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ABSTRACT

Lung cancer is a malady of the lungs that gravely jeopardizes human health. Therefore, early detection and treatment
are paramount for the preservation of human life. Lung computed tomography (CT) image sequences can explicitly
delineate the pathological condition of the lungs. To meet the imperative for accurate diagnosis by physicians,
expeditious segmentation of the region harboring lung cancer is of utmost significance. We utilize computer-
aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential
manner, erect an interpretable model, and attain segmentation of lung cancer. The specific advancements can be
encapsulated as follows: 1) Concentration on the lung parenchyma region: Based on 16-bit CT image capturing
and the luminance characteristics of lung cancer, we proffer an intercept histogram algorithm. 2) Focus on the
specific locus of lung malignancy: Utilizing the spatial interrelation of lung cancer, we propose a memory-based
Unet architecture and incorporate skip connections. 3) Data Imbalance: In accordance with the prevalent situation
of an overabundance of negative samples and a paucity of positive samples, we scrutinize the existing loss function
and suggest a mixed loss function. Experimental results with pre-existing publicly available datasets and assembled
datasets demonstrate that the segmentation efficacy, measured as Area Overlap Measure (AOM) is superior to
0.81, which markedly ameliorates in comparison with conventional algorithms, thereby facilitating physicians in
diagnosis.
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1 Introduction

Lung cancer is a neoplastic tumor that originates in the pulmonary system, with a precipitous
escalation in morbidity and mortality, and it stands as one of the most pernicious malignancies
affecting both the health and longevity of the general populace [1]. Numerous nations have reported
a marked augmentation in the morbidity and mortality rates associated with lung cancer over the
preceding five decades, with males predominating in both morbidity and mortality among all cancer-
ous neoplasms, and females occupying the second position [2]. The etiology of lung cancer remains
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enigmatic. The clinical manifestations of lung cancer are intricate, and the manifestation or absence,
acuteness and temporal onset of symptoms are contingent upon variables such as the anatomical
locus of the tumor, histological subtype, concomitant presence of metastasis and complications, as
well as interindividual variability in physiological responsiveness and tolerance. The initial symptoms
are frequently insidious, verging on unobtrusive. Symptoms associated with central lung tumors are
pronounced and severe, whereas those stemming from peripheral lung cancer manifest belatedly and
are often inconspicuous, or remain asymptomatic and are commonly discovered upon routine medical
examination. The symptoms can be broadly categorized into: local symptoms, systemic symptoms,
extrapulmonary symptoms, infiltrative, and metastatic symptoms [3].

1.1 Clinical Manifestations of Lung Cancer

The principal CT imaging phenotypes of lung cancer include: lobulation, spiculation, vacuole sign,
vascular convergence sign, pleural indentation, and cavitary sign, among others [4]. 1) Lobulation: The
margins of lesion sites are irregular and lobulated, attributable to heterogeneous differentiation of neo-
plastic cells and disparate growth kinetics across loci. Approximately 70%–80% of pulmonary nodules
exhibiting lobulation are malignant lesions. 2) Spiculation: Lesions exhibit variances in the degree of
fine, short protrusions at the margins, with spine-like or serrated morphological alterations, typically
encountered at the juncture between pathologic and normal pulmonary tissue, with a prevalence rate
of approximately 80%–85%, indicative of a common sign of lung malignancy. 3) Vacuole sign: Lesions
with vacuolation may represent uninvolved pulmonary parenchyma or fine bronchial structures, or
could be indicative of necrotic transformation post-excision. 4) Vascular convergence sign: Refers
to the confluence of surrounding diminutive vascular structures toward the lesion, where the vessels
either terminate at the lesion’s periphery or penetrate the lesion itself; this manifestation is related to
fibrous reactions within the neoplasm and hypertrophy of the supplying vessels. 5) Pleural indentation:
Lesions situated peripherally within the pulmonary architecture result in pleural invagination oriented
toward the lesion, commonly observed in pulmonary adenocarcinomas, and attributed to tumoral
fibrotic contraction. 6) Cavitary sign: A spherical or ovoid air-like hypodense shadow exceeding 5
mm, having a likelihood of less than 10% in lung cancer radiographic assessments. The cavity wall is
variably thickened, the internal wall is irregular, and the cavity is either central or eccentric in location.
Lung cancer represents a heterogeneous pulmonary lesion depicted on imaging as a conglomeration
of diverse signs, and the magnitude of irregularities in these signs directly correlates with the lesion’s
degree of malignancy.

In summary, lung cancer exerts a deleterious impact on human health and longevity; therefore, the
precocious diagnosis and therapeutic intervention are of paramount import. Computed Tomography
(CT) imaging serves as a visual conduit for pulmonary assessment. Utilizing such CT imagery,
clinicians can glean vital information pertaining to pulmonary structure and function, thereby
facilitating diagnosis. However, the physician’s diagnostic acumen, coupled with unavoidable fatigue,
can exert a direct influence on the resultant diagnostic outcome. Coinciding with the ascendancy of
computational technologies, the implementation of artificial intelligence presents a viable avenue for
augmenting diagnostic precision.

