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ABSTRACT

Text perception is crucial for understanding the semantics of outdoor scenes, making it a key requirement for
building intelligent systems for driver assistance or autonomous driving. Text information in car-mounted videos
can assist drivers in making decisions. However, Car-mounted video text images pose challenges such as complex
backgrounds, small fonts, and the need for real-time detection. We proposed a robust Car-mounted Video Text
Detector (CVTD). It is a lightweight text detection model based on ResNet18 for feature extraction, capable of
detecting text in arbitrary shapes. Our model efficiently extracted global text positions through the Coordinate
Attention Threshold Activation (CATA) and enhanced the representation capability through stacking two Feature
Pyramid Enhancement Fusion Modules (FPEFM), strengthening feature representation, and integrating text local
features and global position information, reinforcing the representation capability of the CVTD model. The
enhanced feature maps, when acted upon by Text Activation Maps (TAM), effectively distinguished text foreground
from non-text regions. Additionally, we collected and annotated a dataset containing 2200 images of Car-mounted
Video Text (CVT) under various road conditions for training and evaluating our model’s performance. We further
tested our model on four other challenging public natural scene text detection benchmark datasets, demonstrating
its strong generalization ability and real-time detection speed. This model holds potential for practical applications
in real-world scenarios. The code is publicly available at: https://github.com/DiZ-gogogo/CVTD.
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1 Introduction

Intelligent driving assistance algorithms are crucial research topics in the field of intelligent driving
and academia. In the field of computer vision, object detection has always been one of the most
important and popular foundational research topics, as highlighted by previous work [1]. However,
text detection poses a unique challenge, especially when it comes to text within Car-mounted videos.
In complex road conditions, there is a wealth of textual information in Car-mounted videos that
can significantly influence driver behavior and provide valuable clues [2]. Therefore, extracting text
information from Car-mounted videos can assist drivers in making informed decisions.
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Compared to text detection in natural scenes, the dynamic road conditions in Car-mounted video
scenes introduce additional complexity and are influenced by various factors. Detecting text in Car-
mounted videos is more challenging than that in natural street scenes. Car-mounted video images
face the following difficulties due to objective factors from the Car-mounted cameras. (1) Distortion
Phenomenon: The wide-angle capture of Car-mounted cameras leads to distortion at the edges of the
image, causing deformation of the text content. (2) Shaking and Blurring: Pixel instability in Car-
mounted video images, caused by motion or weather conditions, results in increased blurriness of text
content. As shown in Fig. 1, PAN++ [3] exhibits poor performance in detecting complex background
text during motion. Our model, on the other hand, can accurately detect text, including smaller text
lines. Our objective is to design a high-precision and real-time Car-mounted video text detector to
address the challenges of text detection in Car-mounted videos.

Figure 1: The figure above shows the visual results of text detection for the “GT” (ground truth),
PAN++ [3], and CVTD models on the Car-mounted Video Text (CVT) dataset. “GT” refers to the
visualized results under the ground truth labels

In recent years, deep learning algorithms for text detection in natural scenes have gradually
matured, such as the PAN++ [3] model, which is a simple yet efficient text detection model for
natural scenes. However, there is still room for improvement in adapting these algorithms to the
specific challenges posed by text detection in Car-mounted videos with dynamic road conditions. Fig. 1
provides visual evidence supporting this assertion.

We introduce a robust Car-mounted Video Text Detector (CVTD) that utilizes the lightweight
ResNet18 [4] model as the backbone for feature extraction. Lightweight backbone feature extraction
networks exhibit good representational capacity, possess fewer parameters, and maintain a simple
structure. To effectively capture the position and enhance the feature representation of text in images,
we propose the Coordinate Attention Threshold Activation (CATA) module. Inspired by PAN++
[3], we introduce the Feature Pyramid Enhancement Module (FPEM) to address the limited feature
representation capabilities of lightweight backbone networks. By combining the FPEM with the
CATA module, we design the Feature Pyramid Enhancement Fusion Module (FPEFM) to strengthen
and fuse the extracted text features, increasing model depth. The FPEFM module is stackable, with
a default configuration of two layers of stacking. Drawing inspiration from DBNet [5], the enhanced
features are fed into a text detection post-processing stage, and we design a text activation head. The
text activation head generates a Text Activation Map (TAM) to effectively separate text foreground
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and background information. Finally, pixel aggregation operations produce the text detection results
for Car-mounted video analysis.

In summary, our main contributions can be summarized as follows:

• We proposed a Car-mounted video text detector that effectively combines text positional
information and global feature information through the CATA module. This module, incorporated
with skip connections in the network architecture, enhances the detection precision and speed of the
model.

• The TAM we proposed can better separate the foreground and background of the text, solving
the challenge of text segmentation in complex scenes.

• We collected a Car-mounted Video Text (CVT) dataset consisting of 2200 images with different
texts. Our model was tested on the CVT dataset as well as four publicly available datasets, and it
achieved competitive results.

2 Related Work

In recent years, there have been gradual developments in computer vision based text detection
algorithms. The classic text detection algorithm, Connectionist Text Proposal Network (CTPN) [6],
takes into consideration the characteristic that text often has a different aspect ratio compared to
general object detection targets. When detecting text lines, the algorithm achieves this by detecting
multiple text segments with a fixed width and then concatenates these detected segments to form a
complete and larger text box. However, similar to general object detection, this algorithm represents
text boxes as rectangles, resulting in poor performance when detecting curved or multi-oriented text.
Subsequently, with the advancement of deep learning computer vision technologies, anchor-based and
anchor-free text detection methods have been continuously proposed for applications such as natural
scene text detection, license plate detection, and Car-mounted video text detection. Methods based
on deep learning heavily rely on mathematical analysis techniques, such as [7,8], which play driving
roles in artificial intelligence technology. In the future, these techniques can be applied to more text
detection algorithms.

