BiGRU is
structurally equivalent to the combination of positive and negative GRUs, and the result is jointly
determined by these two GRUs. Fig. 7 shows the structure of BiGRU.
→
ht = GRU(xt,

→
ht−1) (20)

←
ht = GRU

(
xt,

←
ht−1

)
(21)

ht = wt

→
ht + vt

←
ht + bt (22)

Among them, GRU(xt,
→

ht−1) represents the forward propagation of the GRU unit at time t, and

GRU(xt,
←
ht−1) represents the backward propagation at time t. The GRU unit. wt and vt respectively

represent the weights of the forward hidden layer transition
→
ht and the backward hidden layer transition

←
ht corresponding to BiGRU at time t, and bt represents the bias at time t.

CMC, 2024, vol.78, no.2 2005

Figure 7: Structure diagram of BiGRU

3.2.3 Attention

In recent years, the attention mechanism has been widely used in machine translation [35].
It is designed to allow the model to focus on important information rather than all information,
effectively improving model performance [36]. Traditionally, machine translation encodes the entire
input sentence into a fixed-length vector, and then decodes the translation using an encoder-decoder
method. In [37], an attention mechanism was proposed, which allows the model to focus only on
the relevant information and generate the next target without encoding the entire source sentence
into a fixed-length vector. This improves the translation system’s performance when dealing with
long sentences and avoids the need to pay attention to the entire input information. The attention
mechanism establishes connections between the context vector and the entire source input, and the
weights of these connections enable the model to pay more attention to important parts of the input.
Multiple attentions are represented by calculating weights α(t,1), α(t,2),..., α(t,t). The context vector
Ci of the output yi is computed as a weighted sum of these annotations hi:

Ci =
∑Tx

j=1
αijhj (23)

The weight αij of each annotation hj is computed by the softmax function:

αij = exp
(
eij

)
∑Tx

k=1 exp(eik)
(24)

where

eij = a(si−1, hj) (25)

The function a(si−1, hj) describes the matching ability between the input around position j and
the output at position i. The attention mechanism is introduced to give different attention to the
information output by the hidden layer of GRU.

3.2.4 Self-Attention

The Self-Attention mechanism [36] can be used to extract the temporal characteristics of network
traffic, and its main formula is:

Attention(Q, K, V) = softmax
(

QKT

√
dk

V
)

(26)

where
√

dk represents the scaling factor.

2006 CMC, 2024, vol.78, no.2

3.2.5 Batch Normalization

The training process of deep neural networks is complex. The distribution of each batch of training
data varies, and the network needs to adapt to different distributions in each iteration, which can slow
down the convergence of the model. Batch Normalization [38] addresses these issues. It normalizes the
data of the upper layer, bringing it into a unified interval and ensuring consistency in the input data
distribution. It speeds up the convergence speed of model training, stabilizes the training process, and
improves model accuracy. B = {x1...m} represents m activation values in the mini-batch, and γ and β

are the parameters to be learned. First, calculate the mean and variance of B:

μB ← 1
m

∑m

i=1
xi (27)

σ 2
B ← 1

m

∑m

i=1
(xi − μB)2 (28)

Second, normalize each activation value:

x̂i ← xi − μB√
σ 2
B + ε

(29)

Finally, process each activation value with γ and β:

yi ← γ x̂i + β (30)

3.3 Focal Loss

Focal loss is a known technique used to address category imbalance in machine learning,
particularly in the context of deep learning models. In classification problems, the commonly used
loss function is cross-entropy loss, which treats all categories equally. However, this approach may
neglect minority class instances and bias the model towards the majority class.

In the field of intrusion detection, imbalanced datasets are prevalent, which can significantly
impact classification results. Focal loss is an improvement over cross-entropy loss that introduces two
adjustment factors, α and γ , to address this issue. These factors allow the model to focus on learning
the minority class by adjusting the sample weights and difficulty.

The cross-entropy loss function is extensively used in deep learning classification. For binary
classification, the binary cross-entropy loss can be defined as:

L(y, ŷ) = −(ylog(ŷ) + (1 − y)log(1 − ŷ)) (31)

Here, y represents the true label and ŷ represents the predicted value. This formulation can be
extended to multi-classification, where the multi-class cross-entropy loss function is defined as:

L = 1
N

∑
i
Li = − 1

N

∑
i

∑M

c=1
yiclog(pic) (32)

In the above equation, M denotes the number of categories, pic represents the predicted probability
that sample i belongs to category c, and yic is a binary indicator (0 or 1) that indicates whether the true
category of sample i is c.

