
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.046595

ARTICLE

Binary Program Vulnerability Mining Based on Neural Network

Zhenhui Li1, Shuangping Xing1, Lin Yu1, Huiping Li1, Fan Zhou1, Guangqiang Yin1, Xikai Tang2 and
Zhiguo Wang1,*

1School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu, 611731, China
2School of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada

*Corresponding Author: Zhiguo Wang. Email: zgwang@uestc.edu.cn

Received: 08 October 2023 Accepted: 15 December 2023 Published: 27 February 2024

ABSTRACT

Software security analysts typically only have access to the executable program and cannot directly access the
source code of the program. This poses significant challenges to security analysis. While it is crucial to identify
vulnerabilities in such non-source code programs, there exists a limited set of generalized tools due to the low
versatility of current vulnerability mining methods. However, these tools suffer from some shortcomings. In terms
of targeted fuzzing, the path searching for target points is not streamlined enough, and the completely random
testing leads to an excessively large search space. Additionally, when it comes to code similarity analysis, there are
issues with incomplete code feature extraction, which may result in information loss. In this paper, we propose
a cross-platform and cross-architecture approach to exploit vulnerabilities using neural network obfuscation
techniques. By leveraging the Angr framework, a deobfuscation technique is introduced, along with the adoption
of a VEX-IR-based intermediate language conversion method. This combination allows for the unified handling of
binary programs across various architectures, compilers, and compilation options. Subsequently, binary programs
are processed to extract multi-level spatial features using a combination of a skip-gram model with self-attention
mechanism and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the graph embedding network
is utilized to evaluate the similarity of program functionalities. Based on these similarity scores, a target function
is determined, and symbolic execution is applied to solve the target function. The solved content serves as the
initial seed for targeted fuzzing. The binary program is processed by using the de-obfuscation technique and
intermediate language transformation method, and then the similarity of program functions is evaluated by using
a graph embedding network, and symbolic execution is performed based on these similarity scores. This approach
facilitates cross-architecture analysis of executable programs without their source codes and concurrently reduces
the risk of symbolic execution path explosion.

KEYWORDS
Vulnerability mining; de-obfuscation; neural network; graph embedding network; symbolic execution

1 Introduction

In light of the growing ubiquity of smart devices, data, and device securities have attracted
increasing attention in recent years [1–5]. Imperceptible vulnerabilities emerge as code is created, and

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.046595
https://www.techscience.com/doi/10.32604/cmc.2023.046595
mailto:zgwang@uestc.edu.cn

1862 CMC, 2024, vol.78, no.2

undetected vulnerabilities are a major hazard [6–8]. It is relatively difficult to analyze binary programs
directly with today’s technology. There are two main reasons: one is the huge number of instructions
the logic is complex, and the other is the lack of corresponding semantic and type information of
binary code [9]. Programs from various sources may involve different source languages, different
compilation optimization options, and different architecture issues, which make the security analysis
work very difficult. The American fuzzy lop (AFL) represents a significant advancement in fuzzing,
but enhancing the coverage and accuracy of fuzzing remains a critical challenge. The preferred way to
improve the coverage is symbolic execution [10], but it is vulnerable to path explosion. While the Angr
framework [11] offers commendable symbolic execution capabilities, it does not effectively counteract
the path explosion risk, especially with many invalid paths. In consideration of the problem of low
discovering efficiency in current vulnerability fuzzing discovery methods, Zhang and Xi intended
to explore the binary program vulnerability feature extraction and vulnerability discovery guiding
strategy generation methods [12].

The lack of explicit semantic and type information in binary code increases the likelihood of
security vulnerabilities. Hackers can exploit these ambiguities to launch sophisticated attacks that
compromise system integrity and user data. Binary vulnerability analysis has no security impact on the
source program and does not obtain user privacy information, so it is an important means to analyze
the vulnerability of binary programs. However, the current binary vulnerability analysis tools are
mostly for a specific type of vulnerability mining analysis, it is difficult to reuse these technologies for
other types of vulnerabilities and other architectures. Solving the path explosion problem of symbolic
execution, improving the efficiency and performance of fuzzing, and increasing its cross-architecture
applicability are of great importance to the development of binary vulnerability analysis technology,
and of great significance to the practical application security of science and technology. To solve the
above problems, Han et al. proposed a binary vulnerability mining technology based on neural network
feature fusion [13].

There are various binary mining techniques to mine vulnerabilities [14,15]. For example, auto-
mated testing based on object code search, blot analysis, and fuzzing are the main mining technologies,
among which fuzzy technology is becoming the mainstream technology [16].

We propose a method that bridges the strengths of symbolic execution and fuzzing, introducing a
function similarity estimation to avoid path explosion. Fuzzing, by processing randomly generated
data (which could manifest as long strings, random negative numbers, floating numbers, large
numbers, special strings, etc.), simulates program operations and monitors its real-time performance.
Certain anomalies, such as assertion failures or program crashes, may flag vulnerabilities, e.g., memory
leaks or buffer overflows [17]. Currently, most research is focused on improving the fuzzing engine.
Little attention is given to the test cases, however, their main focus is on the fuzzing seed mutation
algorithm [18]. Therefore, the research on the generation of the initial seed was still under-explored.

