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ABSTRACT

A Rapid-exploration Random Tree (RRT) autonomous detection algorithm based on the multi-guide-node
deflection strategy and Karto Simultaneous Localization and Mapping (SLAM) algorithm was proposed to solve the
problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building
in the traditional RRT algorithm in the autonomous detection strategy of mobile robot. Firstly, an RRT global
frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,
which introduces the reference value of guide nodes’ deflection probability into the random sampling function
so that the global search tree can detect frontier boundary points towards the guide nodes according to random
probability. After that, a new autonomous detection algorithm for mobile robots was proposed by combining the
graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm. The algorithm
simulation platform based on the Gazebo platform was built. The simulation results show that compared with
the traditional RRT algorithm, the proposed RRT autonomous detection algorithm can effectively reduce the time
of autonomous detection, plan the length of detection trajectory under the condition of high average detection
coverage, and complete the task of autonomous detection mapping more efficiently. Finally, with the help of the
ROS-based mobile robot experimental platform, the performance of the proposed algorithm was verified in the
real environment of different obstacles. The experimental results show that in the actual environment of simple
and complex obstacles, the proposed RRT autonomous detection algorithm was superior to the traditional RRT
autonomous detection algorithm in the time of detection, length of detection trajectory, and average coverage, thus
improving the efficiency and accuracy of autonomous detection.
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1 Introduction

The mobile robot is a kind of comprehensive system integrating environment sensing, dynamic
decision-making, behavioral control, and other multi-functions, obtaining the surrounding environ-
ment information through the sensors it carries, such as light detection and ranging (LIDAR),
camera rangefinder, infrared, and so on, to complete specific functions according to the designer’s
requirements automatically. It has already achieved various applications in various fields, such as
industry, agriculture, and military [1].

Autonomous detection by mobile robots plays an indispensable role in various types of appli-
cations, such as environmental monitoring, intelligent agriculture, search and rescue, and resource
exploration. However, the lack of a priori information about the surrounding environment and the
limited sensing range of self-loaded sensors increase the difficulty of making optimal decisions in the
detection process. Constrained by the endurance of robots and the urgency of tasks (e.g., in disaster
relief environments), there is an urgent need for methods to drive robots to complete environmental
exploration rapidly.

Autonomous exploration of mobile robots refers to the mobile robot, without human interven-
tion, autonomously in an unknown environment to select the target point to explore and build the
map, and finally build a complete indoor map [2]. Autonomous exploration is a crucial step for robots
to realize genuine autonomy, which is an important research direction in robotics. The core problem of
autonomous exploration is how to complete the traversal of the environment where the mobile robot is
located in a short time and distance to get enough spatial environment for global map creation, which
is the core problem of autonomous exploration [3]. Robots’ autonomous environmental exploration
strategies are mainly divided into two categories: autonomous exploration based on the boundary
theory and autonomous exploration based on random sampling.

The boundary-based exploration algorithm was first proposed by Yamauchi et al. [4]. The method
explained the exploration problem of unknown environments as how to use the known spatial
environmental information to acquire more unknown spatial environmental information. The main
idea of this method is described as follows: a guide node is established at the junction between
the explored space and the unexplored space, which guides robots to move towards its direction.
However, the boundary points extracted by the algorithm may not guarantee the acquisition of new
environmental information but may increase the search path of mobile robots. For this reason, an
evaluation index for boundary points referred to as the Next Best View (NBV) has been added by many
scholars. Liu et al. [5] combined NBV sampling with boundary exploration to generate a node tree
representing the robot NBV for the robot to follow, thereby reducing the complexity of the algorithm
and optimizing the exploration efficiency. Senarathne et al. [6] proposed a computationally efficient
incremental boundary detection method that reduces the computational effort of the boundary
generation algorithm while improving the execution efficiency. Most of the autonomous detections
based on boundary theory are based on image processing such as edge detection, so it also limits its
application to the two-dimensional plane. Meanwhile, to extract the detection boundary, it is necessary
to traverse the entire map. Therefore, as the map continues to expand, the computational resources it
consumes also increase [7].

A typical representative of random sampling-based autonomous detection methods is the
Rapidly-exploration Random Trees (RRT) algorithm [8]. The RRT algorithm takes the starting point
as the root node of the expanding tree and adopts a random sampling method for the expansion
of the leaf nodes until the endpoint, or the region in which the endpoint is located, is included in
the leaf nodes. As the growth process of the random tree of the RRT algorithm itself is random, it
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will cause the robot to repeatedly detect the same region, resulting in the loss of the advantage of
maximizing the gain obtained from the motion by searching the boundaries, which is the advantage
of the boundary search-based detection method, thus reducing the overall efficiency of the detection
[9]. To address the shortcomings of the RRT algorithm, researchers have proposed many improved
algorithms. Umari et al. [10] proposed a new Rapid-exploration Random Tree (RRT)-based boundary
exploration method by combining boundary exploration with RRT random exploration. Instead
of using image processing to extract boundaries, the proposed algorithm uses the RRT algorithm
to acquire boundary points rapidly and guide robots toward such boundary points to improve
exploration efficiency. Zeng et al. [11] proposed an autonomous mobile robot exploration algorithm
based on sparse and relatively small-sized local maps of point clouds. The algorithm utilized the RRT
algorithm to detect the boundary and plan the local path on the unordered local maps of point clouds.
Chen et al. [12] proposed an Intelligent Rapidly-exploring Random Tree (IRRT) algorithm based on
evolutionary cognition. The algorithm intelligently adjusts the growth rate of the global search tree
according to the complete situation of the exploration map, filters the detected boundary points using
a spatial clustering algorithm through density-based noise, and acquires the current target point set
that guides the robot to move. Xu et al. [13] came up with a hybrid frontier detection strategy for
autonomous exploration, which combined a variable-step-size random tree global frontier detector,
a multi-root-node random tree boundary detector, and a grid-based frontier detection algorithm,
enabling the robot to search the boundary in real time quickly and effectively solving the autonomous
exploration problem in a multi-obstacle environment with a narrow entrance. Sumer et al. [14] searched
the existing maps and detected boundary points via an RRT tree structure based on permanence and
temporality. The permanent tree takes root from the initial position of the robot and will never be
reset. Therein, the temporary tree will be reset when reaching the boundary point or reaching a certain
number of branches. Duberg et al. [15] put forward an exploration method of map-driven updating,
which updated and expanded the planning structure based on dense maps every time the map was
updated.