1.2 Artificial Intelligence-Based Algorithms for Lung Diagnosis

Computer-aided diagnosis (CAD) encompasses the amalgamation of imaging modalities, medical
image processing techniques, and other putative physiological and biochemical markers, orchestrated
with computational analytics, to facilitate lesion identification and enhance diagnostic veracity. CAD
primarily operates within the realm of medical imaging and has acquired the epithet of the physician’s
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“third eye”. The ubiquitous deployment of CAD systems has been instrumental in amplifying both
the sensitivity and specificity of clinicians’ diagnostic assessments [5,6]. Current research in the field of
computer-assisted segmentation of lung neoplasms can be broadly bifurcated into traditional feature
analysis and deep feature analysis.

In the domain of traditional feature analysis, Tripathi et al. [7] scrutinized the imaging char-
acteristics inherent to pulmonary images and advanced a threshold-based segmentation algorithm.
Mazzone et al. [8] employed mathematical statistics to conduct a comprehensive analysis of lung
cancer pathology; Mathews et al. [9] conducted a comparative evaluation of the efficacy of disparate
segmentation algorithms. Cai et al. [10] posited features derived from a clinical vantage point to achieve
accurate pulmonary neoplasm segmentation. Alam et al. [11] devised a Support Vector Machine
(SVM) algorithm to facilitate lung carcinoma extraction. Wanet et al. [12] used threshold algorithm
to segmentation. Zhang et al. [13] generated a three-dimensional model to scrutinize lesion-specific
attributes. Moon et al. [14] explored the low-dose CT characteristics of lung cancer and formulated
a texture analysis framework for categorical classification. Avinash et al. [15] engineered watershed
segmentation algorithm to achieve segmentation. Nazir et al. [16] developed a rapid segmentation
model predicated on image feature analysis. Garau et al. [17] synthesized a model derived from both
image features and clinical indicators. Lastly, Zhang et al. [18] employed topological structures and
globally-enhanced graph reasoning paradigms to segment neoplastic regions.

In the realm of depth-based feature analysis, Yu et al. [19] architected a comprehensive deep
learning framework for computer-aided detection to actualize pulmonary neoplasm identification.
Shakeel et al. [20] employed cellular neural networks for neoplastic region delineation. Liu et al. [21]
used a boundary attention model based on deep learning to extract lung parenchyma. Shamas et al. [22]
conducted an exhaustive review of the advancements in deep learning techniques as applied to lung
cancer segmentation and affirmed the efficacy of such algorithms. Yang et al. [23] achieved lung
nodule segmentation by orchestrating feature-aware attention to modulate uncertainty and reported
promising outcomes. Alakwaa et al. [24] formulated a 3D Convolutional Neural Network (CNN) to
scrutinize the holistic features of lung malignancies. Skourt et al. [25] implemented a Deep Neural
Network (DNN) to extract salient image attributes. Shaziya et al. [26] designed a Unet convolutional
architecture to automate the segmentation of pulmonary neoplasms. Shen et al. [27] constructed a
deep learning paradigm to prognosticate the development trajectory of lung cancer. Zhou et al. [28]
used global-local attention YOLOV5 for lung tumor detection. Zhang et al. [29] harnessed the Resnet
architecture to extract diagnostic features. Zhang et al. [30] combined atlas-based approaches with
CNN to realize sophisticated image segmentation. Hu et al. [31] developed mask region-based CNNs
for targeted neoplasm segmentation. Asuntha et al. [32] engineered a comprehensive deep network
that unified both the detection and classification analyses. Ni et al. [33] devised a segmentation
algorithm contingent upon the sequential correlations. Hou et al. [34] constructed an enhanced model
to achieve target segmentation. Sousa et al. [35] formulated a Residual Unet to extract diagnostic
markers for effective lung cancer segmentation. Shao et al. [36] explored the interrelation between
semantic meanings and image data to achieve semantic segmentation. Alameen et al. [37] established
a convolutional neural network tailored for pulmonary neoplasm segmentation.

In summary, concomitant with the maturation of artificial intelligence paradigms, computational
systems are increasingly proficient in augmenting clinicians in the diagnosis of lung carcinoma.
Traditional feature-based algorithms hinge upon visual and quantifiable parameters such as textural
attributes and gray scale values, yet these metrics possess constrained scalability and fail to effica-
ciously augment performance metrics. Deep learning approaches, however, construct an epistemo-
logical conduit between image data and semantic interpretations, predicated on neural transduction
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mechanisms, and have shown noteworthy outcomes. Nonetheless, the dearth of theoretical substan-
tiation for these algorithms raises questions about their generalizability, and they often yield false
positives outside the lung regions. Moreover, these algorithms demonstrate attenuated interpretability,
thus impeding their seamless integration into clinical workflows.

By scrutinizing the diagnostic methodologies employed by clinicians, we initially formulated
an algorithm designed to isolate regions of diagnostic interest within the pulmonary landscape.
Subsequently, we refined the Unet architecture to capture the unique feature sets pertinent to lung
neoplasms, harnessed the three-dimensional rendering capabilities intrinsic to CT imaging, integrated
attention mechanisms within the computational model, and optimized the loss function in the context
of an imbalanced dataset comprising limited positive samples and an abundance of negative samples.
This culminated in the precise extraction of pulmonary malignancies.