We believe that enhancing the seed generation process could greatly benefit fuzzing. Our proposed
system leverages neural networks to analyze the similarities of functions. Function similarity analysis,
which compares vulnerabilities in functions to pinpoint potentially high-risk ones, seeks to execute
symbolic execution on these select functions, thereby avoiding path explosion [19]. We carry out
symbolic execution based on this similarity score and convert the solution to an initial fuzzing seed
to facilitate directional fuzzing. This system enables cross-architecture analysis of binary programs
without their source code while mitigating the risk of path explosion. Our primary contributions are
summaries as follows:

CMC, 2024, vol.78, no.2 1863

• A novel graph embedding technique for code similarity analysis. We first present a basic block
embedding method to capture context information about the fundamental function of the
block. This information is then mapped to a block-based embedding vector and encoded
by a structure2vec network. After several iterations, a fusion of the vertex features of basic
blocks and the program function characteristics is achieved. By computing the cosine distance
between these vectors, functions can be effectively compared and assessed. Therefore, potential
vulnerabilities in the program can be revealed.

• A seed generation technique is proposed based on function similarity detection. According
to the vulnerability information Angr’s symbolic execution strategy is used to solve the target
function, and the solution is used as the initialization seed to perform fuzzing. This method not
only addresses the path explosion issue but also satisfies fuzzing’s high coverage requirements
for test cases.

The rest of this paper is structured as follows. Section 2 presents related work on vulnerability
analysis. In Section 3, we give the implementation method and main means. Section 4 shows the
various experiments done by our method on the dataset, giving the real experimental steps and results.
Finally, Section 5 gives the conclusions and our future work.

2 Related Work/Literature Review
2.1 Vulnerability Mining Technology

Binary vulnerability analysis techniques encompass methods such as target code search-based
automated testing, taint analysis [20,21], fuzzing [22], and symbolic execution [23]. As computational
capabilities expand, researchers are exploring alternative strategies for vulnerability detection, with
symbolic execution emerging as particularly efficient.

Symbolic execution emphasizes monitoring the program control flow, boasting superior code
coverage [24]. Concurrently, fuzzing remains a prominent technique in vulnerability detection. By
injecting randomized or anomalous inputs, it scrutinizes anomalous behaviors, thereby exposing
potential vulnerabilities and software attack surfaces. Taint analysis, on the other hand, tracks and
evaluates information flow, ensuring that strategies governing this flow are properly executed by
tracing data paths marked as tainted [25].

Whether fuzzing tests or symbolic execution, they are often used for some specific types of
vulnerabilities, but it is a trend to combine excellent and mature vulnerability mining and analysis
technology to form a general analysis tool.

2.2 Word2vec

Word2vec is widely utilized in natural language processing and offers capabilities like text sum-
marization, sentiment analysis, and entity recognition [26,27]. Its strengths lie in autonomously dis-
cerning word meanings without necessitating human intervention. Characteristics such as autonomy,
flexibility, and potent expressiveness further underscore its utility. It finds application in instruction
embedding tasks, generating instructional embedding vectors autonomously.

Two primary learning modes characterize Word2vec: The continuous bag-of-words (CBOW)
model, which learns from context to a central point [28], and the skip-gram model, proposed by
Mikolov, which learns from a central point to its surrounding context [29]. The skip-gram model
stands out for its superior coding efficiency and adeptness at capturing contextual semantics. In
contrast, CBOW, while differing significantly from skip-gram, monitors internal vocabulary changes

1864 CMC, 2024, vol.78, no.2

and analyzes external vocabulary to get accurate results. Notably, the skip-gram model is particularly
suited for translating basic block instructions into vectors suitable for program processing [30]. No
matter what kind of learning mode, the current Word2vec technology has been well applied in natural
language processing to help complete code similarity analysis.

2.3 Code Similarity Analysis

Traditional binary code similarity analysis typically focuses on feature extraction from codes,
followed by comparisons with known vulnerability codes [31–35]. Given that rules are formulated
manually, rule-based matching struggles with intricate binary code similarity challenges. With the fast
development of deep learning [36,37], utilizing deep learning methods to compute code similarity has
attracted extensive attention from researchers [38]. For example, in 2017, David et al. [39] introduced
GitZ, underpinned by semantic matching accuracy. GitZ splits the complex binary code into several
independent parts and converts them into standards-compliant lattices. Following this, it employs
simple rules for similar code retrieval.

Integrating deep learning into code similarity assessment can improve retrieval precision. In
contrast to conventional approaches, neural networks considerably reduce the dependence on manual
feature selection and have achieved state-of-the-performance in many anomaly detection and vulner-
ability detection tasks [40–42]. For instance, Genius [43] leverages a graph embedding network for
code similarity analysis, which in turn, employs a structure2vec network [44] for embedding vector
computation, with subsequent processes handled by a siamese network [45]. These works can do a
good job in code similarity analysis, and using deep learning for program analysis is a very promising
field.

3 Method

We now introduce the details of our proposed method. First, we load the program intended for de-
obfuscation, excising the control flow fattening to restore the program’s real control flow. Following
this, we undertake control flow graph (CFG) structure optimization to retrieve the valid control flow.
In the subsequent step, we transcribe the binary code into VEX-IR code. This serves to neutralize
disparities across instruction sets while preserving the program’s intent and functionality.

We introduce a similarity assessment technique tailored for the pre-processed data. We first
use a basic block embedding method to extract comprehensive context information. This extracted
data is subsequently transformed into a block-centric embedding vector and gets encoded through a
structure2vec network. After several iterations, the fusion of the vertex features of the basic block and
the program function features is completed. By computing the cosine distance between these vectors,
we can efficiently compare and analyze functions, thereby revealing potential vulnerabilities in the
program.

At last, according to the vulnerability information, Angr’s symbolic execution strategy is used to
solve the target function, and the solution is used as the initialization seed to perform fuzzing. This
method solves the issue of path explosion, and it also meets the high coverage requirements of fuzzing
for the test cases. The overall framework of the proposed method is depicted in Fig. 1.