Some methods are based on anchor-based text detectors. The SegLink [9] text detection algorithm,
by detecting local text segments multiple times, introduces angle information for text boxes. It
concatenates multiple text segments based on certain rules, achieving good performance in detecting
multi-oriented straight text and handling text lines of arbitrary lengths. However, the algorithm still
struggles to effectively detect arbitrarily curved text and text lines with large spacing. Based on
the general object detection algorithm SSD [10], the TextBoxes [11] algorithm targets the intrinsic
characteristics of text lines and employs different scale bounding boxes to detect text lines of varying
lengths and widths. It modifies the single-scale input to a multi-scale input. This algorithm achieves
better results in detecting horizontal text lines but performs less effectively in detecting multi-oriented
text lines. On the other hand, the TextBoxes++ [12] algorithm makes further improvements by
introducing quadrilateral regression, enhancing its performance in detecting multi-oriented straight
text. The RRPN text detection algorithm, based on Faster R-CNN [13], proposes region proposals
with rotation angles, demonstrating good detection performance for multi-oriented straight text.
However, these anchor-based text detection algorithms, derived from or modified based on general
object detection, face challenges in accurately representing the boundaries of text of arbitrary shapes.
As a result, they exhibit lower detection precision for text of any curved shape.
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Some methods are based on anchor-free text detectors. PSENet [14] addresses the limitations
of anchor-based methods by adopting pixel segmentation. The model predicts the minimum text
kernel and uses multi-scale text kernel expansion to gradually enclose the text lines. This method is
effective in separating text lines of arbitrary curved shapes. However, the use of multi-scale expansion
results in relatively complex post-processing, leading to lower text detection speed. Similarly based
on pixel segmentation, PAN [15] proposes a cascaded feature enhancement structure to enhance the
feature representation capability of lightweight backbone networks. The core idea involves using pixel
aggregation algorithms to reconstruct the predicted text lines. The text detection algorithm DBNet [5]
incorporates differentiable binarization operations into the segmentation model, enabling the adaptive
prediction of text regions. During model inference, the differentiable binarization branch can be
removed, simplifying complex post-processing operations and resulting in a faster detection speed.
However, this algorithm exhibits lower text detection precision. PAN++ [3] is a pixel segmentation
method based on a text kernel that predicts the minimum text kernel and text regions, distinguishing
different text instances through specific rules. While adopting the pixel segmentation approach
improves the text detection precision of the model, there is still room for improvement in terms
of text detection speed. DBNet++ [16] introduces an adaptive scale fusion module, enhancing the
model’s representational capabilities at the cost of sacrificing some text detection speed, leading to
an improvement in text detection precision. ABPNet [17] utilizes a boundary proposal model to
generate rough initial boundaries for text boxes and iteratively refines text boundaries during model
training, ensuring accurate enclosures of text lines. However, the iterative process results in higher
computational complexity and lower text detection speed. PSND [18] is a specialized model for
detecting license plate numbers in parking spaces. Inspired by PAN++ [3] and DBNet [5], it introduces
cascaded feature enhancement modules and context attention blocks to address complex license
plate detection issues, achieving good detection precision. However, this algorithm has a relatively
narrow application scope. In comparison, our CVTD method is a lightweight text detection algorithm
based on pixel segmentation. It can detect text instances of arbitrary shapes and exhibits superior
generalization, detection precision, and model inference speed compared to other natural scene text
detection methods.

3 Proposed Method
3.1 Overall Architecture

Our CVTD model is a deep learning approach based on pixel segmentation, designed to process
single-frame images from Car-mounted videos, as depicted in Fig. 2. It utilizes the lightweight
ResNet18 [4] backbone network for image feature extraction. ResNet18 is a lightweight deep learning
architecture with a residual network structure, allowing the model to perform fast inferences and
providing certain image feature extraction capabilities for Car-mounted video text detection. The
features extracted through the ResNet18 backbone network include the conv2, conv3, conv4, and
conv5 layers, resulting in shallow feature maps with different resolutions, representing the original
input image at 1/4, 1/8, 1/16, and 1/32 resolutions, respectively. To address the limitations in feature
extraction and model representation capacity of the ResNet18 backbone network, we enhance these
shallow feature maps. This enhancement is achieved by stacking two layers of Feature Enhancement
Fusion Modules (FPEFM). The CATA module is employed to extract text features corresponding to
the shallow feature maps at four different resolutions, as detailed in Fig. 3. The extracted text features
are then integrated into the FPEFM module, as depicted in Fig. 4, which takes the output of the
CATA module and the shallow features before enhancement. Consequently, it continuously enhances
the model’s representational capacity and integrates both local and global text features. The entire
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CATA module incorporates a residual skip-connection structure, effectively preventing degradation
in the model’s feature representation capability due to excessive network stacking. Through the
combined effects of the FPEFM and CATA modules, our CVTD model simultaneously strengthens
shallow features and integrates text features during the feature enhancement process. After multiple
stackings of FPEFM modules, the enhanced features are upsampled to a unified 1/4 resolution and
concatenated. This concatenated feature is then input into the post-processing stage of Car-mounted
video text detection. CVTD feeds the concatenated features into the text detection head and text
threshold activation head. Inspired by the PAN++ [3] model, the Text Detection Head generates text
kernels, text regions, and instance vectors. The Text Activation Head produces a text threshold map,
effectively separating text and non-text regions. The text threshold map and the text kernel, both being
single-channel feature maps, are element-wise added. Finally, the text detection output is obtained
through Pixel Aggregation (PA) [3] operation, merging the outputs of the text detection head and text
threshold activation head to achieve the final output of Car-mounted video text detection.

