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ABSTRACT

First, we propose a cross-domain authentication architecture based on trust evaluation mechanism, including
registration, certificate issuance, and cross-domain authentication processes. A direct trust evaluation mechanism
based on the time decay factor is proposed, taking into account the influence of historical interaction records. We
weight the time attenuation factor to each historical interaction record for updating and got the new historical
record data. We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust
assessment model to better capture time trends in the historical record. Then we propose an autoencoder-based
trust clustering algorithm. We perform feature extraction based on autoencoders. Kullback leibler (KL) divergence
is used to calculate the reconstruction error. When constructing a convolutional autoencoder, we introduce
convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden
layer of the autoencoder. The sparse penalty term in the loss function measures the difference through the KL
divergence. Trust clustering is performed based on the density based spatial clustering of applications with noise
(DBSCAN) clustering algorithm. During the clustering process, edge nodes have a variety of trustworthy attribute
characteristics. We assign different attribute weights according to the relative importance of each attribute in
the clustering process, and a larger weight means that the attribute occupies a greater weight in the calculation
of distance. Finally, we introduced adaptive weights to calculate comprehensive trust evaluation. Simulation
experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.
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1 Introduction

The concept of the Internet of Things (IoT) has affected all walks of life in society. However,
there are many issues in terms of security and user privacy during the implementation of the
concept. In the field of Internet of Things, cloud computing is an important research direction.
It is crucial to design a credible trust evaluation mechanism to ensure the reliability of data [1].
The traditional cloud computing model often results in high latency because computing and data
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storage are centralized in remote data centers, which makes real-time response requirements unmet
for applications such as intelligent transportation or industrial automation [2]. Second, this model
can cause network congestion problems, as many devices attempt to upload and download data
simultaneously, leading to packet loss and decreased network performance [3]. In addition, with the
flow of data during transmission and storage, privacy and security concerns cannot be ignored [4].
Finally, cloud computing models often require a lot of data center resources [5], but these resources are
not always fully utilized, especially for lightweight computing tasks, and this highly resource-intensive
model can be wasteful.

Edge computing can greatly improve the shortcomings of traditional cloud computing. Allocate
computing and data processing tasks to edge devices to reduce network latency. This has been widely
used in smart cities [6]. Processing data through edge devices reduces the computing pressure on the
cloud. thereby reducing the risk of network collapse and improving network security [7]. But there
are also many potentials and challenges in the current edge computing research field. For example,
computing resources limit edge computing task processing performance. The dynamic nature of the
device environment also adds to the complexity of edge computing task processing [8].

The low detection rate of trust evaluation mechanisms is one of the challenges facing the edge
computing research field. There may be dynamically adaptive malicious nodes in the network. They
will evade detection by pretending to be honest nodes or accumulating trust value in a short period.
Therefore, a trust mechanism that can dynamically monitor node changes is crucial to ensuring the
reliability of edge computing systems [9].

How to improve task allocation and processing efficiency is also a major challenge in the current
research field. When computing resources are limited, factors such as network status and device
performance need to be considered when processing large-scale computing tasks. Therefore, intelligent
algorithms with excellent performance are needed to assist in improving computing efficiency [10].

In conclusion, edge computing is a powerful tool for addressing the needs of the IOT era, but
to fully leverage its benefits, issues, and challenges such as trust assessment and task processing
efficiency must be addressed. To address the above challenges, this study proposes a novel cross-
domain authentication architecture, which is built based on a trust evaluation mechanism. The
research contributions of this authentication architecture are as follows:

1) We introduce a credible cross-domain authentication process, encompassing registration,
certificate issuance, and cross-domain authentication procedures to ensure secure interactions among
devices in different domains. A direct trust evaluation mechanism based on the time decay factor is
proposed, taking into account the influence of historical interaction records. We weighted the time
attenuation factor to each historical interaction record for updating and got the new historical record
data. We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust
assessment model to better capture time trends in the historical record.

2) We propose an autoencoder-based trust clustering algorithm. Feature extraction is based
on autoencoders. KL divergence is used to calculate the reconstruction error. When constructing a
convolutional autoencoder, we introduce convolutional neural networks to improve training efficiency
and introduce sparse constraints into the hidden layer of the autoencoder. The sparse penalty term in
the loss function measures the difference through the KL divergence.

3) Trust clustering is performed based on the density based spatial clustering of applications with
noise (DBSCAN) clustering algorithm. During the clustering process, edge nodes have a variety of
trustworthy attribute characteristics. We assign different attribute weights according to the relative
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importance of each attribute in the clustering process, and a larger weight means that the attribute
occupies a greater weight in the calculation of distance.