CMC, 2024, vol.78, no.2 1865

Figure 1: The framework of the proposed method

3.1 Preprocessing

3.1.1 De-Obfuscation and CFG Structure Optimization

The binary code is often obfuscated to prevent it from being reversely analyzed. When analyzing
the obfuscated program, there are many interference parts in the control flow graph, which will
affect the analysis results and efficiency. Taking the Ollvm obfuscation as an example, its obfuscation
methods include a false block, a control flow expansion, an instruction expansion, and a basic block
separation. De-obfuscation can remove control flow and redundant blocks, and restore the real CFG
of the code. The specific algorithm principle of anti-obfuscation for Ollvm is as follows:

1. Using simulated execution and fuzz technology, fake blocks are found and marked.

2. Culling control flow blocks using the basic block signature.

3. Marking the remaining blocks as real blocks, and finding corresponding relationships by
simulating the function execution.

4. According to the correspondence, reconstructing the CFG.

According to the principle of anti-obfuscation, we propose a universal de-obfuscation method
that is not limited to the low level virtual machine (LLVM) compilation architecture. The approximate
process is summarized as follows:

1. Utilizing Angr’s solution engine to explore the branch path of the program, setting comparison
conditions, matching features of the real branch, and obtaining the address of the branch by changing
the symbol value of the input branch.

2. Once the call command is received, it should be returned immediately by the hook.

3. Patching all redundant blocks as no operation (NOP) instructions.

4. If no branch is found, replace the last instruction with a jump instruction, and jump to the next
step immediately.

5. By adjusting the instructions to meet the jump requirements, a new branch can be generated
from the original real block. Then we can easily make it jump to the branch that meets the requirements.

In addition, the CFG structure of the de-obfuscated code should be optimized to restore the
coherence of the code making the subsequent comparison and code analysis performed better. The
optimization methods have the following steps:

1. Basic block integration. Traverse all basic blocks in the function f, filter out those basic blocks
b with only one exit, and find their successor basic blocks b’. Then we treat these two basic blocks as
the same basic block, and merge b and b’. In addition, if the end of b is a jump instruction, we delete
these two basic blocks together.

1866 CMC, 2024, vol.78, no.2

2. Improving embedded calls. Suppose cb is the called function, c is the calling function, |c|
represents the length of the calling function, and |cb| represents the length of the called function. When
the called function meets the following conditions, cb can be embedded and called. First, instructions
in cb only belong to its function realization; second, the ratio of |cb| to |c| is less than 0.75. The second
condition is to prevent the semantic characteristics of the called function from overriding the semantic
features of the calling function.

3.1.2 VEX-IR Intermediate Code Conversion

Different compilation platforms represent different forms of the instruction sets, the binary
code of different platforms cannot be analyzed in the same way. To achieve cross-architecture
analysis, we argue that it is necessary to convert the de-obfuscated and CFG-optimized binary code
into intermediate code. Converting binary codes under different architectures into an intermediate
language form can eliminate 5 the differences in the instruction sets and keep the meaning and function
of the program unchanged. We convert the binary code into VEX-IR code through pyvex of the Angr
framework, and then use the Angr framework to extract the VEX-IR code and optimize it accordingly.

The VEX-IR converted code cannot be directly used for basic block embedding, as it contains
many simple operators, such as =, (), and so on. It contains many low-frequency words such as
numerical constants, memory addresses, and special strings, affecting the performance and reliability
of the similarity estimation, and introducing many uncertain words. This issue may lead to out-of-
vocabulary (OOV). We replace low-frequency instructions with predefined labels, and the correspond-
ing relationships between low-frequency instructions and labels are shown in Table 1. Therefore, these
instructions have to be preprocessed:

1. Operators are mainly used to increase the readability of the codes, and they have little effect on
the code analysis. Therefore, they can be removed and identifiers are separated by spaces.

2. Eliminate the extra overhead caused by low-frequency instructions by establishing a matching
table, as shown in Table 1.

Table 1: Low-frequency instruction matching rules

Low-frequency instructions Label

Numerical constants Num
Memory addresses Mem
Special strings Str
Unrecognized function address Func

The original binary program needs to be de-obfuscated and then the CFG structure can be
optimized. We convert them into VEX-IR code and clean instructions before inputting them into
the code similarity evaluation network.

3.2 Code Similarity Evaluation for Multi-Layer Data Embedding

An unavoidable difficulty in binary code similarity analysis is that programs of different archi-
tectures cannot be compared directly. As the architecture changes, the format of the instruction set
and binary code will also change dramatically. Therefore, simply comparing the similarity of the
program syntax to evaluate the similarity of the code is not feasible. Other features of the program

CMC, 2024, vol.78, no.2 1867

need to be compared. The principle of binary code similarity analysis is based on the similarity
comparison between features of functions, while natural language processing (NLP) techniques can
perform similarity comparisons on words in text [46]. Therefore, we resort to the idea of NLP to solve
the problem of binary code similarity analysis.

The basic block of programs is composed of multiple instructions, and each instruction consists of
an operator and several parameters. For example, {push eax, num} is an instruction, where push is the
opcode, eax and num are the operands. Therefore, each instruction of the program can be regarded as a
word, and then the instructions are encoded into instruction vectors by distributed word encoding. We
utilize skip-gram to convert instructions of the basic block into feature vectors, thus the basic block can
be regarded as a sentence composed of phrases. We introduce the bidirectional long short term memory
(BiLSTM) model [47,48] to add the basic block function feature vector with an additional basic block
semantic information vector to form a basic block embedding vector with basic block attributes. These
basic block embedding vectors represent the attributed control flow graph (ACFG). ACFG contains
useful information on the basic block function and also integrates the semantic information of the
context into the feature vector. As a result, our program can be employed for programs on different
architectures.