CMC, 2024, vol.78, no.2 2007

The simplified expression for binary classification cross-entropy loss is:

CE(p, y) =
{−log(p), if y = 1
−log(1 − p), otherwise (33)

Here, y = +1 or y = −1 corresponds to positive and negative samples, respectively, and p represents
the probability of positive samples. To simplify notation, pt is defined as:

pt =
{

p if y = 1
1 − p otherwise, (34)

In 2017, Lin et al. [39] introduced the focal loss function, which has gained popularity in computer
vision applications to address imbalanced dataset issues. In our approach, we employ the focal loss
function to train the deep model, effectively mitigating the impact of sample imbalance during training.
Focal loss is a modification of the standard cross-entropy loss. By reducing the weight assigned to easily
classifiable samples, the model can pay greater attention to challenging samples during training. The
focal loss function can be defined as:

Loss = −αt(1 − pt)
γ log(pt) (35)

Here, (1 − pt)
γ serves as a modulating factor that reduces the weight of easily classifiable samples,

and αt represents a weight factor used to address class imbalance.

3.4 BO-TPE

Hyperparameter tuning can generally be classified into four types: traditional manual tuning,
grid search, random search, and Bayesian search. Manual parameter tuning heavily relies on expe-
rience and can be time-consuming. Neither grid search nor random search effectively utilize the
correlation between different hyperparameter combinations. Bayesian Optimization is an adaptive
method for hyperparameter search that predicts the next combination likely to yield the greatest benefit
based on the previously tested hyperparameter combinations. In this study, we employ the Bayesian
Optimization-Tree Parzen Estimator (BO-TPE) [40] technique to tune the model’s hyperparameters.
BO-TPE demonstrates excellent global search capability and avoids falling into local optima. Random
search is used during the initial iteration, where samples are drawn from the response surface to
establish the initial distribution {θ i, yi}(i = 1, 2, . . . , Ninit), where θ and y respectively represent the
hyperparameter set and the corresponding value on the response surface. Two density functions,
Prog(θ) and Prob(θ), are created within BO-TPE as the generative model for variables [41]. Good
samples are distinguished from bad samples based on a predefined threshold y′, as follows:

p(θ | y) =
{

Prog(θ) if y < y′

Prob(θ) if y ≥ y′ (36)

Next, the Expected Improvement (EI) is calculated for each step:

El(θ) = Prog(θ)

Prob(θ)
(37)

Finally, the best hyperparameter values are selected by maximizing EI. Fig. 8 illustrates the flow
diagram of BO-TPE.

2008 CMC, 2024, vol.78, no.2

Figure 8: Flowchart of BO-TPE

When optimizing the hyperparameters of the neural network model using BO-TPE, the primary
hyperparameters to be tuned typically include batch size, learning rate, and dropout rate. Batch size
represents the number of training samples used in each iteration, learning rate indicates the step size
at each iteration, and dropout rate represents the probability of randomly deactivating neurons within
the neural network.

4 Experiments and Results
4.1 Hardware and Environment Setting

We conducted our experiments on desktops equipped with the Windows Server 2019 operating
system, 128 GB of RAM, an Intel(R) Xeon(R) Silver 4214 processor, and an RTX 3090 graphics card.
To verify the feasibility of the proposed model, we used the Keras 2.3.1 deep learning framework and
programmed in Python 3.7. The detailed experimental parameter configuration is presented in Table 1.

CMC, 2024, vol.78, no.2 2009

Table 1: Experimental environment

Environment Value

Operating system Windows server 2019
Processor Intel(R) Xeon(R) Silver 4214
GPU RTX 3090
RAM 128 GB
Programing language Python 3.7
Deep learning framework Keras 2.3.1

4.2 Evalution Metrics

In this paper, we use accuracy rate, recall rate, precision, precision recall, and F1-score as
evaluation indicators to measure the performance of the proposed model. These indicators are
represented by true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Accuracy = TP + TN
TP + TN + FP + FN

(38)

Precision = TP
TP + FP

(39)

Recall = TP
TP + FN

(40)

F1 − score = 2 ∗ precision ∗ recall
precision + recall

(41)

The specific definitions of TP, FP, FN, and TN in the field of intrusion detection are as follows:
TP refers to the classification of an actual attack category as an attack category. FP refers to the
classification of an actual normal category as an attack category. FN refers to the classification of
an actual attack category as a normal category. TN refers to the classification of an actual normal
category as a normal category. The confusion matrix formed by TP, FP, FN, and TN is depicted in
Table 2, which visualizes the performance of detection.