Li et al. [16] put forward a compound candidate target point detection strategy that implemented
RRT and frontier method collaboratively, ensured that robots could smoothly reach the target point by
designing an improved Time Elastic Band (TEB) with the cost calculation method as the evaluation
criterion for the optimal candidate target point, and effectively solved the exploration difficulty of
robots in an open hall environment. Ruan et al. [17] put forward a robot environmental exploration
strategy integrating information gain and RRT. This strategy estimates the information of the nodes
in the unknown environment, selects the node with the largest information gain as the sampling node,
and generates new nodes with the largest information gain for expansion, thus reducing the blindness
of exploration. Besides, Qi et al. [18] discovered the boundary of maps by using a variable-growth-rate
local and RRT global algorithm as the detector, clustered frontier points to improve the autonomous
exploration efficiency of robots.

From the above analysis, it can be seen that in the current studies on autonomous exploration
strategies based on random sampling, due to the random nature of the random tree growth process
of the RRT algorithm, there is the problem of not being able to maximize the obtained information
about the unknown environment by searching for the frontier, which affects the convergence of the
algorithm. At the same time, combining the RRT frontier detection algorithm with other search
strategies speeds up the autonomous exploration of robots, but no requirements have been proposed
for the autonomous exploration results of robots, accompanied by drift distortion. Therefore, an in-
depth investigation of the efficient exploration problem was of great significance and urgent need.
In this paper, we proposed an RRT autonomous detection algorithm based on the multi-pilot point
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bias strategy and Karto Simultaneous Localization and Mapping (SLAM) algorithm. We carried
out research and experimental analysis on the autonomous detection method to form a solution for
the autonomous detection of mobile robots, to enable mobile robots to realize efficient detection of
unknown environments, which was important for promoting the degree of intelligence of mobile robots
and the industrialization of mobile robots. It was important for promoting the degree of intelligence
of mobile robots and the development of their automation. The contributions of this study were
summarized as follows:

(1) To improve the detection efficiency of the traditional RRT algorithm for frontier boundary
points, a random sampling function of the multi-guide-node deflection strategy was introduced to
improve the convergence performance of the RRT global frontier boundary point detection algorithm.

(2) Aiming at the problem of drift distortion due to the dependence on odometry during the
traditional RRT autonomous detection strategy, the Karto SLAM algorithm was introduced and
combined with the improved RRT global frontier boundary point detection algorithm into a new
autonomous detection strategy, which improved the autonomous detection efficiency and accuracy of
autonomous mobile robots.

The remainder of this paper was structured as follows: the RRT algorithm and improvement of
autonomous detection strategy are described in Section 2. The improved RRT algorithm and SLAM
algorithm fusion for the autonomous detection algorithm of mobile robots are explained in detail
in Section 3. Section 4 verifies and analyzes the performance of the autonomous detection principle
of the proposed RRT algorithm by designing simulation experiments and real experiments. The
conclusion is presented in Section 5.

2 RRT Algorithm and Improvement for Autonomous Detection Strategy
2.1 RRT Global Frontier Boundary Point Detection Algorithm

The Traditional RRT algorithm had the characteristic of actively exploring the unknown space,
and the iteratively generated search tree branches can completely cover the unknown regions in the
whole detection space with the extension of time. Still, the active detection efficiency of mobile robots
using the RRT algorithm is not high [19]. Since the branches of the random search tree grow from
the random sampling point at any different time, mobile robots tend to repeatedly explore the known
region in the process of active detection, which seriously affects the active detection efficiency [20].
Considering the map overlapping problem in active detection, Umari et al. [21] proposed a new strategy
to quickly detect frontier boundary points by the RRT algorithm. For this new strategy, the search
branches generated by the RRT algorithm no longer guide the active detection direction of the mobile
robot, and they are only used to search frontier boundary points. The frontier boundary points, when
found by the RRT algorithm, will be collected, filtered, and distributed to the mobile robot in sequence.
After receiving the frontier boundary points, the mobile robot will set the frontier boundary points
as the path-planning target points and move toward them through a path-planning algorithm. While
moving towards the frontier boundary points, the mobile robot adopts the matched detection sensor to
scan and explore the adjacent region within the scanning range of the sensor, thus constantly searching
for new frontier boundary points. Meanwhile, the set of frontier boundary points is updated to expand
the known region occupied by the grid map. The frontier boundary point retrieval part of the proposed
algorithm is composed of a local frontier boundary point detection part and a global frontier boundary
point detection part. In this paper, we improved on the RRT global frontier boundary point detection
strategy. The RRT global frontier boundary point detection process is shown in Fig. 1.
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Figure 1: Flowchart of RRT global frontier boundary point detection

In Fig. 1, xrand is the random sampling point generated by the random sampling function
SampleNode(), xnear stands for the node selected on the random search tree and shows the closest
Euclidean distance to the random sampling point xrand, and xnew represents a new node extending
toward the random sampling point xrand with xnear as the parent node.