1.3 Unet

Unet exhibits superior training efficacy and demonstrates enhanced outcomes in the domain of
medical image segmentation [38]. This architecture metamorphoses the rudimentary linear network
topology into a symmetrical U-shaped configuration predicated on the Fully Convolutional Network
(FCN) encoding-decoding framework, necessitating only a modest dataset for the realization of
precise image segmentation, as illustrated in Fig. 1. The incorporation of skip-connection topologies
within the network facilitates the amalgamation of both low-level and high-level feature vectors. Unet
encompasses encoding modules, decoding modules, and skip-connection mechanisms.

Figure 1: Traditional Unet network

The Unet architecture employs an encoding module to abstract image characteristics, composed of
convolutional layers, activation functions, and maximal pooling operations. The decoding module of
Unet is isomorphic to its encoding counterpart and includes convolution and upsampling procedures.
Upsampling is executed via convolutional transpose operations, progressively restoring the image
resolution through 2 × 2 “deconvolution”. The terminal yield is a probability heat map delineating
the segmentation outcomes.
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Unet augments the FCN model by appending skip-connection dyads between the encoding
and decoding modules, thereby integrating the feature maps generated by each stratification of the
encoding module into the upsampling phase of the corresponding decoding layer. This facilitates
the confluence of low-level and high-level feature vectors. During this integration, both feature maps
intended for fusion maintain dimensional congruence due to convolutional operations in the encoding
phase leading to the diminution of boundary pixels. Unet opts for preliminary cropping of the
generated feature maps, followed by their subsequent concatenation. Given that cropping is executed
prior to each fusion event, the dimensions of the terminal output image are markedly reduced relative
to the original, albeit the segmentation precision is substantially elevated due to the incorporation of
skip-connection strategies.

1.4 Structure of the Paper

Predicated on an examination of the physician’s diagnostic methodology, this manuscript intro-
duces the Lung cancer segmentation algorithm based on explainable attention Unet, employing
advanced machine learning techniques from an explainable analytic viewpoint. The structure of this
paper is delineated as follows: Section 2 delves into the nuances of the algorithmic architecture.
Subsection 2.1 introduces the database used in the experiment. Subsection 2.2 focuses on the construc-
tion of the explainable model. Subsection 2.3 discusses the target region extraction algorithm premised
on intercept histogram methodology. Subsection 2.4 elaborates on the Unet framework predicated
on attention mechanisms, which serves to achieve precise lung cancer segmentation. Subsection 2.5
introduces a multi-dimensional fusion loss function to amplify segmentation efficacy. Section 3
presents the experimental results and subsequent analysis, serving to authenticate the algorithm’s
efficacy. Finally, Section 4 encapsulates the novel contributions presented in this manuscript and
proffers prospective directions for ensuing scholarly inquiry.

2 Materials and Methods
2.1 Materials

Our datasets originate from an aggregate of 31 collections of thoracic CT scans sourced from
Therapy Response (RIDER), the Lung Image Database Consortium (LIDC), patient archives from
Stanford University Medical Center and the Moffitt Cancer Centre, and the Columbia Univer-
sity/FDA Phantom, as well as 120 collections of lung CT data procured by the First Affiliated
Hospital of Xi’an Jiaotong University via utilization of four Philips imaging apparatuses. The regions
corresponding to pulmonary carcinomas are annotated in the axial orientation employing a double-
blind methodology to establish a benchmark standard. The spatial resolution of the labeled dataset is
512 × 512, and the slice thickness ranges between 0.5 and 1.5 mm, cumulatively yielding 76,512 frames
of Digital Imaging and Communications in Medicine (DICOM) data. The particulars are delineated
as follows: The prevalent images are encoded as 8-bit images with an intensity value domain spanning
[0,255], amenable for direct visual rendering on a display apparatus. In contrast, the 16-bit image
encompasses a more expansive information spectrum, with an intensity value domain ranging between
[0,65535]. Such images are incompatible with conventional visual display modalities and necessitate
the calibration of window for appropriate mapping, as illustrated in Fig. 2.
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(a) Lung window (b) Bone window (c) Spine window

Figure 2: The mapping images by different window

2.2 Explainable Model Construction

CT images of the pulmonary system furnish a graphical elucidation of the cross-sectional
morphology fundamental to a clinician’s diagnostic reasoning. We have scrutinized the diagnostic
paradigms employed by medical professionals, which are markedly process-oriented and interpretable:
initially, they concentrate empirically on the loci where pathological alterations are plausible, sub-
sequently executing a meticulous frame-by-frame examination of the suspect lesion. This cognitive
approach is explicable via Gestalt psychology. Gestalt posits that human beings glean in excess of
80% of their sensory information through optical channels, and the capability for worldly perception
emanates from the synergistic activity between the ocular system and the cerebral cortex [39]. Gestalt
is governed by four cardinal principles of organization: figure-ground, proximity, similarity and
continuity [40].