Table 2: The confusion matrix

Predicted

Intrusion Normal

Actual Intrusion TP FN
Normal FP TN

4.3 Dataset

This article utilizes the NSL-KDD dataset as the experimental dataset. The data distribution and
specific attack types are presented in Tables 3 and 4. The NSL-KDD [42] dataset is an enhanced

2010 CMC, 2024, vol.78, no.2

version of KDDCup99, which eliminates duplicate data. It consists of a training set (KDDTrain+)
with 125,973 samples and a test set (KDDTest+) with 22,544 samples. The NSL-KDD dataset has
been provided by the University of New Brunswick. It encompasses four attack types: Denial of Service
(DoS), Probing attacks (Probe), Remote to Local (R2L), and User to Root (U2R).

Table 3: Distribution of NSL-KDD training set and testing

Type Count Training set Test set

Normal 77232 61764 15468
DoS 53387 42700 10687
Probe 14077 11276 2801
R2L 3702 2967 735
U2R 119 106 13
Total 148517 118813 29704

Table 4: The types of attacks contained in each category

Attack category Dos Probe R2L U2R

Attack types

Apache2 ipsweep Fpt_write Buffer_overflow
back mscan guess_passwd loacmodule
land nmap httptunnel perl
mailbomb portsweep imap ps
neptune saint multihop rootkit
pod satan named sqlattack
processtable phf xterm
smurf sendmail
teardrop snmpgetattack
udpstorm spy
worm Snmpguess

warezclient
warezmaster
xlock
xsnoop

Total 11 6 15 7

4.4 Data Preprocessing

Before inputting data into the model, the original dataset needs to undergo appropriate prepro-
cessing. Data processing can be divided into four steps: label encoding, data normalization, and feature
selection.

CMC, 2024, vol.78, no.2 2011

4.4.1 Label Encoding

The ‘protocol_type’, ‘service’, and ‘flag’ in NSL-KDD are character-type data. To convert them
into numerical types, we use LabelEncoder for encoding.

4.4.2 Data Normalization

Once all features are converted into numerical values, the datasets need to be normalized. In this
paper, we employ the Min-Max regularization method to scale the data between [0,1]. This helps reduce
the adverse effects caused by singular sample data.

x′ = x − xmin

xmax − xmin

(42)

4.4.3 Feature Selection

To enhance the model’s generalization ability and prediction performance, we perform feature
selection on the NSL-KDD dataset to remove redundant features and reduce computational overhead.
For the PSO algorithm, the total population size is set to 50, and the number of iterations is set to 20.
Both h1 and h2 are configured as 2, and k is set to 0.9. The PSO algorithm is utilized for this purpose,
resulting in the selection of the 28 best features, as shown in Table 5.

Table 5: The optimal feature subset of NSL-KDD

Number Feature Number Feature

1 duration 15 count
2 service 16 srv_count
3 flag 17 rerror_rate
4 src_bytes 18 same_srv_rate
5 dst_bytes 19 diff_srv_rate
6 land 20 dst_host_count
7 urgent 21 dst_host_srv_count
8 logged_in 22 dst_host_same_srv_rate
9 root_shell 23 dst_host_diff_srv_rate
10 su_attempted 24 dst_host_same_src_port_rate
11 num_root 25 dst_host_srv_diff_host_rate
12 num_file_creations 26 dst_host_srv_serror_rate
13 num_outbound_cmds 27 dst_host_rerror_rate
14 is_host_login 28 difficulty_level

4.5 Hyperparameter Optimization

During the experiment, we adopt the BO-TPE technique to adjust the model parameters. The
parameter settings used in the search process are presented in Table 6. Parameters such as batch size,
learning rate, and dropout rate are optimized to determine their optimal values.

2012 CMC, 2024, vol.78, no.2

Table 6: Hyper-parameter configuration of model

Hyper-parameter Search range Optimal value

Batch size [32, 256] 256
Learning rate [0.001, 0.1] 0.001
Dropout rate [0.1, 0.5] 0.3

4.6 Experimental Performance Evaluation

During the experiment, we divided the NSL-KDD dataset into a training set and a test set with
proportions of 80% and 20%, respectively. The hyperparameters of the model were optimized using
the BO-TPE method. In the field of intrusion detection, two scenarios are typically used to evaluate
model performance: binary classification and multi-classification.