Figure 2: The overall architecture of the CVTD model. ResNet18 is employed as the backbone for
feature extraction. The “Reducing Channel” step is utilized to standardize the number of feature
channels to 128. Shallow features undergo text feature extraction through the CATA module, as
detailed in Section 3.2. The FPEFM module enhances and integrates text features, as described in
Section 3.3. Black arrows denote the forward computation of the model, while red dashed lines indicate
the gradient back propagation during training
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Figure 3: Detail presentation of CATA module. CATA is an adaptive module for text feature
extraction. CATA takes inputs of four different resolutions, enabling the backbone shallow feature
maps to be more focused on the text regions after passing through the CATA module. “Concat”
indicates channel concatenation. “TA” represents the Threshold Activation operation. “Re-weight”
signifies the reassignment of feature map weights

Figure 4: Detailed presentation of the FPEFM model. In this context, “Concat” represents the
operation of concatenating the feature maps from the CATA module output and the first-stage output
of the FPEFM module along the channel dimension

During the model inference stage, we input a car-mounted video image of size H × W × 3 (see
Fig. 2A) into the lightweight ResNet18 [4] backbone network (see Fig. 2B). The backbone network
generates four shallow feature maps with resolutions of 1/4, 1/8, 1/16, and 1/32 of the input image.
These feature maps are then processed through 1 × 1 convolution to uniformly reduce the number of
channels to 128 (see Fig. 2C), ensuring that different-scale feature maps contain diverse image features.



CMC, 2024, vol.78, no.2 1827

In the process of feature enhancement and fusion of text position information, the shallow features
undergo two CATA (see Fig. 2D) modules and two stacked FPEFM (see Fig. 2E) modules based on
residual skip connections. The output of CATA, which extracts local text features and global position
information, becomes part of the input to FPEFM for feature enhancement fusion. The output of the
first enhanced features from the FPEFM module becomes the input for the second round of feature
enhancement. Finally, the enhanced features are upsampled to the 1/4 size resolution of the input
image, resulting in a final feature map with dimensions H/4 × W /4 × 512 (see Fig. 2G). After text
detection post-processing, the final output of Car-mounted video text lines is obtained, assisting in
driver decision-making.

3.2 Coordinate Attention Threshold Activation

In the current advanced text detection networks for natural scenes, models employing Trans-
former Encoder-Decoder structures with position embedding during backbone feature extraction
are commonly used. However, the extraction and embedding of position information during feature
enhancement are not considered. After the introduction of Coordinate Attention (CA) [19], it has been
proven that such operations can make the model pay more attention to position information, which
is crucial for text detection in Car-mounted videos.

Therefore, we proposed the Coordinate Attention Threshold Activation (CATA) module for
incorporating positional information during feature enhancement in text detection, effectively improv-
ing the model’s representational capacity. The CATA module receives shallow features extracted from
the ResNet18 backbone network, with resolutions of 1/4, 1/8, 1/16, and 1/32. The CATA structure
is illustrated in Fig. 3, assuming an input resolution of 1/4 for the feature map. The feature map
undergoes horizontal pooling (X-axis) and vertical pooling (Y-axis). The pooled feature maps are
concatenated and processed through convolution fusion to extract sensitive and relevant features of
interest. For a high-resolution feature map of size 1/4, CATA focuses more on local features, while
for a low-resolution feature map of size 1/32, CATA emphasizes the global features of the text. After
the extracted features of interest go through the Threshold Activation (TA) operation, sensitive text
features are amplified, and the features undergo element-wise addition. Furthermore, the extracted
text features are further enhanced in both directions. This is achieved through Conv2d convolution
and Sigmoid activation. The Re-weight operation weights the original input feature map, producing
high-resolution feature maps for local text features and low-resolution feature maps for global text
features. The output of the CATA module serves as the input to the FPEFM module, as depicted
in Fig. 4, continuously strengthening the model’s representational capacity and enhancing the text
detection capabilities in Car-mounted videos.

The calculation process of the CATA module is as follows:

Assuming the given input to the CATA module is a shallow feature map obtained from the feature
extraction backbone network, where the resolution of the shallow feature map is C × W × H. Here,
C represents the number of channels in the input feature map, W is the width of the image, and H
is the height of the image. Encoding is performed for each channel along the horizontal and vertical
directions using a pooling kernel of size (H, 1) or (1, W ). In Eq. (1), H denotes the height of xc, W and
denotes the width of xc. xc (h, i) represents the encoding of the pixel point x representing the shallow
feature along channel C and height h in the feature map. zh

c (h) is the output of the C th channel with
height H can be written as:

zh
c (h) = 1

W

∑
0≤i<W

xc (h, i) (1)
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xc (j, w) represents the encoding of the pixel point x representing the shallow feature along channel
C and height w in the feature map and zw

c (w) is the output of the C th channel with width W can be
written as:

zw
c (w) = 1

H

∑
0≤j<H

xc (j, w) (2)

After processing according to Eqs. (1) and (2), the shallow input features obtain corresponding
features along the horizontal and vertical directions, forming a pair of text-sensitive feature maps.
Subsequently, the feature maps from both directions are concatenated together and input into a
convolutional module with a shared 1 × 1 convolutional kernel, facilitating the fusion of text features
in both horizontal and vertical directions. This fusion process reduces the channel dimension to the
original C/r. Here, r is a scaling factor. After applying the Sigmoid activation function to the fused
feature map, a text-sensitive feature map f with a resolution of C/r × 1 × (W + H) is obtained.

f = δ
(
F1

([
zh, zw

]))
(3)

To further enhance the textual features of the feature map f , the feature map f is input into the
Threshold Activation (TA) module. The TA operation T activates the threshold of the feature map f ,
highlighting the textual features. The activated feature map T0.1 (f ) is then added to the original feature
map f element-wise, resulting in the enhanced feature map t. The default threshold for text activation
is set to 0.1.

t = T0.1 (f ) + f (4)

Afterward, the feature map t is further enhanced in both directions through a 1 × 1 convolution,
resulting in feature maps Fh and Fw. After applying the σ activation function, attention weights gh in
the height direction and gw in the width direction are obtained. The Re-weight operation then weights
the original input feature map, producing the output of the CATA module.

gh = σ
(
Fh

(
th
))

(5)

gw = σ (Fw (tw)) (6)

Finally, xc (i, j) is the input shallow feature map with C channels, and after the above steps, the
output is obtained as yc (i, j). The output yc (i, j) of the CATA can be written as follows:

yc (i, j) = xc (i, j) × gh
c (i) × gw

c (j) (7)

The feature map extracted by CATA, containing text-local features and global position informa-
tion, serves as one of the inputs to the FPEFM feature enhancement and fusion module in the fusion
stage.