2.2 RRT Global Frontier Boundary Point Detection Algorithm Based on Multi-Guide-Node Deflection
Strategy
Based on the previously described global frontier boundary point detection method, a random

sampling function based on the multi-pilot deflection bias strategy was proposed. The improved RRT
algorithm introduced the reference value Guideprob for the deflection probability of guide nodes,
which utilized the feedback information of the previous search to guide the nodes toward the target
point sampling during the search process, avoided the blind search of the random tree, and reduced
the ineffective nodes, improved the convergence performance of the global frontier boundary point
detection algorithm of RRT, and further improved the efficiency of the global search tree in detecting
the frontier boundary points. The flowchart of the random sampling function based on the multi-
guide-node deflection strategy is shown in Fig. 2, and the specific random sampling process is as
follows:

Step 1: When the function starts running, a random real number within [0,1] is generated and
assigned to the probability p. The value of the label i is a random real number in [−1,0].

Step 2: The probability p is judged. If p is greater than 0 and less than or equal to the reference
value Guideprob for the deflection probability of guide nodes, the random sampling point xrand is set
as the node of the corresponding label i in the guide node cache set. If the guide node cache set
GuideNodeCache is empty, the algorithm is being initialized or random extension has not begun yet,
and the random sampling point is generated by the random sampling function SampleNode().
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Step 3: If the probability p is greater than Guideprob and less than or equal to 1, the random
sampling point xrand is randomly generated in the finite state space by the random sampling function
SampleNode() in the basic RRT algorithm.
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Figure 2: Flowchart of the random sampling function based on the multi-guide-node deflection
strategy

3 Autonomous Detection Algorithm for Mobile Robots Combining Improved RRT Algorithm and Karto
SLAM Algorithm

3.1 Karto SLAM Algorithm

SLAM is the premise for the path planning of mobile robots and also the information base for
their autonomous navigation. When it comes to SLAM technology, a robot, that is located in an
unknown region with its initial position completely unknown, perceives the surrounding environment
through its built-in sensors, and the current position of the robot is determined based on the
information data it collects. Then, the current position of the robot is judged and the unknown region
is mapped with its movement in the unknown region. According to the types of sensors configured
by the robot itself, the methods to solve the SLAM problem can be divided into Lidar SLAM and
Visual SLAM [22]. The mobile robot used in this study was matched with a lidar. Generally, SLAM
is implemented using two-dimensional lidar SLAM methods like the Gmapping algorithm, Hector
SLAM algorithm, and Cartographer algorithm [23]. In the autonomous exploration of mobile robots
proposed by Hassan Umari, the SLAM problem is solved using the Gmapping algorithm, which,
however, heavily relies upon odometers and is very prone to drift distortion.

The framework of the Karto SLAM algorithm, a graph optimization-based SLAM algorithm,
consists of the front end and the rear end, as shown in Fig. 3 [24]. Therein, the front end takes charge
of scan matching, providing the estimated position and posture, and building the map in the form of
pictures. The rear end is responsible for nonlinear global optimization and eliminates the cumulative
error generated when the robot passes through the same position repeatedly. Closed loop detection
means that the robot finds its position in the process of scan matching, which provides constraints for
the rear-end nonlinear global optimization.
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Figure 3: Karto SLAM algorithm framework

In the Karto SLAM algorithm, the rear-end framework is optimized by Sparse Pose Adjustment
(SPA), that is, a graph is used to represent the historical measurement results of the robot, and each
node on the graph stands for the pose calculated by Correlative Scan Matching (CSM), and the spatial
constraint from one measurement node ai to another node aj is represented by the edge between two
nodes [25]. In the structure of ai, the measured offset of nodes ai and aj is denoted as zij. The variable ai

can be parameterized by a translation vector ti and a rotation angle θi, where ti = [xi, yi]T represents the
specific position of the robot and θi stands for the rotation angle of the robot at time i, i = 1, 2, . . . , T .
For any two measurement nodes ai and aj, their measured offset can be calculated by the following
formula:

h(ai, aj) ≡
[

RT
i (tj − ti)

θj − θi

]
(1)

In formula (1), h(ai, aj) represents the predicted observation value, and Ri is a 2 × 2 rotation
matrix, which is represented by θi as seen in formula (2).

Ri =
[

cos(θi) − sin(θi)

sin(θi) cos(θi)

]
(2)

On this basis, the error function eij related to the spatial constraint can be obtained, as shown in
formula (3).

eij ≡ zij − h(ai, aj) (3)

The total error J2(a) can be calculated by formula (4).