The mechanism underpinning the physicians’ identification of focal points can be elucidated
by employing the aforementioned principles. 1) Figure-ground: when confronted with CT image
datasets, the human cognition accentuates regions of clinical pertinence, thereby rendering them into
the foreground, whilst relegating irrelevant zones to the background. 2) Proximity: spatially adjacent
regions are classified into a cohesive group. 3) Similarity: elements with the same characteristics
are more closely related, such as shape, size, orientation, grey value, etc. 4) Continuity: CT imaging
constitutes a scanned modality in which the brain intrinsically synthesizes these discrete pixel points
to yield an authentic depiction of the pulmonary architecture.

Through the preceding analytical discourse, we have formulated a computer-aided diagnostic
schema as depicted in Fig. 3. Predicated upon the principle of Continuity, the fragmented pixel
constituents of CT scans are treated as a contiguous visual landscape, mirroring the pulmonary
topography. Following the Figure-ground principle, a threshold segmentation technique is devised
to focalize on regions manifesting suspect pulmonary neoplasia. Local attention algorithms are
architected to excavate spatial tri-dimensional relationships pursuant to the principle of Proximity.
Due to the similarity between the training dataset and the testing dataset, as well as the morphological
similarities in lung cancer, we have improved the Unet network based on the principle of similarity,
thus enabling the precise demarcation of focal points.
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Figure 3: Algorithm structure

2.3 Lung Parenchyma Extraction Algorithm Based on Intercept Histogram

Lung cancer is a lesion embodied in the region of the lung, which presents a specific shape in
the image. It would be computationally inefficient to carry out a study of fine segmentation of lung
cancer by the entire image sequence. Therefore, we emulate the clinician’s diagnostic methodology
by initially undertaking a rudimentary segmentation of the image sequence to delineate regions
with a high likelihood of neoplastic manifestation. The extant OTSU algorithm [41] examines the
grayscale distribution architecture of the image and employs a bivariate histogram to articulate
both the grayscale values at individual pixel locations and their spatial proximities. It partition the
histogram into four orthogonal sections demarcated by the threshold coordinates (s,t), and the optimal
threshold for image segmentation is a bivariate vector procured when the bivariate metric criterion
reaches its zenith. Let f , g represent the coordinate axes of the bivariate histogram, and T = f +
g is a line orthogonal to the principal diagonal across the threshold point. However, traditional 2D
OTSU assumes that the likelihood of two orthogonal sections deviating from the diagonal is nil, thus
compromising the precision of image segmentation.

To enhance both the algorithm’s efficacy and its resilience against noise perturbations, the linear
intercept histogram algorithm employs the intercept T orthogonal to the principal diagonal as the
threshold parameter. Assuming (x,y) symbolizes a binary tuple comprising the gray intensity of a
pixel and the mean gray intensity of its surrounding pixels, the probability that x + y = k pixels exist
within the image is defined as follows:

pk = nk

M × N
, k = 0, 1, . . . , 2 (L − 1) (1)

where M × N is the image resolution and L is the image gray level.

Let A be the set of gray intensities and mean gray intensities for all pixels in the image: A =
{(x,y)|x,y∈(0,1, . . . ,L−1)}. Let B represent the set of all intercept values. Let g be the mapping
g = x + y from A→B. The linear intercept histogram OTSU algorithm calculates the threshold by
considering the entire histogrammatic landscape, thereby somewhat fortifying its noise robustness.
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However, due to the low signal-to-noise ratio inherent in pulmonary imaging of lung cancer, fur-
ther optimization of the algorithm is requisite. The algorithm tends to obliterate detailed nuances
in the lower-intensity spectrum of the image during the segmentation process, thus necessitating
improvements for more refined image partitioning. For this purpose, we propose the directional fuzzy
derivative intercept histogram. The derivative of the central pixel (i, j) in a specified direction D is
defined as the disparity among adjacent pixels along the same directional vector D.

VN (i, j) = I (i, j − 1) − I (i, j) (2)

where V N (i, j) is the blurred cepstrum value of pixel (i, j) in the N direction.

Assume an edge traverses the pixel (i, j) along the southwest-northeast (SW-NE) vectorial axis, its
corresponding derivative magnitude VNW (i, j) would be augmented, and the positional derivatives of
the neighboring pixels orthogonal to the edge trajectory would similarly be amplified. Consequently,
if an edge intersects (i, j) along the SW→NE directional axis, the derivative magnitudes of the pixels
located at (i + 1, j − 1) and (i − 1, j + 1) in the northwest (NW) vectorial direction will be more
pronounced. The arithmetic mean of these three derivative magnitudes serves as the fuzzy derivative
metric in the NW vectorial direction at (i, j) and is denoted as g(i, j). A diminished g(i, j) suggests the
absence of an edge within this localized region, implying that the image characteristics in the SW
−> NE directional axis are homogenous and belong to a singular region. To attenuate the noise
and accentuate the granular detail within the image, fuzzy derivative metrics for the 8 proximate
neighborhoods of pixel points are computed individually. The maximal fuzzy derivative metric is
selected to supplant the domain-specific mean value at the corresponding pixel point.