3.3 Feature Pyramid Enhancement Fusion Module

The Feature Pyramid Enhanced Fusion Module (FPEFM) (see Fig. 2E) and the CATA module
together form the basic unit of the Feature Enhancement Network, as shown in Fig. 4.

FPEFM is a Feature Enhancement and Fusion Module that effectively extracts features from
Car-mounted video images, enhancing the model’s representational capacity. The input to FPEFM
consists of two parts: the output of the CATA module, which extracts local text features and global
text position information, and the shallow features from the backbone network. The FPEFM module
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initially iteratively enhances the pyramid structure of the original image resolution by 1/4, 1/8, 1/16, and
1/32. The first step is the Feature Self-Enhancement stage, where the pyramid’s resolution is enhanced
from 1/32 to 1/4, and it is element-wise added to the shallow feature map. The Down-Scale pyramid
stage enhances the resolution from 1/4 to 1/32 and is element-wise added to the Up-Scale pyramid
stage. The second step is the Fusion stage, where the self-enhanced feature maps are fused with the
output of CATA, which extracts local text features and global position information. With the help
of the residual skip-connection structure in CATA (see Fig. 2D), FPEFM can adaptively optimize
the optimal feature enhancement fusion structure, thereby adapting to enhance the model’s feature
representation capability. The CVTD model predicts the text activation map through the text activation
head. The structure of the text activation head is illustrated in Fig. 5. A stronger feature enhancement
capability of FPEFM facilitates easier separation of the text activation map into foreground and
background components. We experimented with the stacking layers of FPEFM and found that setting
it to two layers achieves a balance between Car-mounted video text detection accuracy and inference
speed. Therefore, in our experiments, we default to using a two-layer stacked FPEFM structure.
Experimental results are presented in Table 1 and Fig. 6.

Figure 5: Convolution process of text activation map. “BN” stands for batch normalization. “CBR”
is a combination of “3 × 3 Conv 2d”, “BN”, and “ReLU” operations. The “1 × 1 Conv” is utilized
to reduce the number of channels in the enhanced feature map, thereby reducing computational load.
The “Sigmoid” activation function is applied to activate the text region

Table 1: Results at CVT and ICDAR2015, stacking different FPEFM layers. The number of exper-
imental stacks is 1–4. “#FPEFM” stands for FPEFM module set the number of stacking 1–4
experimental results. The input size for both datasets is 896 × 896 × 3, respectively

#FPEFM CVT ICDAR2015

Precision Recall F-measure FPS Precision Recall F-measure FPS

1 80.3 76.8 78.5 35.2 88.1 77.9 82.7 33.7
2 80.7 77.4 79.0 33.6 88.3 78.6 83.2 30.4
3 80.9 76.4 78.6 29.6 88.3 77.9 82.8 27.8
4 82.6 77.1 79.8 27.3 88.6 77.9 82.9 25.1
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Figure 6: Feature pyramid enhancement fusion module (FPEFM) stacking layers’ impact on the
visualization results for the CVT and ICDAR2015 datasets

3.4 Text Activation Map

The input image undergoes feature extraction and fusion of text features, resulting in the final
enhanced feature map, as illustrated in Fig. 2K. The enhanced feature map has 512 channels. To
further fuse features, a series of CBR operations are applied, where CBR comprises a set of operations
including 3 × 3 convolution, Batch Normalization (BN), and ReLU activation. This process is followed
by a 1 × 1 convolution to obtain a feature map with 128 channels, reducing the computational load
for model post-processing. The fused feature map is then fed into the model’s text activation head.
The text activation head undergoes three sets of CBR operations, followed by 1 × 1 convolution and a
Sigmoid activation function. Eventually, a single-channel text activation map is obtained (see Fig. 2K).
The Text Activation Map enhances the text regions in Car-mounted video, effectively distinguishing
complex text backgrounds. The TAM module exhibits good generalization capabilities for different
scenarios, such as rainy weather, nighttime conditions, motion-induced blurriness, and situations
where illumination causes minimal contrast differences in the images. The model inference process
for the Text Activation Map is illustrated in Fig. 5. Threshold activation is employed during the
generation of the Text Activation Map, effectively extracting text regions of interest from the model
and demonstrating resistance to background interference. The generated Text Activation Map is highly
sensitive to text content, and pixel aggregation is used to improve text line detection performance.
Additionally, the information in the Text Activation Map is fused with the text kernels generated by
the text detection head (see Fig. 2J) through pixel-wise addition. Through optimization in the loss
function, the text detection head and text activation head complement each other, enabling the CVTD
model to effectively represent text lines of arbitrary shapes.