4.6.1 Binary Classification

In the binary classification scenario, the network traffic is divided into normal traffic and
attack traffic. We evaluated four models and obtained the following results, as shown in Fig. 9.
The Multi-Conv1d-Self-Attention model achieved the lowest performance in the binary classification
experiment, with all four metrics at 0.99835. The best performance in the two-classification experiment
was achieved by the Multi-Conv1d-BiLSTM-Attention model, with accuracy, precision, recall, and
F1-score of 0.999158, 0.999159, 0.999158 and 0.999158, respectively. The Multi-Conv1d-BiLSTM-
Attention model outperformed the Multi-Conv1d-BiGRU-Attention model by approximately 0.0001
in all four metrics. The confusion matrices of the four models for binary classification are shown
in Fig. 10, where (a), (b), (c), and (d) represent Multi-Conv1d, Multi-Conv1d-Self-Attention, Multi-
Conv1d-BiGRU-Attention, and Multi-Conv1d-BiLSTM-Attention, respectively.

Multi-Conv1d
Multi-Conv1d-Self-

Attention
Multi-Conv1d-

BiGRU-Attention
Multi-Conv1d-

BiLSTM-Attention

Accuracy 0.998889 0.99835 0.999057 0.999158

Precision 0.998889 0.99835 0.999057 0.999159

Recall 0.998889 0.99835 0.999057 0.999158

F1-score 0.998889 0.99835 0.999057 0.999158

0.9978

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

Accuracy Precision Recall F1-score

Figure 9: Binary classification results of the four proposed models on NSL-KDD

CMC, 2024, vol.78, no.2 2013

Figure 10: Binary classification confusion matrix diagram

4.6.2 Multi-Class Classification

In the multi-classification scenario, we classified the network traffic into multiple attack types
along with the normal traffic. The experimental results and model parameters for the four models are
shown in Figs. 11 and 12, respectively. It can be observed from the table that all four proposed models
achieved a high accuracy of above 0.99, indicating their effectiveness in extracting features from the
data and accurately predicting the categories. Additionally, the similar structures of the models resulted
in very close values for each metric.

2014 CMC, 2024, vol.78, no.2

Multi-Conv1d
Multi-Conv1d-Self-

attention
Multi-Conv1d-

BiGRU-Attention
Multi-Conv1d-

BiLSTM-Attention

Accuracy 0.998687 0.998316 0.99899 0.999091

Precision 0.998691 0.998325 0.998993 0.999092

Recall 0.998687 0.998316 0.99899 0.999091

F1-score 0.998687 0.998319 0.998987 0.999091

0.9978

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

Figure 11: Results of multi-classification of the proposed four models on NSL-KDD

Multi-Conv1d
Multi-Conv1d-
Self-Attention

Multi-Conv1d-
BiGRU-
Attention

Multi-Conv1d-
BiLSTM-
Attention

Number of parameters 257157 203909 353299 401939

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Number of parameters

Number of parameters

Figure 12: Model parameter quantity

The Multi-Conv1d-BiLSTM-Attention model performed best in all four metrics, demonstrating
the advantages of incorporating BiLSTM and Attention mechanisms. The Multi-Conv1d model
extracted spatial and local features at different scales, while BiLSTM captured the temporal relation-
ships in the network traffic data through forward and backward modeling. The attention mechanism
enabled the model to focus on important features. By combining these three components, the
model effectively extracted spatiotemporal features and maximized classification performance. The
Multi-Conv1d-BiGRU-Attention model ranked second, potentially due to the simpler structure of
BiGRU compared to BiLSTM, which resulted in slightly weaker handling of long dependencies. The
performance of Multi-Conv1d was slightly lower than that of Multi-Conv1d-BiLSTM-Attention and

CMC, 2024, vol.78, no.2 2015

Multi-Conv1d-BiGRU-Attention since timing features were not extracted. The Multi-Conv1d-Self-
Attention model, being relatively simple and having the fewest parameters, exhibited the worst perfor-
mance. The number of parameters for the Multi-Conv1d-BiLSTM-Attention model was the highest at
401,939, while the Multi-Conv1d-Self-Attention model had the lowest at 203,909. Combining Figs. 11
and 12, we observed a direct proportional relationship between the number of model parameters and
model performance. Model parameters also had an impact on the performance to some extent, with
models having a larger number of parameters exhibiting stronger learning ability and better feature
extraction.