Let [x,g(i, j)] represent the binary set comprising the fuzzy derivative metrics and the gray intensity
values of the pixels, along with their angular orientations. Let pk denote the likelihood that pixels within
the image satisfy x + g (i, j) = k. Within the framework of the intercept histogram, the image undergoes
segmentation via a threshold parameter T∗.

w0 (T) =
T∑

k=0

pk, w1 (T) = 1 − w0 (T) (3)

μ (T) =
T∑

k=0

kpk (4)

σ 2 (T) = w0 (T) w1 (T) [μ0 (T) − μ1 (T)]2 (5)

Then the corresponding optimal threshold T∗ satisfies.

σ 2 (T ∗) = max
0≤T≤2L−2

σ 2 (T) (6)

After obtaining the optimal threshold T∗, pixel classification is achieved. Since lung cancer
presents connected regions, we use 8-connected region labeling for all pixel points.

2.4 Attention-Based Unet Structure

The Unet network topology has manifested superlative efficacy in medical image segmentation,
comprising primarily of encoding, decoding, and skip-connection frameworks. To enhance this
architecture, we propose the augmented Unet (referred to as E-Unet). A Conv_E module is constructed
in the encoding phase to achieve optimized feature amalgamation, whilst the maximal pooling layer
accomplishes downsampling by retaining only the most salient features and discarding insignificant
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attributes. The decoding segment incorporates the Conv_E module and upsampling to recompense
for the information attrition incurred during pooling. A 1 × 1 convolution operation subsequently
categorizes the pixels within the image as per classification requisites, culminating in the final
segmentation outcome.

The E-Unet module we have engineered is delineated in Fig. 4, and the deviations from the
traditional Unet architecture are primarily articulated as follows: 1) The feature vector generated via
convolution is amalgamated with the antecedent input module attributes and subsequently utilized
as the input for the ensuing convolution. This augmentation facilitates feature transference, achieves
feature recycling, and mitigates the attrition of image features during the training regimen, yet still
forfeits image peripheries and the image dimensions remain incongruent pre- and post-convolution.
Therefore, to synchronize the feature maps before and after convolution within the module, it is
imperative to pad the feature maps prior to convolution to ensure homogeneous feature map resolution
antecedent to and subsequent to convolution. 2) The incorporation of a Batch Normalization (BN)
layer subsequent to each convolution in E-Unet standardizes the data, thereby attenuating the
network’s reliance on the initialization parameters.

Figure 4: Convolutional block and modified convolutional block of traditional Unet network

To circumvent the adverse impact on network optimization engendered by feature distribution,
the normalized data x is inversely transformed, which can be interpreted as an adjustment in offset
and scaling coefficients.

yi = γixi + βi (7)

where γ i is the variance and β i is the mean.

We examine lung image sequences characterized by robust inter-frame correlation. To capitalize
on this correlation to aid in segmentation, we have architected a profound neural network. This
methodology eschews the necessity for labeled data; the network is formulated directly from the image
data. We architect the Bottleneck layer within a self-supervised learning paradigm, thereby enabling
the network to discern the set of pixels in the reference frame that optimally align with the extant pixel
feature, and reconstitute said feature.

Given the image where the lung cancer is located as It, the neural network feature encoder
with training is φ (•; θ); the features extracted from the input frames after the feature encoder are
represented as ft = φ (g (It) ; θ), and g(I t) denotes Bottleneck in self-supervision. The similitude
between a specific frame is calculated via a soft attention mechanism, culminating in the acquisition
of the similarity matrix A. Contemplating the spatial contiguity between frames, the features are
synthesized.
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Î i
t =

∑
j∈N

Aij
t I j

t−1 (8)

Aij
t = exp

〈
f i

t , f i
t−1

〉
∑
n∈N

exp
〈
f i

t , f n
t−1

〉 , N = {∀n ∈ It−1, |n − i| ≤ c} (9)

where c denotes the neighborhood radius of pixel i; < . > denotes the number product operation.
Through training, the feature encoder endowed with Huber loss is attained, i.e., the features elucidated
by the encoder strive to minimize the Euclidean distance between the pixel features in It and those in
I t−1, while maximizing the distance from other irrelevant pixel attributes, and the optimization criterion
for the network is articulated as

θ̂ = arg min
θ

ϑ
(

It, Ît

)
(10)

For the test, the similarity matrix is calculated from the feature map of the image frames to obtain
the corresponding segmentation results.

ŷi
t =

∑
j∈N

Aij
t yj

t−1 (11)

To exhaustively investigate the interrelations among images, we incorporated an auxiliary atten-
tion module to glean information from the images for the purpose of target reconstruction. Given Iq

and K reference frames retained in the attention module, these are designated as Ir. We orchestrated
two feature encoders predicated upon the neural network architecture to procure image features,
denoted as f q and f r respectively. During the training process, θ was used in dynamic update mode: θ r

←mθ r + (1 − m) θ q.

2.5 Multi-Dimensional Fusion Loss Function

In the realm of medical image segmentation, the prevalently employed loss functions encompass
Binary Cross Entropy Loss (BCE Loss), BCEWith Logits Loss, and Dice Loss, among others. Taking
into account the specific spatial and pixel value distributions pertinent to lung cancer, the merits of
BCEWith Logits Loss and Dice Loss are harnessed to formulate the loss function.