3.5 Loss Function

The loss function Ldet of our CVTD model can be written as:

Ldet = Ltex + αLker_tam + β
(
Lagg + Ldis

)
(8)

where Ltex is the loss for predicting the text region by the model. Lker_tam is the loss computed by the
element-wise addition of the text activation map and the text kernel, continuously separating the text
region from the non-text region. i represents the pixel point in the input feature map. Lagg loss is used
for aggregating the detected text pixels. To balance the importance among Ltex, Lker_tam, Lagg, and Ldis,
hyper-parameters α and β are set to 0.6 and 0.25, respectively, in all experiments. The text region Ptex
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and the result of the element-wise addition of the text kernel and the text activation map, denoted as
Pker_tam, are supervised using the Dice loss. Thus, the mathematical expressions for Ltex and Lker_tam can
be expressed as:

Lker_tam = 1 − 2
∑

i Pker_tam (i) Gker_tam (i)∑
i Pker_tam (i)2 + ∑

i Gker_tam (i)2 (9)

Ltex = 1 − 2
∑

i Ptex (i) Gtex (i)∑
i Ptex (i)2 + ∑

i Gtex (i)2 (10)

where Ptex (i) and Gtex (i) represent the predicted value and ground truth label, respectively, for pixel i
in the text region segmented by the model. Similarly, Pker_tam (i) and Gker_tam (i) represent the predicted
value and ground truth label, respectively, for pixel i in the element-wise addition of the text kernel and
the text activation map segmented by the model. To cluster different text lines in Car-mounted videos,
it is necessary to increase the gap between classes and reduce the intra-class gap. This is achieved by
minimizing the distance between pixels within the same text line and pixels from different text lines.
The aggregation loss is used to achieve aggregation for each text line, separating different text lines.
The mathematical expression is as follows:

Lagg = 1
N

N∑
i=1

1
|Ti|

∑
p∈Ti

D1 (p, KTi) (11)

In Eq. (11), N represents the number of text lines. Ti represents the text region of the i-th text line.
KTi represents the sum of the text kernel and the text activation map of the text line Ti. D1 (p, KTi)

represents the distance between the text pixel p and the sum of the text kernel and the text activation
map KTi. In the post-processing stage of the model’s text detection, the intra-class aggregation of pixel
information for Car-mounted video text lines requires separating the instance vectors of text instances
from different lines in complex road backgrounds, achieved through the following equation:

Ldis = 1
N2

N∑
i=1

(
Db (KTi) +

N∑
j=1

D2

(
KTi, KTj

))
(12)

In Eq. (12), Db (KTi) represents the distance between the sum of the text kernel and the text
activation map KTi and the background. D2

(
KTi, KTj

)
represents the distance between the sum of

the text kernel and the text activation map KTi and the sum of text kernel and the text activation map
KTj.

4 Experiment

We first introduced our Car-mounted Video Text (CVT) dataset. Furthermore, we evaluated and
compared the proposed methods on the CVT dataset and four standard benchmark datasets for
natural scene text detection.

CVT: To validate the effectiveness of the proposed method, we selected a Car-mounted video
dynamic road condition dataset from the PaddlePaddle platform. We then performed data augmenta-
tion and annotation to create a Car-mounted Video Text dataset containing different road conditions.
The datasets were annotated using the same format as ICDAR2015. To make the CVT dataset better
fit real-world scenes, the data augmentation methods applied to this training data include: (1) random
brightness and contrast adjustment, (2) random rotation, and (3) random rotation combined with
brightness and contrast adjustment. We randomly split the dataset into 1,540 training images and 660
testing images.
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SynthText [20], where the text in the images is synthetic, comprises 800,000 training images. The
dataset offers various annotation formats, with each text instance annotated using text strings, word-
level bounding boxes, and character-level bounding boxes. There are approximately 8 million synthetic
word instances. Consequently, this dataset is utilized as a pre-training dataset for natural scene text
detection.

Total-Text [21] is a benchmark dataset of arbitrarily curved shapes, comprising 1,225 training
images and 300 test images. It includes different text instances with horizontal, slanted, and curved
orientations. This dataset provides detailed annotations, including polygon annotations and word-level
annotations.

CTW1500 [22] is also a benchmark dataset of arbitrarily curved shapes, with more text instances. It
consists of 1,000 training images and 500 test images. This dataset provides a large number of cropped
images of arbitrarily curved text instances and serves as a benchmark for detecting both horizontal
and multi-oriented text.

ICDAR2015 [23] is a multi-oriented straight text dataset where the annotated text regions provide
detailed word-level annotations. The dataset consists of a total of 1,500 images, comprising 1,000
training images and 500 test images. Sourced from natural street scenes, this dataset is widely used
as a benchmark for natural scene text detection.

MSRA-TD500 [24] is a classic dataset for multi-oriented straight text, including both Chinese and
English text with line-level annotations. It consists of only 500 natural scene images (300 for training
and 200 for testing). Due to its relatively small training set, the HUST-TR400 [25] dataset, comprising
400 images, is used as additional supplementary data.

4.1 Implementation Details

To evaluate the generalization ability of our model, we conducted experiments on the CVT dataset
and four challenging public datasets: CTW1500 [22] and Total-Text [21] datasets, which contain text of
arbitrary shapes, and ICDAR15 [23] and MSRA-TD500 [24] datasets, which contain text in multiple
orientations. Our CVTD model was pre-trained on the SynthText [20] dataset and then fine-tuned. All
models were trained using the SGD optimizer on a single A6000 GPU. The initial learning rate lrinitial

was set to 1 × 10−3, and the learning rate adjustment strategy was as follows. Where iter represents the
current iteration number, and max_iter represents the maximum iteration number. Through learning
rate iteration reduction, the model fluctuation gradually decreases.

lr = lrinitial ∗
(

1 − iter
max_iter

)0.9

(13)

4.2 Experiment of the Stack Number of FPEFMs

By varying the stacking layers of FPEFM from 1 to 4, we conducted experiments to observe and
analyze the impact of stacking layers on the final detection performance and speed. As shown in
Table 1, in the CVT dataset, Precision increases with the number of stacks, especially with two stacks,
yielding the highest Recall. F-measure is highest with four stacks. As the number of stacks increases,
FPS decreases gradually. We found that on the publicly available ICDAR2015 dataset, the Precision
increases with the increase in stacking layers, while Recall and F-measure achieve the highest scores
when the stacking layers are set to 2. However, the frames per second decrease with the increase in
stacking layers. To balance the detection precision and speed of the CVTD model, our experiments
default to setting the stacking layers to 2.
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4.3 Ablation Study

To verify the effectiveness of CATA and TAM, we compared the performance of Car-mounted
Video Text (CVT) detection before and after introducing these two modules in the detection network
architecture. Ablation studies were performed on CVT, Total-Text [21] and ICDAR2015 [23] datasets
to demonstrate the validity of our proposed CATA and TAM modules. Detailed experimental results
of CVT dataset are shown in Table 2. Table 3 displays the comparative experimental results of the CVT
dataset. Detailed experimental results of Total-Tex and ICDAR2015 datasets are shown in Table 4.