In both the Multi-Conv1d-BiLSTM-Attention and Multi-Conv1d-BiGRU-Attention architec-
tures, an Attention mechanism is employed. The Multi-Conv1d-BiLSTM and Multi-Conv1d-BiGRU
structures often struggle to fully utilize the spatiotemporal information in the input, potentially leading
to information loss or confusion. However, the introduction of the Attention mechanism addresses
this issue. The Attention mechanism enables the model to automatically learn the crucial segments
within the input sequence, enhancing the model’s focus on these segments. During each step of the
model’s computation, the Attention mechanism assesses the importance of different segments within
the input sequence and assigns corresponding weights to each of them. These weights express the
contribution of different segments in the input sequence to the current computation. By utilizing these
attention weights, the model can concentrate more on input segments with higher weights during each
computation step, thereby extracting more valuable features. In the context of intrusion detection,
the Attention mechanism can assist the model in better capturing important features and anomalous
patterns within network traffic data.

The confusion matrices for the two classifications of the four models are shown in Fig. 13, where
(a), (b), (c), and (d) represent Multi-Conv1d, Multi-Conv1d-Self-Attention, Multi-Conv1d-BiGRU-
Attention, and Multi-Conv1d-BiLSTM-Attention, respectively.

Figure 13: (Continued)

2016 CMC, 2024, vol.78, no.2

Figure 13: Multi-class confusion matrix diagram

Figs. 14–16 display the Precision, Recall, and F1-score achieved by the four models when
classifying specific attack types in the dataset. The table highlights that Normal, DoS, and Probe have
higher values for all three indicators, whereas U2R and R2L have lower values. Since Normal, DoS,
and Probe have numerous variations, the models can effectively learn the characteristic representation
of the data and perform accurate detection. Conversely, U2R and R2L have limited types, resulting in
the models struggling to fully learn the feature representation and thus lower values are observed.

0.94 0.95 0.96 0.97 0.98 0.99 1

Multi-Conv1d

Multi-Conv1d-Self-attention

Multi-Conv1d-BiLSTM-Attention

Multi-Conv1d-BiGRU-Attention

U2R R2L Probe DoS Normal

Figure 14: Precision of attack types

CMC, 2024, vol.78, no.2 2017

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Multi-Conv1d

Multi-Conv1d-Self-attention

Multi-Conv1d-BiLSTM-Attention

Multi-Conv1d-BiGRU-Attention

U2R R2L Probe DoS Normal

Figure 15: Recall of attack types

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Multi-Conv1d

Multi-Conv1d-Self-attention

Multi-Conv1d-BiLSTM-Attention

Multi-Conv1d-BiGRU-Attention

U2R R2L Probe DoS Normal

Figure 16: F1-score of attack types

4.6.3 Comparison with Other Methods

To establish a comparison with traditional machine learning methods, we evaluated NB,
AdaBoost, LogisticRegression, and LightGBM. Fig. 17 demonstrates that LightGBM performs the
best among these methods, with an accuracy of 0.979531. However, our proposed method outperforms
all the traditional machine learning methods, achieving an accuracy of 0.999091. To further validate
the performance of our proposed model, we compared it with other advanced methods, and the
experimental results are presented in Table 7. Across all four metrics, our proposed model surpasses
the other methods.

2018 CMC, 2024, vol.78, no.2

0.790768
0.915836 0.960443 0.979531 0.999091

0.837384
0.913852 0.959721 0.980154 0.999092

0.790768

0.915836
0.960443 0.979531 0.999091

0.804478

0.913989
0.959935 0.979663 0.999091

NB AdaBoost LogisticResgresion LightGBM Proposed Model

Accuracy Precision Recall F1-score

Figure 17: The comparison of the proposed model with existing machine learning methods

Table 7: The comparison of the proposed model to the state of the art results

Author Year Accuracy (%) Precision (%) Recall (%) F1-score (%)

Benmessahel et al. [43] 2018 98.21 – 96.25 –
Kunhare et al. [44] 2022 99.44 – 99.36 –
Gupta et al. [45] 2022 99.52 97.55 96.78 97.16
Gu et al. [46] 2021 99.36 – 99.25 –
Xiao et al. [5] 2019 99.529 – 99.529 99.541
Sinha et al. [47] 2020 99.22 – 98.882 –
Li et al. [48] 2022 96.3 – 97.1 –
Dina et al. [49] 2023 99.66 99.66 99.66 99.66
Cao et al. [50] 2022 99.69 99.65 99.69 99.70
Proposed model – 99.91 99.91 99.91 99.91

Additionally, we compared the per-category recall of our proposed IDS with other IDSs on the
NSL-KDD dataset. Table 8 illustrates that our proposed IDS exhibits higher recall rates for each
category, particularly for R2L and U2R, when compared to other IDSs.