J2(a) =
∑

ij
eT

ij �ijeij (4)

In formula (4), the information matrix �ij is the inverse of the covariance matrix between the
measurement nodes ai and aj. The total error in formula (4) was minimized using the Levenberg-
Marquardt (LM) optimization algorithm to eliminate the cumulative error and determine the position
and posture of the robot. After obtaining the pose of the robot, the environmental map around the
robot was built through the front end and solved through such optimization libraries as G2O and
Ceres, and finally, the SLAM problem was solved [26]. The Gmapping algorithm had only the front-
end part, which used radar data for scanning matching and map building 2 functions. The Karto
SLAM algorithm introduced the back-end optimization and loopback detection into the Lidar SLAM
to reduce the cumulative error through the optimization of the bitmap structure and build a map with
better effect, so this paper used the Karto SLAM algorithm to solve the SLAM problem.
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3.2 Mobile Autonomous Detection Algorithm Based on Improved RRT Algorithm and Karto SLAM
Algorithm
The primary purpose of active detection by a mobile robot is to extend the portion of the

map that the mobile robot has already reached and detected by guiding its movement into the
unknown surrounding area through the detection algorithms and creating a map of the environment
through which it passes. Active detection by mobile robots generally employs a detection strategy that
continually moves toward the front boundary of the map. Frontier boundaries are lines separating
known and unknown spaces in the occupied raster map. When a mobile robot detects a specific frontier
boundary line, the center of mass on this frontier boundary line is selected to guide the robot toward
the frontier boundary.

In this paper, we proposed a novel RRT algorithm for active detection strategy, which used
the Karto SLAM algorithm based on graph optimization for simultaneous localization and map
construction to improve the accuracy of autonomous exploration results effectively. Meanwhile, the
Karto SLAM algorithm was combined with the previously proposed RRT global frontier boundary
point detection algorithm to form the mobile robot autonomous exploration RRT algorithm in this
paper. The autonomous exploration framework proposed in this paper is shown in Fig. 4.
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Figure 4: This paper proposes a framework for autonomous detection of mobile robots

The proposed RRT active detection strategy consists of a local frontier boundary point detection
part and an improved RRT global frontier boundary point detection part. After receiving the frontier
boundary points, the proposed strategy collects all of them and stores them in the frontier boundary
point collection. To control the number of frontier boundary points, the algorithm uses a clustering
algorithm to perform a clustering operation on the points in the collection of frontier boundary points,
except for the center frontier boundary point of each class group, all the rest of the frontier boundary
points are discarded and not saved, and during each iteration of the processing, the frontier boundary
points that have been invalidated and detected are deleted, and the rest of the frontier boundary points
are saved and released. After receiving the frontier boundary points after the clustering and filtering
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process, the proposed algorithm calculates the assigned frontier boundary point gain for each frontier
boundary point, and the point with the highest assigned frontier boundary point gain is set as the
frontier boundary point that the mobile robot will detect autonomously.

4 Experimental Validation and Result Analysis
4.1 Simulation Experiment

4.1.1 Experimental Environmental Design

The operating system of this experiment was Linux equipped with Intel(R) Core(TM) i5-2430M
CPU, 4 GB memory, Intel(R) HD Graphics 3000 graphics card, Ubuntu 16.04, simulation platform
Gazebo, and visualization tool RViz. To explore the effect of the improved RRT autonomous detection
strategy proposed in this study in different three-dimensional simulation spaces, an environment with
fewer obstacles and an environment with complex obstacles were designed. Meanwhile, the latter
environment was enabled to accommodate enough obstacles and the former one was enabled to test
the detection effect of the improved RRT autonomous detection strategy in an open environment. In
this experiment, two three-dimensional simulation spaces were built on the Gazebo platform, namely,
one 17 × 15 m2 space with fewer obstacles and one 15 × 12 m2space with complex obstacles. Every
obstacle environment was surrounded by red bricks, and the free space was divided by yellow wooden
walls. In the environment with fewer obstacles, there were only two green garbage bins and a big
white square, while the other environment was full of obstacles of different types and sizes. In this
experiment, the growth rate η of the search tree in autonomous detection represents the extension
step length of the random search tree and reflects its detection efficiency. According to [27], the
parameters of different simulation environments were adjusted. The following constants and variables
were set for the autonomous detection of the mobile robot: the model size of the mobile robot was
0.35 m × 0.4 m × 0.5 m, the maximum linear velocity was 0.3 m/s, the maximum angular velocity was
0.5 rad/s, the maximum linear acceleration was 0.5 m/s, the maximum angular acceleration was 1 rad/s,
the maximum measuring distance of the lidar was 12 m, and the accuracy of the free-passage map of the
robot was 0.01 m. To keep the safe distance between the mobile robot and the obstacle, the expansion
radius of the cost map was larger than the width of the robot, which was set to 0.55 m in this study.

4.1.2 Simulation Experiment and Result Analysis

In this autonomous mapping simulation experiment of a mobile robot, the performance of the
autonomous exploration strategy integrating Gmapping with the traditional RRT algorithm was
proposed in the reference [21] and compared with that of the autonomous exploration strategy
combining the Karto SLAM algorithm and the improved RRT algorithm proposed in this study in
two different three-dimensional simulation environments.

(1) Experimental environment 1: Three-dimensional simulation environment with fewer obstacles

The growth rate ηg of the global random search tree was 20 and that (ηl) of the local random
search tree was 7. The mobile robot was initially located at the central point of the three-dimensional
simulation environment, as shown in Fig. 5a. Exploration and mapping were performed using two
different autonomous detection strategies under experimental environment 1. The operation effects of
the exploration starting on the Gazebo and RViz platforms are shown in Figs. 5a and 5b, respectively.
The operation effects of the exploration process on the Gazebo and RViz platforms are shown in
Figs. 5c and 5d, respectively. The operation effects of the exploration ending on the Gazebo and RViz
platforms are shown in Figs. 5e and 5f, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Autonomous exploration simulation diagram of the mobile robot under experimental
environment 1. (a) Gazebo exploration starting; (b) RViz exploration starting; (c) Gazebo exploration
process; (d) RViz exploration process; (e) Gazebo exploration ending; (f) RViz exploration ending

The mapping results of the traditional RRT autonomous exploration strategy are shown in
Fig. 6, and the mapping results of the autonomous exploration strategy combining the Karto SLAM
algorithm and the improved RRT algorithm proposed in this study are displayed in Fig. 7.