Table 2: Detection results on CVT. The detection results were obtained using different settings of
CATA and TAM. “CATA” represents coordinate attention threshold activation, “2FPEFMs” means
stacking two layers of FPEFM modules, and “TAM” represents text activation map, respectively

CVT

Precision Recall F-measure

Baseline 78.1 76.2 77.1
Baseline + 2FPEFMs + CATA 80.3 76.0 78.1
Baseline + 2FPEFMs + TAM 79.2 77.9 78.6
Baseline + 2FPEFMs + TAM + CATA 80.7 77.4 79.0

Table 3: Text detection results on CVT. “Scale” indicates the scale of the test image, where “L” indicates
that the long side is fixed, and “S” indicates that the short side is fixed. “P”, “R”, and “F” indicate
precision, recall, and F-measure, respectively

Method Scale Backbone External CVT

P R F FPS

PAN++ [3] S: 896 ResNet18 – 80.4 75.8 78.0 22.9
DBNet [5] 736 × 1280 ResNet18_vd √ 71.1 68.8 69.9 12.6
PSENet [14] S: 736 ResNet50_vd √ 78.2 76.6 77.4 13.2

S: 896 ResNet50_vd √ 77.9 78.7 78.3 11.7
Fast [26] S: 896 TextNet-B √ 80.7 79.1 79.7 31.2
EAST [27] S: 512 ResNet18_vd √ 75.9 74.1 75.0 15.9

S: 896 ResNet50_vd √ 80.0 76.3 78.1 17.0
CVTD-CATA S: 896 ResNet18 – 80.3 76.0 78.1 35.0
CVTD-TAM S: 896 ResNet18 – 79.2 77.9 78.6 36.1
CVTD (ours) S: 736 ResNet18 – 79.9 77.0 78.4 48.6

S: 736 ResNet18 √ 79.8 77.6 78.7 48.6
S: 896 ResNet18 – 80.7 77.4 79.0 33.6
S: 896 ResNet18 √ 81.6 78.8 80.1 33.6
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Table 4: Detection results on ICDAR2015 and total-text. The detection results were obtained using
different settings of CATA and TAM. “CATA” represents coordinate attention threshold activation,
“2FPEFMs” means stacking two layers of FPEFM modules, and “TAM” represents text activation
map. “P”, “R”, and “F” represent precision, recall, and F-measure, respectively

ICDAR2015 Total-Text

P R F P R F

Baseline 86.7 78.4 82.3 86.9 78.6 82.6
Baseline + 2FPEFMs
+ CATA

87.3 (+0.6) 78.8 (+0.4) 82.8 (+0.5) 87.1(+0.2) 79.9 (+1.3) 83.4 (+0.8)

Baseline + 2FPEFMs
+ TAM

87.1 (+0.4) 79.4 (+1.0) 83.1 (+0.8) 86.9 78.9 (+0.3) 82.7 (+0.1)

Baseline + 2FPEFMs
+ TAM + CATA

88.3 (+1.6) 78.6 (+0.2) 83.2 (+0.9) 89.0 (+2.1) 80.0 (+1.4) 84.3 (+1.7)

Effectiveness of CATA: To integrate text position information and global modeling information
using a lightweight feature extraction network, we use the CATA module to extract text position
information and enhance global feature representation. We visualized the extraction of text features by
the CATA module on the CVT, Total-Text, and ICDAR2015 dataset, demonstrating the effectiveness
of CATA’s sensitivity to text features. The visualization results of the CATA module for feature maps
of different resolutions are shown in Fig. 7.

Figure 7: We utilize the class activation map (CAM) technique to visualize the four differently sized
features input into the CATA module. It can be observed that with the use of CATA, the CVTD model
focuses more on local text features in the 1/4 resolution feature map. The 1/32 resolution feature map
pays more attention to the global positional features of the text

The CATA module takes as input shallow feature maps of different resolutions (1/4, 1/8, 1/16,
and 1/32) obtained from ResNet18. For the high-resolution feature map with a size of 1/4, CATA
focuses more on local features. For low-resolution feature maps with sizes 1/8 and 1/16, CATA shifts
its attention from local to global text features. Finally, for the low-resolution feature map with a size
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of 1/32, CATA emphasizes global text features. The information extracted by CATA is fused into the
FPEFM feature enhancement module. As shown in Table 2, when our model integrates text position
information and global information, CATA improves the F-measure by 1%. As shown in Table 4, on
the other two publicly available datasets ICDAR2015 [23] and Total-Text [21], CATA improves the
F-measure by 0.5% and 0.8%, respectively. As shown in Table 3, compared with other methods, our
model achieves the best performance in terms of Precision and F-measure.

Effectiveness of TAM: Due to the special characteristics of text pixels, the ability to effectively
determine the category to which a text belongs, the text area, or the non-text area is key to detecting
text. The text activation map generated by the text activation head, specifically the TAM module,
can effectively enhance the Precision of the model’s detection. By using a text activation map to
enhance the perception of text regions, we can separate text foreground and background information.
As shown in Table 2, our model’s designed TAM module improves F-measure by 1.5% on the CVT
dataset. As shown in Table 4, on the publicly available datasets ICDAR2015 [23] and Total-Text [21],
the F-measure is improved by 0.8% and 0.1%, respectively. On the CVT dataset, when both modules
were introduced into our model, the F-measure improved by 1.9%. As shown in Table 3, our method
achieves better results.