Table 8: The comparison recall for each category on the NSL-KDD dataset

IDSs Recall
Normal (%) Dos (%) Probe (%) R2L (%) U2R (%)

Bamakan et al. [51] 99.13 98.84 89.29 67.84 40.38
Xiao et al. [5] 98.32 99.86 97.51 96.33 47.06

(Continued)

CMC, 2024, vol.78, no.2 2019

Table 8 (continued)

IDSs Recall
Normal (%) Dos (%) Probe (%) R2L (%) U2R (%)

Xiao et al. [5] 99.43 99.87 99.21 96.64 64.71
Bedi et al. [52] 89.10 86.80 77.40 32.80 50.80
Javadpour et al. [53] 97.10 97.20 83.02 15.50 16.15
Proposed IDS 99.96 99.95 99.71 100.00 99.05

Finally, one of our models was selected for experiments on the U2R category within the NSL-
KDD dataset, utilizing two distinct loss functions: cross-entropy loss and focal loss. We proceeded
to compare the performance of these two loss functions in the context of multi-class classification
tasks, considering metrics such as Precision, Recall, and F1-score. The results are summarized in
Table 9. From the data in the table, it is evident that the Recall for the U2R category improved
significantly, rising from 0.916666 to a perfect 1.0. Moreover, Precision and F1-score also exhibited
notable enhancements. During training with the cross-entropy loss function, the model had a tendency
to accurately predict majority class samples while neglecting minority class samples. However, focal
loss is a modification of the standard cross-entropy loss function that reduces the weight of easily
classified samples. This modification encourages the model to focus more on challenging-to-classify
samples during training.

Table 9: Detection rate of the U2R category under different loss functions in the model

Loss Precision (%) Recall (%) F1-score (%)

Cross-entropy loss 0.936170 0.916666 0.926315
Focal loss 0.958333 1.0 0.978723

5 Conclusion

In this paper, we present an intrusion detection method based on a deep neural network
model. We utilize the NSL-KDD dataset, which comprises five different network traffic types. Four
proposed models, namely Multi-Conv1d, Multi-Conv1d-Self-Attention, Multi-Conv1d-BiLSTM-
Attention, and Multi-Conv1d-BiGRU-Attention, are employed for validation. Using a particle swarm
optimization algorithm, we select the most important 28 features from a pool of 42. Among these
four models, Multi-Conv1d-BiLSTM-Attention, through the combination of multi-scale Conv1d,
BiLSTM, and Attention mechanisms, effectively extracts spatiotemporal features from network traffic
data. We incorporate a Batch Normalization (BN) layer into the model to accelerate convergence and
prevent overfitting, ultimately performing classification using a softmax function. We address the
issues of data imbalance and model hyperparameter optimization using the Universal Focal Loss and
Bayesian Optimization with Tree-structured Parzen Estimator (BO-TPE). The results in binary and
multi-class classification show the highest accuracy, with values of 0.999158 and 0.999091, respectively.
However, it is worth noting that the model has the highest parameter count, totaling 401,939. This
implies that utilizing this model necessitates more significant computational resources. Although

2020 CMC, 2024, vol.78, no.2

Multi-Conv1d-Self-Attention exhibits the poorest performance among the four models, it has the
lowest parameter count, making it more suitable for operation in resource-constrained environments.
In practical applications, the choice of the most suitable model should be based on resource constraints
and performance requirements. Nevertheless, this also suggests that in the future, there is a need to
explore model architectures with higher performance and lower resource consumption to enhance the
availability of intrusion detection methods.

Acknowledgement: Not applicable.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Bayi Xu, Lei Sun; data collection: Bayi Xu, Xiuqing Mao, Chengwei Liu, Zhiyi Ding; analysis
and interpretation of results: Bayi Xu; draft manuscript preparation: Bayi Xu. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: Data will be made available on request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] L. Mohammadpour, T. C. Ling, C. S. Liew, and A. Aryanfar, “A survey of CNN-based network intrusion

detection,” Appl. Sci., vol. 12, pp. 8162, 2022.
[2] F. E. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “IDS-attention: An efficient algorithm for intrusion

detection systems using attention mechanism,” J. Big Data, vol. 8, pp. 149, 2021.
[3] V. Kumar, J. Srivastava, and A. Lazarevic, Managing Cyber Threats: Issues, Approaches, and Challenges.