It could be intuitively observed from Figs. 6 and 7 that a small amount of remnant drifting
trace was found on the wall surface as reflected in the detection result of the traditional RRT
autonomous exploration strategy, but the overall difference in the mapping effect between the two
autonomous exploration strategies was unobvious. To judge the detection effect of the two strategies
more accurately, the measured value and map-measured value were compared at a total of 10 positions
using the projected lengths of obstacles such as brick walls, wooden walls, and garbage cans on the
ground in the simulation space. In experimental environment 1, the mapping errors of the traditional
and improved RRT autonomous exploration strategies are presented in Tables 1 and 2, respectively.
A comparison of the relative errors of the detection results of the two different autonomous detection
algorithms is shown in Fig. 8.
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Figure 6: Mapping results of the traditional RRT autonomous exploration strategy in experimental
environment 1

Figure 7: Mapping results of the RRT autonomous detection algorithm proposed in this paper in
experimental environment 1

Table 1: Mapping errors of the traditional RRT autonomous exploration algorithm in experimental
environment 1 (10 positions)

Less obstacle
environment

Measured value
(cm)

Map-measured
value (cm)

Absolute error
value (cm)

Relative error
(%)

1 150.00 149.19 0.81 0.54
2 100.00 100.16 0.16 0.16
3 932.00 962.18 30.18 3.27
4 485.00 475.64 9.36 1.93
5 714.00 731.49 17.49 2.45
6 200.00 205.30 5.30 2.65
7 20.00 20.13 0.13 0.64
8 1350.00 1297.48 52.52 3.89
9 1500.00 1554.75 54.75 3.65
10 840.00 816.73 23.27 2.77
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Table 2: Mapping errors of the RRT autonomous detection algorithm proposed in this paper in
experimental environment 1 (10 positions)

Less obstacle
environment

Measured value
(cm)

Map-measured
value (cm)

Absolute error
value (cm)

Relative error
(%)

1 150.00 150.59 0.59 0.39
2 100.00 99.54 0.46 0.46
3 932.00 910.84 21.16 2.27
4 485.00 492.42 7.42 1.53
5 714.00 700.72 13.28 1.86
6 200.00 195.22 4.78 2.39
7 20.00 19.76 0.24 1.18
8 1350.00 1383.21 33.21 2.46
9 1500.00 1460.40 39.60 2.64
10 840.00 857.81 17.81 2.12
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Figure 8: Comparison of the relative errors of the detection results of two different autonomous
detection algorithms in experimental environment 1

From Tables 1, 2, and Fig. 8, it could be seen that the traditional RRT autonomous detection
algorithm worked better for small obstacles such as garbage bins in the less obstacle three-dimensional
simulation space. However, the RRT autonomous detection algorithm proposed in this paper had little
difference compared to it, and the relative error was 0.3% to 0.5% more. For large obstacles such as
brick walls, the RRT autonomous detection strategy proposed in this paper was better optimized, with
1% to 1.4% less relative error than the traditional RRT autonomous detection algorithm.

In this study, the index values, such as autonomous detection time, exploration trajectory length,
and coverage rate of autonomous detection, of the two different autonomous exploration strategies
after operating 5 times in experimental environment 1 were also recorded, as seen in Tables 3 and 4,
respectively, and the values were averaged and performance was compared, as shown in Fig. 9.

From Tables 3, 4, and Fig. 9, it could be known that in the three-dimensional simulation space with
fewer obstacles, the gap between the two autonomous detection algorithms in the average coverage rate
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of exploration results was small, both reaching over 92%. However, the RRT autonomous detection
algorithm proposed in this paper spent less autonomous detection time, being 19.6 s shorter than
that spent by the other strategy. Meanwhile, the average exploration planning trajectory length was
also shorter than that of the traditional RRT autonomous exploration algorithm, with a decrease of
15.4 m. Overall, the RRT autonomous detection algorithm proposed in this paper performed better
than the traditional RRT autonomous exploration algorithm.

Table 3: Simulation results of the traditional RRT autonomous exploration algorithm in experimental
environment 1 (5 times)

Number of experiments Autonomous detection
time (s)

Exploration trajectory
length (m)

Coverage rate of
autonomous
detection (%)

1 146.00 69.00 92.47
2 337.00 98.00 91.83
3 580.00 104.00 92.17
4 216.00 78.00 94.35
5 133.00 48.00 91.95

Mean value 282.40 79.40 92.55

Table 4: Simulation results of the RRT autonomous detection algorithm proposed in this paper in an
experimental environment 1 (5 times)

Number of experiments Autonomous detection
time (s)

Exploration trajectory
length (m)

Coverage rate of
autonomous
detection (%)

1 154.00 51.00 91.35
2 286.00 75.00 95.84
3 500.00 94.00 93.78
4 206.00 67.00 96.58
5 168.00 33.00 93.24

Mean value 262.80 64.00 94.16

92.55

79.4

282.4

94.16

64

262.8

0 50 100 150 200 250 300

Coverage rate (%)

Trajectory length (m)

Detection time (s)

The RRT autonomous detection algorithm proposed in this paper

Traditional RRT autonomous detection  algorithm

Figure 9: A comparison chart of average exploration performance indexes between two different
autonomous detection algorithms in experimental environment 1
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(2) Experimental environment 2: three-dimensional simulation environment with complex
obstacles