After obtaining the ACFG vector of each basic block, the structure2vec network is used to convert
the ACFG vector into a more complex graph, thereby obtaining a high-dimensional feature vector.
The feature vector is used for code similarity evaluation. Fig. 2 shows the workflow of code similarity
evaluation.

Figure 2: The framework of similarity evaluation model

3.2.1 Instruction Embedding

Skip-gram model connects the intermediate vocabulary with the entire text by controlling the
size of the sliding window. However, it will increase the computational overhead and training time.
The instruction embedding of programs only considers the semantic information and context of basic
blocks. Therefore, we improve the model by using intermediate words to predict context and keywords,
to increase the contextual connection of basic blocks and the utilization of semantic information with
less training overhead. The improved skip-gram model is shown in Fig. 3.

1868 CMC, 2024, vol.78, no.2

Figure 3: The framework of the skip-gram model

By constructing a sliding window of size m, all the instructions of the basic block are mapped to
a specific position, and the number of instructions in each position is 2m + 1. According to the given
instruction, instructions of the basic block are constructed as:[
. . . ,

(
ωi, ω(i−m)

)
, . . . ,

(
ωi, ω(i−1)

)
,
(
ωi, ω(i+m)

)
, . . . ,

(
ωi, ω(i+m)

)]
(1)

where m + 1 ≤ i ≤ N − m, and N is the total number of instructions with practical significance.

The loss function of the improved skip-gram model is defined as:

Loss = 1
|V |

|V |∑
i=1

∑
0<|m|<c

log p (ωi+m| ωi) + g (ωi+m, ωi) (2)

The structure of the instruction embedding model based on skip-gram is shown in Fig. 4.

Figure 4: Instruction embedding model based on skip-gram

CMC, 2024, vol.78, no.2 1869

3.2.2 Block Embedding

We adopt BiLSTM to extract the contextual semantic information carried by the basic block
to improve the integrity of the basic block information. As shown in Fig. 5, ef

i (i = 1, 2, . . . , n) is an
instruction embedding vector, which is used to construct a basic block. ef

i is inserted into the LSTMf

in the correct order, and then inserted reversely into the LSTMb. The two components of LSTM, hf
T

and hb
1, are fused as the basic block embedding vector hcomb generated by the BiLSTM model. This

embedding vector contains all the useful semantic information of the basic block.

Figure 5: The workflow of the BiLSTM

To improve the overall performance of the model, we introduce a self-attention network after the
BiLSTM network, which can effectively transfer information while reducing redundant embedding
vectors.

3.2.3 Similarity Calculation Model

Neural networks are adopted to calculate the similarity between the functions in the program and
the functions in the vulnerability library. This similarity is used to determine whether the program
contains high-risk functions. We convert the binary program into an ACFG, such that each node has
features related to the basic block not only the source code, but also the relationship between them
can be readily obtained.

Let the ACFG be a function as g = (V , E), where V represents the eigenvector of the vertices of
the program basic block, and E represents the set of eigenvectors of the calling block and the called
basic block of the program.

Each basic block vertex vector v in V has a property xv identical to the rest of the vertex vectors
in ACFG. The feature vectors representing the functions of the basic blocks are generated in the p-
dimensional space composed of the basic blocks v (v ∈ V), and then the vertex feature vectors of all
the basic blocks are aggregated. At last, the embedding vector μ′

g of ACFG is generated as follows:

μ′
g : = Mv∈V (μv) (3)

1870 CMC, 2024, vol.78, no.2

Based on the structure2vec network, we proposed the ACFG embedding vector generation
method and its basic block vertex vector mapping relationship as:

G(xv,
∑
u∈E(v)

μu) = tanh

(
W1xv + σ

(∑
u∈E(v)

μu

))
(4)

Among them, xv is a d-dimensional vector, representing the features of the ACFG nodes, W1 is a
d × p parameter matrix, and p is the embedding dimension of ACFG. σ represents a fully connected
network with n layers:

σ (l) = P1 × Relu (P2 × · · · Relu (Pnl)) (5)

where Pi (i = 1, 2, · · · , n) is a p × p parameter matrix.

The structure2vec network proposed in this work adopts recurrent neural (RNN) networks as its
backbone. We use the attention network to fuse the feature vector generated by the previous network
unit to further reduce the redundant part in the feature vector. The structure of the structure2vec
network proposed in this paper is shown in Fig. 6. We measure the similarity by calculating the cosine
distance between the ACFG vector corresponding to the input binary program and the ACFG vector
corresponding to the high-risk vulnerability function in the sample library. We design the structure2vec
network as a twin structure and then calculate the similarity of the input vectors to obtain the similarity
score. The twin architecture is shown in Fig. 7.

Figure 6: Structure2vec with self-attention

CMC, 2024, vol.78, no.2 1871

Figure 7: The proposed twin architecture based on the structure2vec network

The two structure2vec networks take the g and g′ of ACFG as input during the training process. We
obtain the graph embedding vectors ϕ (g) and ϕ (g′) by the embedding algorithm. Then, the similarity
between them is obtained by calculating the cosine distance:

Sim (g, g′) = cos (φ (g), φ (g′)) =
∑n

i=1 < φ (g), φ (g′) >√∑n

i=1 ‖φ (g)‖ · √∑n

i=1 ‖φ (g′)‖ (6)

where n represents for vector dimension, and φ (g) is the vectors in ACFG.

If the similarity score is greater than or equal to the threshold, we output the function name and
the address in the memory of the program. Then we use symbolic execution to solve the function, and
the solution result can be converted into the initial seed of the fuzzing and input into the fuzzing system
for vulnerability mining. Subsequent seed mutations will also be performed based on the generated
initial seed.