BCEWith Logits Loss: Computes the cross entropy to depict the loss. It is imperative that the
samples reside within the interval [0,1]. The ubiquitously deployed Sigmoid function has a propensity
to engender unstable computational outcomes and induce the vanishing of gradients. For this ratio-
nale, the Sigmoid and BCE Loss are aggregated into a singular class, thereby rendering computational
outcomes more homogeneous, which is propitious for stable gradient back-propagation.

LBCEW = −
n∑

i=1

yi log (σ (xi)) + (1 − yi) log (1 − σ (xi)) (12)

where xi is the training sample, yi is the sample label, n is the number of samples, and σ (xi) is
the Sigmoid function. This loss function appraises each category equitably, which is inimical to
the refinement of segmentation networks with disproportionate categories. Conversely, in the lung
tumor images requiring processing in this manuscript, the foreground pixels (tumor region) are
significantly outnumbered by the background pixels (non-tumor region); thus, the background pixels
will predominate the loss function and orient this network towards optimizing the background.
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The Dice coefficient characterizes the overlapping part of the two samples and takes values in the
range [0,1].

D (G, R) = 2
|G ∩ P|
|G ∪ P| (13)

where G denotes Ground Truth and P denotes Prediction. Then the corresponding DissLoss is

LDice = 1 − 2
∑

G • P∑
(G2 + P2)

(14)

Dice Loss avoids the network from falling into a local minimum of the loss function by increasing
the weight of the foreground region, i.e., avoiding the occurrence of overfitting. Therefore, Dice Loss
is more suitable for the case of extreme sample imbalance.

∂LDice

∂P
= 2G2

(G + P)
2 (15)

when the sum of G and P is minimal, the gradient values fluctuate acutely, leading to exceedingly
volatile training that is detrimental to network optimization. Therefore, although Dice Loss amelio-
rates the perturbations instigated by category imbalance on network training, it occasionally becomes
unreliable and adverse for back-propagation. To ameliorate this, we construct a novel objective
function to leverage the advantages of both.

Loss = λLBCEW + (1 − λ) LDice (16)

3 Results and Discussion

Utilizing publicly accessible datasets as well as datasets amassed autonomously by medical
institutions, the proffered algorithm was juxtaposed with conventional algorithms to ascertain its
efficacy in lung extraction and lung cancer segmentation.

To corroborate the algorithm’s performance, we incorporate the Area Overlap Measure (AOM),
a widely-recognized evaluative metric in the domain of medical imaging. Additionally, Area Over-
segmentation measure (AVM), Area Under-segmentation measure (AUM), and Combination Mea-
sure (CM) are delineated as [42]

AOM = Rs ∩ Rg

Rs ∪ Rg

(17)

AVM = Rs − Rg

Rs

(18)

AUM = Rg − Rs

Rg

(19)

CM = 1
3

{AOM + (1 − AVM) + (1 − AUM)} (20)

where Rg is the result of physician labeling and Rs is the result derived by the algorithm. AOM and
CM are proportional to the segmentation result. AUM and AVM are inversely proportional to the
segmentation result.
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3.1 Lung Parenchyma Extraction Effect

The precision of lung extraction serves as a sine qua non for accurate lung cancer detection, aiming
to maximize the retention of the neoplastic lung region and obviate false negatives. The advanced
algorithm is juxtaposed against canonical algorithms for evaluation, as shown in Table 1.

Table 1: Lung parenchyma extraction effect

Algorithm AOM AVM AUM CM

T [12] 0.81 0.26 0.31 0.75
Watershed [15] 0.87 0.24 0.25 0.79
OTSU [41] 0.90 0.21 0.21 0.83
B_Attention [21] 0.91 0.19 0.18 0.85
D_Guass [39] 0.93 0.18 0.14 0.87
Ours 0.96 0.15 0.12 0.90

The manual Threshold method (T method) [12] employs an interactive modality for threshold
delineation, capable of discerning neoplastic zones with varied indicia. Nevertheless, this technique
establishes the threshold under the auspices of a known neoplastic condition, rendering the algorithm’s
scalability constrained, and its segmentation effect is relatively poor. The Watershed method [15]
draws inspiration from topographical distributions to fabricate a segmentation model. In the context
of images manifesting attenuated lung cancer signals, the demarcation between foreground and
background domains is nebulous, thus engendering detection lapses. The OTSU method [41] ascertains
the threshold based on statistical histogram analysis, solely utilizing the distributional attributes
of pixel grayscale values, while disregarding spatial attributes, leading to inadequate sensitivity in
detecting incipient lung carcinomas. Liu et al. [21] proposed a boundary attention model based on deep
learning to extract lung parenchyma, which achieves good results for lung images with relatively intact
parenchyma. However, its performance is less satisfactory for lung images with significant pathological
changes. The Double Gaussian (D_Guass) fitting algorithm [39] scrutinizes the pixel distribution
within pulmonary images, treating the pixel distributions of background and foreground as bimodal
Gaussian models. It opts for the local nadir as the segmentation threshold, thereby accomplishing
neoplastic region extraction. All aforementioned algorithms develop models predicated on pixel-level
considerations, yet neglect localized spatial data pertaining to lesions. In antithesis, the proposed
algorithm incorporates spatial parameters, exploits features within less illuminated regions, mitigates
noise, amplifies the detection sensitivity for subdued targets, and attains an AOM of 0.96. An intuitive
visual representation of the advanced algorithm is elucidated in Fig. 5, which demonstrates efficacious
lung extraction.