New York, USA: Springer Science+ Business Media, 2005.
[4] Y. Yin et al., “IGRF-RFE: A hybrid feature selection method for MLP-based network intrusion detection

on UNSW-NB15 dataset,” J. Big Data, vol. 10, no. 1, pp. 15, 2023.
[5] Y. Xiao and X. Xiao, “An intrusion detection system based on a simplified residual network,” Information,

vol. 10, no. 11, pp. 356, 2019.
[6] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng., vol. 13, no. 2, pp. 222–232, 1987.
[7] A. Singh, J. Nagar, J. Amutha, and S. Sharma, “P2CA-GAM-ID: Coupling of probabilistic principal

components analysis with generalised additive model to predict the k−barriers for intrusion detection,”
Eng. Appl. Artif. Intell., vol. 126, pp. 107137, 2023.

[8] G. P. Dubey and R. K. Bhujade, “Optimal feature selection for machine learning based intrusion detection
system by exploiting attribute dependence,” Mater. Today: Proc., vol. 47, pp. 6325–6331, 2021.

[9] Z. Halim et al., “An effective genetic algorithm-based feature selection method for intrusion detection
systems,” Comput Secur., vol. 110, pp. 102448, 2021.

[10] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40,
no. 1, pp. 16–28, 2014.

[11] M. S. Milosevic and V. M. Ciric, “Extreme minority class detection in imbalanced data for network
intrusion,” Comput. Secur., vol. 123, pp. 102940, 2022.

[12] K. Ren, S. Yuan, C. Zhang, Y. Shi, and Z. Q. Huang, “CANET: A hierarchical CNN-attention model for
network intrusion detection,” Comput. Commun., vol. 205, pp. 170–181, 2023.

[13] R. Vinayakumar et al., “Deep learning approach for intelligent intrusion detection system,” IEEE Access,
vol. 7, pp. 41525–41550, 2019.

CMC, 2024, vol.78, no.2 2021

[14] H. Wang, Z. Cao, and B. Hong, “A network intrusion detection system based on convolutional neural
network,” J. Intell. Fuzzy Syst., vol. 38, no. 6, pp. 7623–7637, 2020.

[15] A. El-Ghamry, A. Darwish, and A. E. Hassanien, “An optimized CNN-based intrusion detection system
for reducing risks in smart farming,” Internet Things, vol. 22, pp. 100709, 2023.

[16] A. A. Malibari et al., “A novel metaheuristics with deep learning enabled intrusion detection system for
secured smart environment,” Sustain. Energ. Technol. Assess., vol. 52, pp. 102312, 2022.

[17] V. Murali Mohan, R. M. Balajee, K. M. Hiren, B. R. Rajakumar, and D. Binu, “Hybrid machine learning
approach based intrusion detection in cloud: A metaheuristic assisted model,” Multiagent Grid Syst., vol.
18, no. 1, pp. 21–43, 2022.

[18] J. V. A. Sukumar, I. Pranav, M. M. Neetish, and J. Narayanan, “Network intrusion detection using
improved genetic k-means algorithm,” in Proc. 2018 ICACCI , Bangalore, India, 2018, pp. 2441–2446.

[19] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection systems using a feature selection
method on the UNSW-NB15 dataset,” J. Big Data, vol. 7, no. 1, pp. 105, 2020.

[20] S. Ustebay, Z. Turgut, and M. A. Aydin, “Intrusion detection system with recursive feature elimination by
using random forest and deep learning classifier,” in Proc. 2018 IBIGDELFT , Ankara, Turkey, 2018, pp.
71–76.

[21] T. Wu et al., “Intrusion detection system combined enhanced random forest with SMOTE algorithm,”
EURASIP J. Adv. Signal Process., vol. 2022, pp. 39, 2022.

[22] J. Man and G. Sun, “A residual learning-based network intrusion detection system,”Secur. Commun. Netw.,
vol. 2021, pp. 5593435, 2021.

[23] H. Ding, L. Chen, L. Dong, Z. Fu, and X. Cui, “Imbalanced data classification: A KNN and generative
adversarial networks-based hybrid approach for intrusion detection,” Future Gen. Comput. Syst., vol. 131,
pp. 240–254, 2022.

[24] F. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “Intrusion detection systems using long short-term
memory (LSTM),” J. Big Data, vol. 8, pp. 65, 2021.

[25] S. M. Othman, F. M. Ba-Alwi, N. T. Alsohybe, and A. Y. Al-Hashida, “Intrusion detection model using
machine learning algorithm on big data environment,” J. Big Data, vol. 5, no. 1, pp. 34, 2018.

[26] D. Akgun, S. Hizal and U. Cavusoglu, “A new DDoS attacks intrusion detection model based on deep
learning for cybersecurity,” Comput. Secur., vol. 118, pp. 102748, 2022.