The biggest challenge of symbolic execution is the path explosion issue. If the program can
generate test cases with a high coverage rate under the premise of as little path exploration as possible,
then the risk of path explosion can be greatly alleviated. To solve this issue, we first determine the
functions in the program that may have potential vulnerabilities. We then conduct fuzzing for these
functions. We proposed the simnetseed-based system to increase the speed of fuzzing by increasing the
effective coverage of the path in fuzzing, and to solve the high-risk vulnerability functions detected in
the program by symbolic execution.

4 Experiments
4.1 Vulnerability Database and Dataset Construction

To identify potential security risks by the similarity of binary codes, it is necessary to establish a
vulnerability sample library. By consulting the common vulnerabilities and exposures (CVE) website, a
large number of CVE vulnerabilities can be obtained, and we divide them into two categories according
to the source of these vulnerabilities.

1. Vulnerabilities obtained from source code. We collect the relevant function source code from the
internet and use the arm-gcc compiler to convert it into binary functions under the advanced reduced
instruction set computer machines (ARM) and microcomputer without interlocked pipeline stages
(MIPS) architectures with different compilation optimization levels.

1872 CMC, 2024, vol.78, no.2

2. Vulnerabilities in IoT devices. To detect the security of binary functions, such as the security of
firmware, unpacking tools such as binwalk and interactive disassembler professional (IDA Pro) can
be used to detect the security of binary functions.

We de-obfuscate and optimize the CFG structure of the binary codes, converting them into
VEX-IR intermediate codes and conducting data cleaning. At last, the ACFG embedding vectors are
obtained through Word2vec and BiLSTM networks, which constitute the vulnerability sample library.
We constructed a vulnerability sample library with a total of 1,266 samples.

We adopt the method provided by InnerEye-BB to construct an appropriate dataset for model
evaluation. Specifically, we use gcc and clang compilers and set three optimization levels of O1-O3 to
compile several functions of OpenSSL (v1.0.1a and v1.0.1f) and Linux packages to obtain the dataset.
Then the dataset is further divided into three parts training, validation, and testing. The details of the
dataset are shown in Table 2.

Table 2: Dataset partition details

Level Training set Validation set Test set

ARM MIPS Total ARM MIPS Total ARM MIPS Total

O1 34,156 32,235 66,391 3,029 3,649 6,678 4,368 4,345 8,713
O2 44,561 42,758 87,319 5,013 5,069 10,082 5,068 5,590 10,658
O3 46,138 44,782 90,920 5,390 5,379 10,769 6,000 5,899 11,899
Total 124,855 119,775 244,630 13,432 14,097 27,529 15,436 15,834 31,270

4.2 Evaluation

4.2.1 Influence of Hyper-Parameters

We train the similarity evaluation model for 10 epochs using the training set, and then use the
test set to evaluate the accuracy and reliability of the model. In order to study the influence of the
dimension of instruction embedding on similarity discrimination, we set the dimension of instruction
embedding from {20, 40, 60, 80, 100}. The experimental results are shown in Table 3. It can be observed
that increasing the number of dimensions will increase the area under curve (AUC), but the AUC is
not simply determined by the dimension of instruction embedding. Therefore, we set the dimension
of instruction embeddings to 60 in subsequent experiments.

Table 3: The influence of the dimension of instruction embedding

Dimension 20 40 60 80 100

AUC (%) 96.36 96.54 97.4 97.31 96.87

Then, we compared the AUC under different basic block embedding dimensions. As shown
in Table 4, increasing the dimension will result in better performance. Considering that a higher
embedding dimension will significantly increase the computational cost, we set the basic block
embedding dimension to 10.

CMC, 2024, vol.78, no.2 1873

Table 4: The influence of the dimension of basic block embedding

Dimension 4 8 10 12 14

AUC (%) 96.28 96.57 97.38 97.40 97.41

4.2.2 Comparison with Other Methods

We compare the performance of the proposed model with InnerEyeBB [49], DeepBinDiff [50],
and DeepWalk [51] on the validation set, and the experimental results are shown in Table 5.

Table 5: Comparison with other methods in feature extraction

Method InnerEyeBB DeepBinDiff DeepWalk Ours

AUC (%) 88.94 90.25 92.36 97.40

We verify the effectiveness of the proposed similarity evaluation method by comparing it with
the Genius and Gemini models. The experimental results are shown in Table 6. It can be seen that
the performance of the proposed method is better than that of the Gemini model. Compared with the
unsupervised learning model Genius, it has achieved a great lead.

Table 6: Comparison with other methods in similarity evaluation

Method Genius Gemini Ours

AUC (%) 79.83 91.78 95.05

4.2.3 Simnet-Seed Application Test

We integrated the method proposed in this work into the simnet-seed tool for practical application
tests. The overall workflow of the simnet-seed tool for vulnerability detection is shown in Fig. 8.

Figure 8: The workflow of vulnerability mining

We first use simnet-seed to load the binary program, then de-obfuscate the binary program and
optimize the CFG structure to restore the real control flow graph of the program. Then we convert
the program language into the intermediate language to eliminate the influence caused by different
architectures and compiled languages. Similarity matching is performed between the functions in the

1874 CMC, 2024, vol.78, no.2

program and the functions in the vulnerability library. Finally, the symbolic execution is performed
on the similarity score and the solution is converted into the initial seed of fuzzing. We take the CVE
vulnerability (Heartbleed Vulnerability, CVE-2014-0160) as the case and the libfuzzer as the fuzzing
tool to verify the proposed method. It can be seen from Figs. 9 and 10 that when using the seed
generated by the simnet-seed tool as input, libfuzzer has covered 570 basic blocks of the program
after 34,988 executions and found 34 abnormal input bytes in 512 bytes, and successfully found the
asan_memcpy() function belonging to the heap overflow vulnerability. When the seeds generated by
the simnet-seed tool are not used, libfuzzer has covered a total of 565 basic blocks of the program
after 141,619 executions and found 53 input bytes out of 2,785 bytes before successfully finding the
asan_memcpy() vulnerability. It can be seen that the seeds generated by the simnet-seed tool cover
more basic blocks with fewer execution times.