The growth rate ηg of the global random search tree was 40 and that (ηl) of the local random
search tree was 5. The mobile robot was initially located at the central point of the three-dimensional
simulation environment, as shown in Fig. 10a. Exploration and mapping were performed using the
two different autonomous detection strategies under experimental environment 2. The operation
effects of the exploration starting on the Gazebo and RViz platforms are shown in Figs. 10a and 10b,
respectively. The operation effects of the exploration process on the Gazebo and RViz platforms are
shown in Figs. 10c and 10d, respectively. The operation effects of the exploration ending on the Gazebo
and RViz platforms are shown in Figs. 10e and 10f, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Autonomous exploration simulation diagram of the mobile robot under experimental
environment 2. (a) Gazebo exploration starting; (b) RViz exploration starting; (c) Gazebo exploration
process; (d) RViz exploration process; (e) Gazebo exploration ending; (f) RViz exploration ending

The mapping results of the traditional RRT autonomous exploration algorithm are shown in
Fig. 11. The mapping results of the RRT autonomous detection algorithm proposed in this paper are
displayed in Fig. 12.

From Figs. 11 and 12, serious drifting distortion could be observed on walls in the detection
results of the traditional RRT autonomous exploration algorithm. The results acquired by the
RRT autonomous detection algorithm proposed in this paper differed little from the simulation



CMC, 2024, vol.78, no.2 2125

environment, indicating that the simulation environment could be relatively accurately expressed
by the proposed method. To judge the detection effects of the two strategies more accurately, the
measured value and map-measured value were compared at a total of 10 positions using the projected
lengths of obstacles on the ground such as cylinders, rectangular obstacles, and wooden walls in the
simulation space. In experimental environment 2, the mapping errors of the traditional and improved
RRT autonomous detection algorithms are listed in Tables 5 and 6, respectively. A comparison of the
relative errors of the detection results of the two different autonomous detection algorithms is shown
in Fig. 13.

Figure 11: Mapping results of the traditional RRT autonomous exploration algorithm in experimental
environment 2

Figure 12: Mapping results of the RRT autonomous detection algorithm proposed in this paper in
experimental environment 2

Table 5: Mapping errors of the traditional RRT autonomous exploration algorithm in experimental
environment 2 (10 positions)

Complex obstacle
environment

Measured value
(cm)

Map-measured
value (cm)

Absolute error
value (cm)

Relative error
(%)

1 150.00 147.37 2.63 1.75
2 100.00 101.86 1.86 1.86
3 400.00 378.96 21.04 5.26
4 600.00 627.12 27.12 4.52

(Continued)
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Table 5 (continued)

Complex obstacle
environment

Measured value
(cm)

Map-measured
value (cm)

Absolute error
value (cm)

Relative error
(%)

5 880.00 938.34 58.34 6.63
6 110.00 111.95 1.95 1.77
7 130.00 127.95 2.05 1.58
8 20.00 20.33 0.33 1.64
9 180.00 177.59 2.41 1.34
10 60.00 58.99 1.01 1.68

Table 6: Mapping errors of the RRT autonomous detection algorithm proposed in this paper in
experimental environment 2 (10 positions)

Complex obstacle
environment

Measured value
(cm)

Map-measured
value (cm)

Absolute error
value (cm)

Relative error
(%)

1 150.00 152.07 2.07 1.38
2 100.00 98.71 1.29 1.29
3 400.00 410.84 10.84 2.71
4 600.00 616.08 16.08 2.68
5 880.00 847.18 32.82 3.73
6 110.00 108.33 1.67 1.52
7 130.00 131.78 1.78 1.37
8 20.00 19.82 0.18 0.89
9 180.00 177.98 2.02 1.12
10 60.00 60.97 0.97 1.62

As could be seen from Tables 5, 6, and Fig. 13, the building errors of both autonomous detec-
tion algorithms increase in the three-dimensional simulation space of complex obstacles. For small
obstacles such as cylinders, both relative errors were less than 2%, but the RRT autonomous detection
curation algorithm proposed in this paper had better processing results. In addition, large obstacles
like wooden walls were processed and optimized better by the RRT autonomous detection algorithm
proposed in this paper, with relative errors 1.84%–2.9% less than those of the traditional RRT
autonomous exploration strategy, performing better than the traditional algorithm on the whole.

In this study, the index values like autonomous detection time, exploration trajectory length,
and coverage rate of autonomous detection of the two different autonomous exploration algorithms
after running 5 times in experimental environment 2 were also recorded, as seen in Tables 7 and 8,
respectively, and the values were averaged and performance was compared, as shown in Fig. 14.

It could be observed from Tables 7, 8, and Fig. 14 that in the three-dimensional simulation space
with complex obstacles, the average coverage rates of the exploration results of both autonomous
detection algorithms declined, but both remained above 83%, with a difference of 3.98%. Judging from
the average autonomous exploration time, the planning and search speed of the RRT autonomous
detection algorithm proposed in this paper was 13.24% faster than that of the traditional algorithm.
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Meanwhile, the average detection and planning trajectory length was 16.43% shorter than that of the
traditional algorithm, showing better overall performance than the traditional algorithm.
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Figure 13: Comparison of the relative errors of the detection results of two different autonomous
detection algorithms in experimental setting 2

Table 7: Simulation results of the traditional RRT autonomous exploration algorithm in an experi-
mental environment 2 (5 times)

Number of experiments Autonomous detection
time (s)

Exploration trajectory
length (m)

Coverage rate of
autonomous
detection (%)