[27] X. Li and J. Ren, “MICQ-IPSO: An effective two-stage hybrid feature selection algorithm for high-
dimensional data,” Neurocomputing, vol. 501, pp. 328–342, 2022.

[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN’95, Perth, WA, Australia, 1995,
pp. 1942–1948.

[29] M. Mafarja and S. Mirjalili, “Whale optimization approaches for wrapper feature selection,” Appl. Soft
Comput., vol. 62, pp. 441–453, 2018.

[30] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.
[31] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in IEEE Trans.

Syst. Man Cybern., Orlando, FL, USA, 1997, pp. 4104–4108.
[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, pp. 1735–1780,

1997.
[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks

on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.
[34] J. R. Zhang, F. A. Liu, W. Z. Xu and H. Yu, “Feature fusion text classification model combining CNN and

BiGRU with multi-attention mechanism,” Future Internet, vol. 11, pp. 237, 2019.
[35] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech

recognition,” in NIPS 2015, Montreal, Quebec, Canada, 2015, pp. 577–585.
[36] A. Vaswani et al., “Attention is all you need,” in NIPS 2017, Long Beach, CA, USA, 2017, pp. 6000–6010.
[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and

translate,” arXiv preprint arXiv:1409.047, 2014.

2022 CMC, 2024, vol.78, no.2

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” in Proc. 32nd Int. Conf. on Mach. Learn., Lille, France, 2015, pp. 448–456.

[39] K. M. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proc. 2017 ICCV , Venice, Italy,
2017, pp. 2980–2988.

[40] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for hyper-parameter optimization,” in Proc.
24th Int. Conf. Neural Inf. Process. Syst., Granada, Spain, 2011, pp. 2546–2554.

[41] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and
practice,” Neurocomput., vol. 415, pp. 295–316, 2020.

[42] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,”
in 2009 IEEE Symp. Comput. Intell. Secur. Defense Appl., 2009, pp. 1–6.

[43] I. Benmessahel, X. Xie, and M. Chellal, “A new evolutionary neural networks based on intrusion detection
systems using multiverse optimization,” Appl. Intell., vol. 48, pp. 2315–2327, 2018.

[44] N. Kunhare, R. Tiwari, and J. Dhar, “Intrusion detection system using hybrid classifiers with meta-heuristic
algorithms for the optimization and feature selection by genetic algorithm,” Comput. Electr. Eng., vol. 103,
pp. 108383, 2022.

[45] S. K. Gupta, M. Tripathi, and J. Grover, “Hybrid optimization and deep learning based intrusion detection
system,” Comput. Electr. Eng., vol. 100, pp. 107876, 2022.

[46] J. Gu and S. Lu, “An effective intrusion detection approach using SVM with naïve Bayes feature
embedding,” Comput. Secur., vol. 103, pp. 102158, 2021.

[47] J. Sinha and M. Manollas, “Efficient deep CNN-BiLSTM model for network intrusion detection,” in Proc
2020 3rd Int. Conf. Artif. Intell. Pattern Recogn., Xiamen, China, 2020, pp. 223–231.

[48] A. Li and S. Yi, “Intelligent intrusion detection method of industrial Internet of things based on CNN-
BiLSTM,” Secur. Commun. Netw., vol. 2022, pp. 5448647, 2022.

[49] A. S. Dina, A. B. Siddique, and D. Manivannan, “A deep learning approach for intrusion detection in
Internet of Things using focal loss function,” Internet of Things, vol. 22, pp. 100699, 2023.

[50] B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, “Network intrusion detection model based on CNN and
GRU,” Appl. Sci., vol. 12, no. 9, pp. 4184, 2022.

[51] S. M. H. Bamakan, H. Wang, Y. Tian, and Y. Shi, “An effective intrusion detection framework based on
MCLP/SVM optimized by time-varying chaos particle swarm optimization,” Neurocomputing, vol. 199,
pp. 90–102, 2016.

[52] P. Bedi, N. Gupta, and V. Jindal, “I-SiamIDS: An improved Siam-IDS for handling class imbalance in
network-based intrusion detection systems,” Appl. Intell., vol. 51, pp. 1133–1151, 2021.

[53] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang, “DMAIDPS: A distributed multi-agent intrusion detection
and prevention system for cloud IoT environments,” Cluster Comput., vol. 26, no. 1, pp. 367–384, 2023.

	Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Experiments and Results
	5 Conclusion
	References