Figure 9: The output of libfuzzer with seed generated by the simnet-seed tool

Figure 10: The output of libfuzzer without seed generated by the simnet-seed tool

CMC, 2024, vol.78, no.2 1875

Finally, we combine the simnet-seed tool with the mainstream symbolic execution tool Driller,
the fuzzing tool AFL++, and the hybrid fuzzing tool qsym to verify its effectiveness. We adopt five
programs named Xpdf, TCPdump, Adobe Reader, Gimp, and Libxml2 as test samples, respectively,
and record the time it takes to generate the first three crashes. The experimental results are shown in
Table 7.

Table 7: Time-consuming comparison of generating crashes with and without simnet-seed

Programs AFL++ QSYM Driller

Without With Without With Without With

Xpdf 45 min 32 min 35 min 28 min 38 min 20 min
TCPdump 20 h 14 h 13 h 8 h 15 h 10 h
Adobe reader 4 h 3 h 3 h 2 h 8 h 4 h
Gimp 3 h 1 h 1 h 45 min 2 h 57 min
Lixml2 5 h 3 h 4 h 2 h 2 h 75 min

It can be seen from Table 7 that when these three fuzzing tools are combined with the simnet-seed
tool, the time-consuming to generate the first three crashes is significantly reduced, i.e., the effective
coverage of the seeds generated by simnet-seed on these five programs is better than the seed generation
and mutation strategies of the fuzzing tool. This also proves that the path exploration algorithm with
dynamic seed priority and threat function priority can effectively improve the overall path exploration
ability of fuzzing. We believe that the simnet-seed tool can significantly improve the mining efficiency
of most programs, and its basic block function coverage is also beyond baselines, thus proving its
reliability and effectiveness.

5 Conclusion

Aiming at the obfuscation problem of the program, we introduce and implement a de-obfuscation
method, which can eliminate the influence of control flow flattening, and solve the problem of incom-
plete recovery results and redundant control flow graph in the obfuscation method of control flow
flattening. Aiming at the problem of cross-architecture cross-compiler and compilation options, this
paper introduces and implements an interlingua transformation method based on VEX-IR. By using
label replacement to realize VEX-IR preprocessing, the learning efficiency of basic blocks based on
interlingua is improved. We proposed a basic block embedding method based on bidirectional LSTM,
which solves the problem of missing important information such as semantics when embedding basic
blocks. Aiming at the measurement problem of binary code similarity, we proposed a binary function
similarity analysis method based on graph embedding. Before the ACFG embedding vector is finally
generated, the self-attention mechanism is introduced to improve the quality of the feature vector,
and the important features of the basic block are integrated to solve the error of manual feature
construction and the problem of semantic loss in function similarity analysis. We proposed a seed
generation method based on function similarity detection, which solves the problem of symbolic
execution path explosion and also meets the high coverage requirements of fuzzing for test cases. In
the experiment, we used the simnet-seed tool for vulnerability mining and detection and verified the
effectiveness of the proposed method in vulnerability detection and fuzzing speed optimization.

1876 CMC, 2024, vol.78, no.2

We built a professional analysis tool that security researchers can use to achieve cross-architecture
analysis of source-free binaries. By generating more effective test cases and optimizing test objectives,
the tool makes fuzzing more efficient, accelerates the discovery of potential vulnerabilities, and
improves the efficiency of testing. Through the identification and analysis of key functions, the research
is helpful to dig into the possible security risks in the software, improve the depth and breadth of safety
analysis, and enhance the safety analysis. The cross-architecture analysis technology of the research
increases the generality of the method, makes it applicable to various software systems with different
architectures, and improves the flexibility of the research in practical applications. The research
enhances the feasibility of fuzzing testing tools in large-scale projects, provides a set of innovative and
practical methods for the field of software security, provides strong support for the improvement and
performance enhancement of fuzzing testing tools, and provides a more reliable solution for practical
applications.

Our proposed technique can mitigate the risk of path explosion without obtaining the source code,
and protect the privacy and security of users to a certain extent.

Admittedly, our work has achieved good effectiveness, but there are still some limitations in the
implementation process. This article is based on the VEX-IR intermediate language, but the basic
block embedding vector generation involves modifying the LLVM backend to add ID to the basic
block and then converting it to VEX-IR. This would be slower but complete, so consider changing the
intermediate language type unification to LLVM-IR.

In the future, we plan to optimize the structure2vec model to build an n-layer fully connected
neural network to improve the efficiency of message functions. In addition, we also consider using
gated recurrent unit (GRU) networks to replace the original RNN networks, hoping to alleviate the
problems of long-term memory and gradient disappearance more effectively.

Acknowledgement: Not applicable.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Zhenhui Li, Shuangping Xing; data collection: Lin Yu, Huiping Li; analysis and interpretation
of results: Fan Zhou, Guangqiang Yin, Xikai Tang; draft manuscript preparation: Zhiguo Wang. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Kumar, K. Abhishek, M. R. Ghalib, A. Shankar and X. Cheng, “Intrusion detection and prevention

system for an IoT environment,” Digital Communications and Networks, vol. 8, no. 4, pp. 540–551, 2022.
[2] L. Qi, Y. Yang, X. Zhou, W. Rafique and J. Ma, “Fast anomaly identification based on multiaspect data

streams for intelligent intrusion detection toward secure Industry 4.0,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 9, pp. 6503–6511, 2021.