1 674.00 126.00 81.94
2 808.00 157.00 87.35
3 767.00 132.00 81.95
4 952.00 186.00 83.24
5 635.00 111.00 82.57

Mean value 767.20 142.40 83.41

Table 8: Simulation results of the RRT autonomous detection algorithm proposed in this paper in an
experimental environment 2 (5 times)

Number of experiments Autonomous detection
time (s)

Exploration trajectory
length (m)

Coverage rate of
autonomous
detection (%)

1 653.00 119.00 87.54
2 696.00 126.00 89.08
3 615.00 112.00 86.97
4 777.00 135.00 88.24
5 587.00 103.00 85.14

(Continued)
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Table 8 (continued)

Number of experiments Autonomous detection
time (s)

Exploration trajectory
length (m)

Coverage rate of
autonomous
detection (%)

Mean value 665.60 119.00 87.39

83.41

142.4

767.2

87.39

119

665.6

0 100 200 300 400 500 600 700 800 900

Coverage rate (%)

Trajectory length (m)

Detection time (s)

The RRT autonomous detection algorithm proposed in this paper

Traditional RRT autonomous detection algorithm

Figure 14: A comparison chart of average exploration performance indexes between two different
autonomous detection algorithms in experimental environment 2

By combining the experimental results in the two three-dimensional simulation environments, it
could be found that the RRT autonomous detection algorithm proposed in this paper performed local-
ization and mapping more accurately and expressed the surrounding environment more accurately
than conventional RRT autonomous detection algorithm with the increase in the surrounding obsta-
cles, the spatial complexity, and the length of the autonomous detection trajectory. The experimental
results showed that the RRT autonomous detection algorithm proposed in this paper, with an average
detection coverage rate higher than that of the traditional RRT autonomous exploration algorithm,
can effectively reduce the autonomous detection time and planning and detection trajectory length,
and efficiently complete the autonomous detection and mapping task, thereby verifying its superiority.

4.2 Actual Scene Experiment

4.2.1 Experimental Environmental Design

Restricted by the size of the open field and the number of experimental props and considering
the working time of the robot battery and the intensity of outdoor wireless communication sig-
nals, two realistic obstacle environments were established indoors using waste debris, namely, one
6.08 × 7.12 m2 simple obstacle environment and one 5.12 × 6.95 m2 environment with complex
obstacles. Each obstacle environment was encircled by boards and cartons. There was only an obstacle
encircled by cartons in the simple obstacle environment, while circular cones and rectangular cartons
were placed in the environment with complex obstacles. According to [28], the following constants
and variables were set in the autonomous detection experiment of the mobile robot: the physical
dimensions, maximum linear velocity, maximum angular velocity, maximum linear acceleration, and
maximum angular acceleration of the mobile robot were 0.25 m × 0.22 m × 0.2 m, 0.35 m/s,
0.63 rad/s, 0.25 m/s, and 0.8 rad/s, respectively. The maximum measuring distance of the lidar was
12 m, the accuracy of the robot’s free-passage map was 0.01 m, and the expansion radius of the cost
map was 0.55 m.
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4.2.2 Experimental Verification of Actual Scenarios and Results Analysis

In this experiment, the accuracy and practicability of the RRT autonomous detection algorithm
proposed in this paper in the realistic autonomous mapping of the mobile robot were verified under two
different actual obstacle environments and compared with those of the traditional RRT autonomous
detection algorithm. The global random search tree growth rate value ηg and the local random
search tree growth rate value ηl were set in different obstacle actual environments in the method of
reference [10].

(1) Actual environment 1: actual simple obstacle environment

The growth rate ηg of the global random search tree was 20 and that (ηl) of the local random
search tree was 5. The mobile robot was initially rightly above the actual obstacle environment, as
shown in Fig. 15a. Exploration and mapping were performed using the two different autonomous
detection algorithms under actual environment 1. The operation effects of the exploration starting in
the actual environment and RViz visualization tool are shown in Figs. 15a and 15b, respectively. The
operation effects of the exploration process in the actual environment and RViz visualization tool are
shown in Figs. 15c and 15d, respectively. The operation effects of the exploration ending in the actual
environment and RViz visualization tool are shown in Figs. 15e and 15f, respectively.

ROS Mobile Robot

ROS Mobile Robot

(a) (b)

(c) (d)

Figure 15: (Continued)
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ROS Mobile Robot

(e) (f)

Figure 15: Autonomous exploration and mapping of the mobile robot in actual environment 1. (a)
Robot exploration starting; (b) RViz exploration starting; (c) Robot exploration process; (d) RViz
exploration process; (e) Robot exploration ending; (f) RViz exploration ending

The mapping results of the traditional RRT autonomous exploration algorithm are displayed in
Fig. 16 and those of the RRT autonomous detection algorithm proposed in this paper are shown in
Fig. 17.

Figure 16: Mapping results of the traditional RRT autonomous exploration algorithm in actual
environment 1

Figure 17: Mapping results of the RRT autonomous detection algorithm proposed in this paper in
actual environment 1

It could be intuitively seen from Figs. 16 and 17 that certain remnant drifting traces existed in the
obstacle-free passage region as manifested in the detection result of the traditional RRT autonomous
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exploration strategy, accompanied by a fuzzy description of the obstacle periphery and the wall
surface. The obstacle periphery and the wall surface were clearly described by the results of the
RRT autonomous detection algorithm proposed in this paper, which accurately expressed the actual
environmental situation.