4.4 Evaluation on CVT

We conducted experiments on the CVT dataset to verify the effectiveness of our proposed method.
Our method achieves high Precision, Recall, and F-measure in detecting Car-mounted video text while
maintaining real-time detection speed. The detailed experimental results are shown in Table 3. We
also provide visual comparisons with several excellent algorithms, as shown in Fig. 8. Our approach
achieved the highest precision and F-measure values, as well as real-time detection speed. At a scale
size of 896, we achieved a Precision of 81.6%, an F-measure of 80.1%, and an inference speed of 33.6
frames per second (FPS). Under the same experimental settings, compared to PAN++ [3], our method
outperformed with a 1.2% higher Precision, 3% higher Recall, and 2.1% higher F-measure. Fast, a
network architecture that was carefully designed for text detection, achieved 0.2% higher Recall than
our method. However, our method outperformed Fast [26] in terms of detection speed, precision, and
F-measure. When setting the scale size to 896, the maximum detection speed reached 48.6 FPS, which
is sufficient for real-time detection of text in industrial applications such as Car-mounted video.

Through the analysis of the visual results of the CVTD model and other algorithms on the CVT
dataset, as shown in Fig. 8, our model can accurately detect Car-mounted video text in nighttime
scenes. There is no “truncation” phenomenon in the detection of text lines compared to the PAN++
[3] model, as shown in the detection results of the PAN++ model in the second row of Fig. 8. For
distorted images (shown in the third row of Fig. 8), scenes with strong light (shown in the fourth row
of Fig. 8), and rainy scenes (shown in the fifth row of Fig. 8), our model can accurately detect text of
various shapes.
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Figure 8: The qualitative comparison results on the challenging CVT dataset include PAN++ [3],
DBNet [5], Fast [26], and our CVTD model

4.5 Comparison with Other Methods on the Benchmark Datasets

To validate the generalization ability of our model, we conducted experiments not only on our
CVT dataset but also on multiple publicly available benchmark datasets for text detection in natural
scenes. We also visualized the detection results for each dataset. The visualization of detection results
on the Total-Text [21] and CTW1500 [22] dataset are shown in Fig. 9, and the visualization of detection
results on the ICDAR2015 [23] and MSRA-TD500 [24] dataset are shown in Fig. 10. Experimental
analysis was conducted on the influence of stacking layers of FPEFM on the ICDAR2015 [23] dataset
and the detection numerical results of the stacking layers were visualized, as shown in Fig. 6. Through
experiments, when testing on four publicly available dataset, FPEFM had a default stacking layer of 2.

Curved text detection: We conducted experiments on two curved text datasets with our model, as
shown in Table 5. Our method achieved an F-measure of 85.5% on the Total-Text [21] dataset, which
is a 1.2% improvement compared to the PSND [18] method. On the CTW1500 dataset, our method
achieved an F-measure of 84.1%, which is a 0.7% improvement over PSND [18]. Moreover, our method
can maintain real-time detection speed. The CVTD model demonstrates high competitiveness on
benchmark datasets containing arbitrarily curved text. We visualized the results on these two datasets,
as shown in Fig. 9, indicating the model’s ability to accurately describe text lines.
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Figure 9: The detection visualization results of total-text [21] and CTW1500 [22], both of which are
curved text datasets in natural scenes

Figure 10: The detection visualization results of ICDAR15 [23] and MSRA-TD500 [24], both of which
are Multi-directional straight text datasets in natural scenes

Table 5: Text detection results on total-text and CTW1500. Methods with “∗” are collected from [3].
“Scale” indicates the scale of the test image, where “L” indicates that the long side is fixed, and “S”
indicates that the short side is fixed

Method Scale Backbone External Total-text CTW1500
P R F FPS P R F FPS

PAN++ [3]∗ S: 640 ResNet18 √ 89.9 81.0 85.3 38.3 87.1 81.1 84.0 36.0
DBNet [5] S: 800 ResNet18 √ 88.3 77.9 82.8 50.0 84.8 77.5 81.0 55.0
CTPN [6]∗ S: 600 VGG16 – – – – – 60.4 53.8 56.9 7.1
SegLink [9]∗ 768 × 1280 VGG16 – 30.3 23.8 26.7 – 42.3 40.0 40.8 10.7
PSE-1s [14] S: 1280 ResNet50 √ 84.0 78.0 80.9 3.9 84.8 79.7 82.2 3.9
PAN [15] S: 640 ResNet18 √ 89.3 81.0 85.0 39.6 86.4 81.2 83.7 39.8

(Continued)
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Table 5 (continued)

Method Scale Backbone External Total-text CTW1500
P R F FPS P R F FPS

DBNet++ [16] S: 800 ResNet18 √ 87.4 79.6 83.3 48.0 84.3 81.0 82.6 49.0
PSND [18] S: 960 ResNet18 √ 87.3 81.3 84.3 20.7 84.5 82.3 83.4 20.7
EAST [27]∗ 720 × 1280 PVANet – 50.0 36.2 42.0 – 78.7 49.1 60.4 21.2
ContourNet [28] 720 × 1280 ResNet50 – 86.9 83.9 85.4 3.8 83.7 84.1 83.9 4.5
TextField [29]∗ 768 × 768 VGG16 √ 81.2 79.9 80.6 – 83.0 79.8 81.4 –
CRAFT [30]∗ L: 1280 VGG16 √ 87.6 79.9 83.6 4.8 86.0 81.1 83.5 7.6
SAE [31] S: 800 ResNet50 √ – – – – 82.7 77.8 80.1 3.0
SPCNet [32]∗ S: 800 ResNet50 √ 83.0 82.8 82.9 4.6 – – – –
FCENet [33] L: 1280 ResNet50 √ 87.4 79.8 83.4 – 85.7 80.7 83.1 –
CVTD
(ours)