CMC, 2024, vol.78, no.2 1877

[3] B. Weinger, J. Kim, A. Sim, M. Nakashima, N. Moustafa et al., “Enhancing IoT anomaly detection
performance for federated learning,” Digital Communications and Networks, vol. 8, no. 3, pp. 314–323,
2022.

[4] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz and A. F. Skarmeta, “Machine learning-based zero-
touch network and service management, A survey,” Digital Communications and Networks, vol. 8, no. 2,
pp. 105–123, 2022.

[5] H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu et al., “Bloom filter with noisy coding framework for multi-set
membership testing,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, pp. 6710–6724, 2022.

[6] S. Li, M. Cai, R. Edwards, Y. Sun and L. Jin, “Research on encoding and decoding of non-binary polar
codes over GF (2m),” Digital Communications and Networks, vol. 8, no. 3, pp. 359–372, 2022.

[7] C. B. Sahin, “Semantic-based vulnerability detection by functional connectivity of gated graph sequence
neural networks,” Soft Computing, vol. 27, no. 9, pp. 5703–5719, 2023.

[8] H. Miura, T. Kimura, H. Aman and K. Hirata, “Game-theoretic approach to epidemic modeling of
countermeasures against future malware evolution,” Computer Communications, vol. 206, pp. 160–171,
2023.

[9] W. Su and H. Fei, “Survey of coverage-guided grey-box fuzzing,” Journal of Information Security Research,
vol. 8, pp. 643–655, 2022.

[10] K. Yang, Y. He, H. Ma and X. Wang, “Precise execution reachability analysis: Theory and application,”
Journal of Software, vol. 29, pp. 1–22, 2018.

[11] C. Song, X. Wang and W. Zhang, “Analysis and optimization of angr in dynamic software test application,”
Computer Engineering and Science, vol. 40, pp. 163–168, 2018.

[12] B. Zhang and Z. Xi, “A systematic review of binary program vulnerabilities feature extraction and discovery
strategy generation methods,” Journal of Physics: Conference Series, vol. 1827, no. 1, pp. 012090, 2021.

[13] W. Han, J. Pang and X. Zhou, “Binary vulnerability mining technology based on neural network feature
fusion,” in 2022 5th Int. Conf. on Advanced Electronic Materials, Computers and Software Engineering
(AEMCSE), Wuhan, China, IEEE, pp. 257–261, 2021.

[14] X. Sun, Z. Ye, L. Bo, X. Wu, Y. Wei et al., “Automatic software vulnerability assessment by extracting
vulnerability elements,” Journal of Systems and Software, vol. 204, pp. 111790, 2023.

[15] C. Caballero-Gil, R. Alvarez, C. Hernandez-Goya and J. Molina-Gil, “Research on smart-locks cyberse-
curity and vulnerabilities,” Wireless Networks, 2023. https://doi.org/10.1007/s11276-023-03376-8

[16] Z. Ren, H. Zhen, J. Zhang, W. Wang, T. Feng et al., “A review of fuzzing techniques,” Journal of Computer
Research and Development, vol. 58, pp. 2021-05-944, 2021.

[17] Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. Srivastava et al., “Astream: Data-stream-driven scalable
anomaly detection with accuracy guarantee in IIoT environment,” IEEE Transactions on Network Science
and Engineering, vol. 10, pp. 3007–3016, 2022.

[18] Q. Zhang and Y. Ma, “Research on optimization of afl-fuzzer seed mutation strategy,” Modern Information
Technology, vol. 5, pp. 142–145, 2021.

[19] X. Wang, L. Yang, L. Ma, Y. Mu, J. Shi et al., “Function similarity detection and lineage analysis for
cross-architecture malware,” Journal of Army Engineering University of PLA, vol. 1, pp. 36–47, 2022.

[20] Y. Ren, Y. Zhang and C. Ai, “Survey on taint analysis technology,” Journal of Computer Applications, vol.
39, pp. 2302–2309, 2019.

[21] W. Jie, Q. Chen, J. Wang, A. S. Voundi Koe, J. Li et al., “A novel extended multimodal ai framework towards
vulnerability detection in smart contracts,” Information Sciences, vol. 636, pp. 118907, 2023.

[22] W. Wang, Z. Chen, Z. Zheng and H. Wang, “An adaptive fuzzing method based on transformer and
protocol similarity mutation,” Computers and Security, vol. 129, pp. 103197, 2023.

[23] S. Baradaran, M. Heidari, A. Kamali and M. Mouzarani, “A unit-based symbolic execution method for
detecting memory corruption vulnerabilities in executable codes,” International Journal of Information
Security, vol. 22, pp. 1277–1290, 2023.

[24] Q. Wang and L. Song, “Fuzzing test based on potential of seed mutation,” Science Technology and
Engineering, vol. 20, pp. 3656–3661, 2020.

https://doi.org/10.1007/s11276-023-03376-8

1878 CMC, 2024, vol.78, no.2

[25] L. Wang, F. Li, L. Li and X. Feng, “Principle and practice of taint analysis,” Journal of Software, vol. 28,
pp. 860–882, 2017.