As could be seen from Fig. 18, in an actual environment of simple obstacles, the RRT autonomous
detection algorithm proposed in this paper had a higher average coverage of 5.65%, a faster average
autonomous detection time of 3.6 s, and a shorter average detection trajectory length of 3.43 meters
compared to the traditional RRT autonomous detection algorithm.

85.56
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91.21

24.54

39.6
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Trajectory length (m)

Detection time (s)

The RRT autonomous detection algorithm proposed in this paper

Traditional RRT autonomous detection  algorithm

Figure 18: A comparison chart of average exploration performance indexes between two different
autonomous detection algorithms in actual environment 1

(2) Actual environment 2: actual environment with complex obstacles

The growth rate ηg of the global random search tree was 40 and that (ηl) of the local random
search tree was 5. The mobile robot was initially at the upper right of the actual obstacle environment,
as shown in Fig. 19a. Exploration and mapping were performed using the two different autonomous
detection algorithms in the actual environment 2. The operation effects of the exploration starting in
the actual environment and RViz visualization tool are shown in Figs. 19a and 19b, respectively. The
operation effects of the exploration process in the actual environment and RViz visualization tool are
shown in Figs. 19c and 19d, respectively. The operation effects of the exploration ending in the actual
environment and RViz visualization tool are shown in Figs. 19e and 19f, respectively.

(a)              (b) 

ROS Mobile Robot

Figure 19: (Continued)
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(c) (d) 

(e) (f) 

ROS Mobile Robot

ROS Mobile Robot

Figure 19: Autonomous exploration and mapping of the mobile robot in actual environment 2. (a)
Robot exploration starting; (b) RViz exploration starting; (c) Robot exploration process; (d) RViz
exploration process; (e) Robot exploration ending; (f) RViz exploration ending

The mapping results of the traditional RRT autonomous exploration algorithm are exhibited in
Fig. 20 and those of the RRT autonomous detection algorithm proposed in this paper are shown
in Fig. 21. The average index values like autonomous detection time, exploration trajectory length,
and coverage rate of autonomous detection obtained by the two different autonomous exploration
algorithms running in actual environment 2 were compared, as displayed in Fig. 22.

As intuitively seen from Figs. 20 and 21, drifting distortion existed in the description of the
obstacle periphery and the wall surface by the detection results of the traditional RRT autonomous
exploration algorithm, while rectangular cartons and circular cones were fuzzily expressed. From the
results obtained by the RRT autonomous detection algorithm proposed in this paper, the rectangular
cartons and circular cones were expressed clearly, and the established map conformed to the actual
environmental situation more.

From Fig. 22, it can be seen that in the actual environment of complex obstacles, the RRT
autonomous detection algorithm proposed in this paper had a higher average coverage of 17.32%, a
faster average autonomous detection time of 22.63%, and a shorter average detection trajectory length
of 22.61% compared with the traditional RRT autonomous detection algorithm.

Combining the experimental results in the two actual obstacle environments, it could be seen
that the autonomous exploration time and planning trajectory length of both autonomous detection
strategies increased with the increase in the surrounding obstacles and the spatial complexity. However,
the average detection coverage rate of the RRT autonomous detection algorithm proposed in this
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paper became increasingly higher while that of the traditional RRT autonomous detection algorithm
showed an opposite trend. That is because the mobile robot will repeatedly pass through some
positions or even turn around in situ in the process of RRT autonomous exploration, to detect
the position of unexplored regions and ensure the integrity of the corners of explored regions.
As the length of the detection track increased, the cumulative error of the odometer also increased,
and the traditional RRT autonomous detection algorithm relied on the odometer, which led to
the distortion of the autonomous map construction. The graph optimization-based Karto SLAM
algorithm could effectively eliminate the cumulative error of odometers. The Karto SLAM algorithm
had enough time for rear-end optimization with the extension of autonomous detection time, thus
contributing to more accurate localization and mapping. At the same time, the autonomous detection
time and planning and detection trajectory length were effectively reduced in cooperation with the
RRT autonomous detection algorithm proposed in this paper.

Figure 20: Mapping results of the traditional RRT autonomous exploration algorithm in actual
environment 2

Figure 21: Mapping results of the RRT autonomous detection algorithm proposed in this paper in
actual environment 2
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Figure 22: A comparison chart of average exploration performance indexes between two different
autonomous detection algorithms in actual environment 2

5 Conclusions

Aiming at the problems of low efficiency of detecting frontier boundary points and drift distortion
in the process of map building in the traditional RRT autonomous detection algorithm, this paper
carried out two aspects of improvement. On the one hand, the random sampling function with a
multi-pilot-point bias strategy was designed to improve the convergence performance of the global
frontier boundary point detection algorithm of the traditional RRT. On the other hand, the improved
RRT algorithm was integrated with the Karto SLAM algorithm, which made the traditional RRT
autonomous detection algorithm improve the situation of drift distortion in the map-building process.
This paper verified the traditional RRT autonomous detection algorithm and the RRT autonomous
detection algorithm proposed through simulation experiments and actual scene experiments. The
experimental results show that the proposed RRT autonomous detection algorithm was better than the
traditional algorithm in terms of detection coverage, detection time, and detection track length, which
improved the efficiency of autonomous detection and the accuracy of detection results. However,
the proposed RRT autonomous detection algorithm still failed to solve the problem of repeated
exploration, which was to be further studied later. In addition, although the simulation environment
designed in this paper and the actual scene environment had a certain degree of complexity, they were
all static environments, and further research should be carried out later on dynamic obstacles, dynamic
targets, and other dynamic environments, which were more valuable.
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