S: 640 ResNet18 – 88.0 80.6 84.1 43.4 83.2 80.7 81.9 35.7
S: 640 ResNet18 √ 90.4 81.2 85.5 43.4 86.8 81.5 84.1 35.7

Multi-oriented text detection: We evaluated our model on the ICDAR2015 [23] and MSRA-
TD500 [24] dataset to test its capability for detecting multi-oriented text. As shown in Table 6, it
can be seen that our detection results in both datasets have improved the F-measure compared to
the DBNet++ [16], with a 1% improvement in ICDAR2015 [23] and a 1.4% improvement in MSRA-
TD500 [24]. Compared with other recent algorithms, our method has also achieved competitive results.
The detection speed of our method is slightly slower than DBNet [5] but higher than other methods.
The CVTD model also demonstrates high competitiveness on benchmark datasets containing multi-
oriented straight text. We visualized the results on these two datasets, as shown in Fig. 9. The model
maintains high performance in detecting text even in complex scenarios with background interference,
such as street scenes.

Table 6: Text detection results on ICDAR15 and MSRA-TD500. Methods with “∗” are collected
from [3]. “Scale” represents the scale of the test image, where “L” represents the long side is fixed,
“S” represents the short side is fixed, “MS” represents the multi-scale test, and “Max” indicates the
maximum size for scale

Method Scale Backbone External ICDAR2015 MSRA-TD500
P R F FPS P R F FPS

PAN++ [3]∗ S: 736 ResNet18 √ 85.9 80.4 83.1 28.2 85.3 84.0 84.7 32.5
DBNet [5] S: 736 ResNet18 √ 86.8 78.4 82.3 48.0 90.4 76.3 82.8 62.0
CTPN [6]∗ S: 600 VGG16 – 74.2 51.6 60.9 7.1 – – – –
SegLink [9]∗ 768 × 1280 VGG16 √ 73.1 76.8 75.0 – 86.0 70.0 77.0 8.9
DBNet++ [16] S: 736 ResNet18 √ 90.1 77.2 83.1 44.0 87.9 82.5 85.1 55.0
ABPNet [17]∗ L: 1024 ResNet50 √ – – – – 86.6 84.5 85.6 12.3
EAST [27]∗ 720 × 1280 VGG16 – 83.6 73.5 78.2 13.2 87.3 67.4 76.1 –
RRPN [34]∗ L: 1000 VGG16 – 82.0 73.0 77.0 – 82.0 68.0 74.0 –

(Continued)
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Table 6 (continued)

Method Scale Backbone External ICDAR2015 MSRA-TD500
P R F FPS P R F FPS

PixelLink [35]∗ 768 × 1280 VGG16 – 82.9 81.7 82.3 7.3 81.1 73.0 76.8 3.1
DeepReg [36]∗ MS VGG16 – 82.0 80.0 81.0 – 77.0 70.0 74.0 1.1
SSTD [37]∗ 704 × 704 VGG16 √ 80.2 73.9 76.9 7.7 – – – –
SBD [38]∗ Max:1200

× 1600
ResNet50 √ – – – – 89.6 80.5 84.8 3.2

MCN [39]∗ 512 × 512 ResNet50 √ 72.0 80.0 76.0 – 88.0 79.0 83.0 –
RRD [40]∗ 1024 ×

1024
VGG16 √ 85.6 79.0 82.2 6.5 87.0 73.0 79.0 10.0

TextSnake [41]∗ 768 × 1280 ResNet50 √ 84.9 80.4 82.6 1.1 83.2 73.9 78.3 1.1
CVTD
(ours)

S: 896 ResNet18 – 88.3 78.6 83.2 30.4 82.4 82.4 82.4 37.0
S: 896 ResNet18 √ 87.5 80.9 84.1 30.4 90.2 83.1 86.5 37.0

4.6 Limitation

Our model still has some shortcomings in text detection, especially in images with certain semantic
text and too much background noise, as shown in Fig. 11. We will focus on addressing these difficulties
in the future.

Figure 11: Failure samples

5 Conclusions

This paper proposed a new Car-mounted video text detector that uses a lightweight ResNet18 [4]
backbone network, making the model very fast in detecting text. Considering the limited extraction
capability of the backbone feature extraction network, we proposed the CATA module. The CATA
module extracts text features from the input feature maps of four different resolutions. For high-
resolution input feature maps, CATA focuses more on local features. For low-resolution feature maps,
CATA pays more attention to the global features of the text. Visualizing the output of the CATA
module on the CVT, ICDAR2015, and Total-Text datasets demonstrates its effectiveness in extracting
text position information and global information. The output of CATA is integrated into the feature
enhancement process of the FPEFM module. FPEFM efficiently strengthens features and incorpo-
rates text features, continuously enhancing the model’s feature representation capability. The enhanced
features are then fed into the text detection head and text activation head, utilizing TAM to separate
text foreground and background information. In this process, we also constructed a Car-mounted
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Video Text (CVT) dataset to evaluate the text detection performance of our proposed Car-mounted
Video Text Detector. Experimental results show that the CVTD model achieves the highest Precision,
F-measure, and inference speed. The model demonstrates strong text detection capabilities for image
distortion, strong light scenarios, and rainy weather scenes. Through generalization performance
testing on four public ly available benchmark datasets (Total-Text, CTW1500, ICDAR2015, and
MSRA-TD500), the CVTD model exhibits strong competitiveness. Therefore, our proposed CVTD
model is a novel, specialized, and efficient Car-mounted video text detection method. CVTD is also a
text detector for arbitrary shapes in natural scenes. Its high inference speed enables application in real-
world industrial scenarios, contributing to the development of advanced driver-assistance systems.
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