[26] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23, no. 1, pp. 155–162, 2017.
[27] A. Jaffe, Y. Kluger, O. Lindenbaum, J. Patsenker, E. Peterfreund et al., “The spectral underpinning of

word2vec,” Frontiers in Applied Mathematics and Statistics, vol. 6, pp. 593406, 2020.
[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed representations of words and

phrases and their compositionality,” Advances in Neural Information Processing Systems, vol. 26, pp. 3111–
3119, 2013.

[29] T. Mikolov, K. Chen, G. Corrado and J. Dean, “Efficient estimation of word representations in vector
space,” arXiv:1301.3781, 2013.

[30] I. Sutskever, O. Vinyals and Q. V. Le, “Sequence to sequence learning with neural networks,” Advances in
Neural Information Processing Systems, vol. 27, pp. 3104–3112, 2014.

[31] D. Kim, E. Kim, S. K. Cha, S. Son and Y. Kim, “Revisiting binary code similarity analysis using
interpretable feature engineering and lessons learned,” IEEE Transactions on Software Engineering, vol.
49, no. 4, pp. 1661–1682, 2023.

[32] J. Guo, B. Zhao, H. Liu, D. Leng, Y. An et al., “DeepDual-SD: Deep dual attribute-aware embedding for
binary code similarity detection,” International Journal of Computational Intelligence Systems, vol. 16, no.
1, pp. 35, 2023.

[33] D. Zheng, Z. Ran, Z. Liu, L. Li and L. Tian, “An efficient bar code image recognition algorithm for sorting
system,” Computers, Materials & Continua, vol. 64, no. 3, pp. 1885–1895, 2020.

[34] Y. Peng, X. Li, J. Song, Y. Luo, S. Hu et al., “Verification mechanism to obtain an elaborate answer span
in machine reading comprehension,” Neurocomputing, vol. 466, pp. 80–91, 2021.

[35] X. Tang, D. Zheng, G. S. Kebede, Z. Li, X. Li et al., “An automatic segmentation framework of quasi-
periodic time series through graph structure,” Applied Intelligence, vol. 53, no. 20, pp. 23482–23499, 2023.

[36] Y. Jia, B. Liu, W. Dou, X. Xu, X. Zhou et al., “CroApp: A CNN-based resource optimization approach in
edge computing environment,” IEEE Transactions on Industrial Informatics, vol. 18, no. 9, pp. 6300–6307,
2022.

[37] L. Hu, S. Bi, Q. Liu, Y. Jiang and C. Chen, “Intelligent reflecting surface aided covert wireless communi-
cation exploiting deep reinforcement learning,” Wireless Networks, vol. 29, no. 2, pp. 877–889, 2023.

[38] M. K. Somesula, S. K. Mothku and A. Kotte, “Deep reinforcement learning mechanism for deadline-aware
cache placement in device-to-device mobile edge networks,” Wireless Networks, vol. 29, no. 2, pp. 569–588,
2023.

[39] Y. David, N. Partush and E. Yahav, “Similarity of binaries through re-optimization,” in ACM SIGPLAN
Conf. on Programming Language Design and Implementation, Barcelona, Spain, pp. 79–94, 2017.

[40] C. Park, J. Lee, Y. Kim, J. Park and H. Kim, “An enhanced AI-based network intrusion detection system
using generative adversarial networks,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2330–2345, 2023.

[41] X. Sun, H. Wang, X. Fu, H. Qin, M. Jiang et al., “Substring-searchable attribute-based encryption and its
application for iot devices,” Digital Communications and Networks, vol. 7, no. 2, pp. 277–283, 2021.

[42] Y. Miao, X. Bai, Y. Cao, Y. Liu, F. Dai et al., “A novel short-term traffic prediction model based on SVD
and ARIMA with blockchain in Industrial Internet of Things,” IEEE Internet of Things Journal, vol. 10,
no. 24, pp. 21217–21226, 2023.

[43] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa et al., “Scalable graph-based bug search for firmware images,”
in ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, pp. 480–491, 2016.

[44] H. Dai, B. Dai and L. Song, “Discriminative embeddings of latent variable models for structured data,” in
Int. Conf. on Machine Learning, New York, NY, USA, pp. 2702–2711, 2016.

[45] Y. Li and Y. Zhou, “Similar text matching based on siamese network and char-word vector combination,”
Computer Systems and Applications, vol. 31, pp. 295–302, 2022.

[46] W. Haining, “Development of natural language processing technology,” ZTE Technology Journal, vol. 28,
pp. 59–64, 2022.

CMC, 2024, vol.78, no.2 1879

[47] X. Xu, L. Huang and M. Gong, “Short-term traffic flow prediction based on combined model of
convolutional neural network and bidirectional long-term memory network,” Industrial Instrumentation
and Automation, vol. 1, pp. 13–18, 2020.

[48] L. Kong, G. Li, W. Rafique, S. Shen, Q. He et al., “Time-aware missing healthcare data prediction based
on ARIMA model,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022. https://
doi.org/10.1109/TCBB.2022.3205064

[49] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng et al., “Neural machine translation inspired binary code similarity
comparison beyond function pairs,” arXiv:1808.04706, 2018.

[50] Y. Duan, X. Li, J. Wang and H. Yin, “DeepBinDiff: Learning program-wide code representations for binary
diffing,” in Network and Distributed System Security Symp., San Diego, CA, USA, 2020.

[51] B. Perozzi, R. Al-Rfou and S. Skiena, “Deepwalk, online learning of social representations,” in ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 701–710, 2014.

https://doi.org/10.1109/TCBB.2022.3205064
https://doi.org/10.1109/TCBB.2022.3205064

	Binary Program Vulnerability Mining Based on Neural Network
	1 Introduction
	2 Related Work/Literature Review
	3 Method
	4 Experiments
	5 Conclusion
	References