3.2 Segmentation Performance Effect

To ascertain the efficacy of the neural network architecture, we depict the training curves for Unet,
Residual Unet [35], VGG Unet [36], E-Unet, and E-L-Unet, as elucidated in Fig. 6. It is manifest that
the encoder-decoder topology, constructed on the foundation of the Unet network, can facilitate lung
carcinoma segmentation. Residual Unet incorporates a residual architecture to delve more profoundly
into image feature space, thereby augmenting performance metrics. The VGG Unet combines the
VGG network to extract prominent features from the images, and then inputs them into Unet, thereby
enhancing its representational capacity. E-Unet standardizes the image predicated on the delineated
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regions of suspicion, implements an attention mechanism, and concentrates computational resources
on the domain where the lung cancer is situated. This approach diminishes the computational overhead
for lung cancer segmentation and elevates the accuracy of segmentation. E-L-Unet refines the loss
function predicated on E-Unet; although Dice loss mitigates the perturbations introduced by category
imbalance in network training, it exhibits computational instability, which is inimical to gradient
back-propagation. In response to this, we amalgamate BCEWith Logits Loss and Dice loss functions,
thereby proposing a novel loss function that enhances both the stability and rate of convergence for
the network.

(a) (b)

(c) (d) 

Figure 5: Lung parenchyma extraction regions. (a) Lung carcinoma lesion situated in the left lung,
characterized by minimal area and a homogenous texture. (b) Lung carcinoma lesion adhered to the
thoracic wall. (c) Lung carcinoma located in the lower quadrant of the right lung, which has induced
a blurring effect on the thoracic wall. (d) Lung carcinoma with indistinct boundaries

Figure 6: Training curve
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The proffered algorithm emulates the diagnostic methodology of clinicians, directing focus
sequentially onto the regions delineated as suspicious. Initially, a thresholding technique is utilized
to ascertain the region of focal interest. This modality employs classical features and boasts rapid
computational performance. Subsequently, segmentation is executed via a deep learning architecture.
Although this phase incurs a more protracted time investment during training, ranging from 1–2 weeks,
upon completion of the network’s training, the test outcomes are swiftly generated. The predominant
operations entailed in this step comprise addition and multiplication. Hence, the algorithmic complex-
ity remains relatively subdued, and the segmentation efficacy is contingent upon the dimensions of the
focal region. On average, the algorithm necessitates approximately 13 s for detection, in stark contrast
to a minimum of 10 min required for a clinician’s examination.

We employed both conventional algorithms [8,13] and deep learning algorithms [27,30,38] to scru-
tinize their segmentation efficacies, as delineated in Table 2. The application of mathematical statistical
methods [8], involving the construction of an analytical model, enables lung carcinoma segmentation.
However, the inherent variability in the sample set leads to rudimentary computations that fall short
of fulfilling practical application requirements, culminating in suboptimal segmentation performance.
The Hybrid Geometric Active Contour (HGAC) algorithm [13], predicated on the concept of energy
minimization, actualizes image segmentation when internal and external forces are commensurate.
This algorithm yields superior results in scenarios where there is a pronounced discrepancy between
the lung carcinoma and background regions. Traditional algorithms are unencumbered by reliance on
pre-existing large datasets, and their feature selection demonstrates robust interpretability. However,
the inherent limitations of the chosen features preclude significant advancements in segmentation
accuracy. Recent developments in deep learning, such as the Unet [38], utilize a U-shaped network
topology to extract depth features pertinent to lung carcinoma segmentation. Nonetheless, this
architecture is solely designed from the vantage point of individual image frames, neglecting to account
for the spatial morphology constraints inherent to lung carcinomas. CNN networks amalgamated
with Atlas [30] hone in on key regions to accomplish lung carcinoma segmentation, but they exhibit
shortcomings when applied to smaller samples characterized by diminished area and attenuated signal
intensity. WS-LungNet [27] employs a two-tiered, weakly-supervised framework for lung carcinoma
detection and diagnosis, mitigating the issue of weak labels. The integration of an attention mechanism
further augments the segmentation of lung carcinoma.

Table 2: Algorithm segmentation effect

Representation Algorithm AOM AVM AUM CM

Lung carcinoma lesion situated in the
left lung, characterized by minimal area
and a homogenous texture.

Mathematical statistics [8] 0.74 0.23 0.31 0.73
HGAC [13] 0.79 0.22 0.29 0.76
Unet [38] 0.84 0.21 0.27 0.79
Atlas + CNN [30] 0.86 0.18 0.21 0.82
WS-LungNet [27] 0.92 0.15 0.19 0.86
Ours 0.93 0.13 0.15 0.88

(Continued)
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Table 2 (continued)

Representation Algorithm AOM AVM AUM CM

Lung carcinoma lesion adhered to the
thoracic wall.

Mathematical statistics [8] 0.71 0.33 0.29 0.70
HGAC [13] 0.73 0.28 0.27 0.73
Unet [38] 0.81 0.26 0.25 0.77
Atlas + CNN [30] 0.84 0.22 0.19 0.81
WS-LungNet [27] 0.87 0.18 0.18 0.84
Ours 0.90 0.16 0.16 0.86

Lung carcinoma located in the lower
quadrant of the right lung, which has
induced a blurring effect on the thoracic
wall.

Mathematical statistics [8] 0.69 0.29 0.31 0.70
HGAC [13] 0.72 0.25 0.30 0.72
Unet [38] 0.74 0.24 0.26 0.75
Atlas + CNN [30] 0.79 0.24 0.23 0.77
WS-LungNet [27] 0.85 0.21 0.21 0.81
Ours 0.88 0.19 0.17 0.84

Lung carcinoma with indistinct
boundaries.

Mathematical statistics [8] 0.58 0.35 0.35 0.63
HGAC [13] 0.63 0.33 0.32 0.66
Unet [38] 0.69 0.29 0.30 0.70
Atlas + CNN [30] 0.75 0.28 0.28 0.73
WS-LungNet [27] 0.80 0.26 0.25 0.76
Ours 0.84 0.22 0.20 0.81

Four illustrative sequences were selected to validate the algorithm’s performance. Fig. 7a depicts
a circumscribed lung carcinoma lesion situated in the left lung, characterized by minimal area and
a homogenous texture. Owing to its biopsy-confirmed status as lung carcinoma, the lesion proves
amenable to straightforward segmentation, eliciting favorable outcomes across all algorithms. Fig. 7b
exhibits a substantial lung carcinoma lesion adhered to the thoracic wall; however, the prominence
of the thoracic wall complicates the segmentation task, resulting in compromised performance across
all algorithms. Fig. 7c reveals a sizable lung carcinoma located in the lower quadrant of the right
lung, which has induced a blurring effect on the thoracic wall, further exacerbating the complexity
of the segmentation task and leading to diminished algorithmic performance. Fig. 7d portrays a lung
carcinoma with indistinct boundaries, rendering accurate localization infeasible and thus undermining
algorithmic performance. In particular, traditional, feature-based algorithms experience a precipitous
decline in efficacy due to their incapacity to accurately represent features. Deep learning-based
algorithms, which construct a semantic bridge via neural propagation mechanisms, exhibit a more
gradual degradation in performance. The algorithm proposed in this paper, built upon an interpretable
conceptual framework and incorporating an attention-based Unet network, synthesizes both deep
and traditional features. While its performance has also seen some attenuation, it retains a degree of
optimality.
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(a) Lung 
carcinoma lesion 
situated in the left 
lung, characterized 

by minimal area 
and a homogenous 

texture.

(b) Lung 
carcinoma lesion 

adhered to the
thoracic wall.

Figure 7: (Continued)
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(c) Lung 
carcinoma located 

in the lower 
quadrant of the 

right lung, which 
has induced a 

blurring effect on 
the thoracic wall.

(d) Lung 
carcinoma with 

indistinct 
boundaries.

Figure 7: The algorithm labels images for lung cancer
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The algorithm articulated in this paper examines the three-dimensional morphological attributes
of pulmonary carcinoma imagery predicated on Unet and incorporates an attention mechanism to
concentrate on neoplastic pulmonary regions, thereby facilitating precise segmentation. The algo-
rithm’s efficacy is substantiated through axial, coronal, and sagittal segmentations of lung cancer.
The loss function has been refined to enable accurate segmentation under conditions characterized by
a paucity of positive samples.

4 Conclusion and Future Directions

Pulmonary carcinoma manifests a prevalent incidence rate, thereby rendering early diagnostic and
therapeutic interventions imperative. Given the voluminous corpus of computed tomography (CT)
imagery pertinent to pulmonary structures and the inherent complexities in demarcating neoplastic
lesions, this treatise advances a lung carcinoma segmentation algorithm, conceptualized from the
vantage point of medical diagnostic protocols, and predicated on explainable attention Unet. The
salient innovations are itemized herewith:

1. Leveraging traditional features, we proffer an intercept histogram algorithm with a focus on
the pulmonary parenchyma.

2. Predicated on the deep learning architecture of the Unet network, we advance an attention-
based Unet for the precise segmentation of pulmonary carcinoma.

3. In consideration of sample imbalance phenomena, we introduce a multi-dimensional fusion
loss function to augment network convergence.

Experimental evaluations, undertaken utilizing both publicly accessible datasets and clinically
amassed databases, corroborate that the proposed algorithm is capable of segmenting an array of
morphologies and lesions associated with both diminutive and extensive pulmonary carcinomas.
However, the algorithm in this paper was only studied on existing datasets, which have a good signal-
to-noise ratio and exhibit good internal consistency within each dataset. The research on lesion
segmentation in non-uniform data with lower signal-to-noise ratio is a key focus for future work.
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