4) We combine the adaptive weight calculation method to obtain a comprehensive trust evaluation
score. Simulation experiments prove that the trust evaluation mechanism proposed in this article has
excellent performance in terms of reliability and accuracy.

The structure of this article is as follows. In Section 2, we present research on edge computing and
trust assessment. In Section 3, we propose a cross-domain authentication framework based on trust
evaluation mechanism. In Section 4, we describe a trust evaluation algorithm based on autoencoder
clustering. In Section 5, we carry out simulation experiment analysis. In section 6, we summarize.

2 Related Work

Trust assessment plays a key role in the edge computing research field. Xu et al. [11] proposed an
innovative trust evaluation model, which is based on risk and feedback. The research of Guo et al. [12]
focused on security in an edge computing environment. Ensure that each node is trusted and that only
authorized nodes can join the execution environment. The authentication method is used to verify
the identity of the node. The work of Chi et al. [13] analyzed the trust domains between different
devices and entities, which are composed of devices that trust each other. The establishment and
management of this relationship are essential to ensure legitimacy and credibility. Din et al. [14]
proposed that through the establishment of trust relationships and the use of social trust networks,
the communication reliability between nodes in the cell network has been significantly improved.

Kuang et al. [15] studied how to reasonably allocate tasks to devices and nodes when storage and
computing resources are limited. Jošilo et al [16] optimized task processing time through the efficient
allocation of unlimited resources to unnamed devices. Dynamically obtain edge computing resources
through devices to improve resource utilization and reduce overall network latency. Valerio et al. [17]
aimed to solve the problem of virtual machine allocation in edge computing. The model considers
energy consumption, load, and other factors, and adopts the Markov decision method to achieve the
goal of minimizing delay. Ouyang et al. [18,19] proposed a UAV mission offloading trust scheme based
on two key indicators, namely energy consumption and service reliability.

Multi-access edge computing (MEC) [20,21] mainly studies how to perform low-latency data
retrieval. However, edge server storage resources are limited. CSEdge solves the trust problem in
storage based on blockchain. It also solves the incentive problem and allocates storage space based
on reputation value. Assessing credibility through consensus algorithms provides a solution for edge
storage [22]. BEoT [23] combines edge computing and blockchain. There are application scenarios in
many fields. Smart contracts and identity authentication are applied to improve the security of the
architecture.

Vehicle edge computing utilizes vehicles (VEC) [24] to reduce application latency by using vehicles
to migrate computing tasks. Prices are calculated based on the two-stage Stackelberg game model. The
VEC server serves as the leader and the vehicle serves as the follower. Through deep reinforcement
learning, a management strategy for non-shared computing needs is designed to maximize the
profits of both parties [25]. Cvitić et al. designed a classification model based on logit boost [26].
A classification model with high accuracy is trained through multiple traffic characteristics of IoT
devices. Li et al. proposed a multi-level power grid model that focused on analyzing the vulnerability
of components [27].
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3 Cross-Domain Authentication Architecture Based on Trust Evaluation Mechanism

In edge computing network systems, changes in edge nodes will increase network instability. Based
on this problem, we propose an authentication architecture based on a trust evaluation mechanism and
blockchain.

We summarized the main symbols in Table 1.

Table 1: Symbol specification

Symbol Specification

N The set of edge nodes
E The set of evaluation nodes
t The time
VDni ,nj (t) The direct trust value of nj on-time t
VIni ,nj (t) The indirect trust value of nj on-time t
qni ,nj

(t) The task performance score between ni and nj

λt
ni ,nj

The ratio of successful task execution to total interactions

α Regulatory factor∑
qni ,nj

(t)+ Successful interaction of data
μ Evaluation node weight
rt

i,j Node interaction times
MinPts The minimum number of sample points in the neighborhood
ND Neighborhood distance
θ Neighborhood radius
β Edge node attribute weight
F Feature node set
S Edge computing task

3.1 Cross-Domain Authentication Architecture

At present, the field of edge computing is becoming increasingly mature and diversified, and a
variety of computing architectures have been developed for various application scenarios. This pro-
vides a solid foundation for realizing more efficient resource collaborative utilization and application
sharing. The trusted authentication architecture based on trust evaluation is shown in Fig. 1.

A good edge computing trust model should be able to cope with most malicious attack modes.
The existing trust model has insufficient ability to identify and prevent, and there are shortcomings
in security management. It is unable to deal with complex attack methods such as swing attacks and
collusion attacks. So that malicious nodes can still hide in the network after malicious attacks.

3.2 Cross-Domain Authentication Process

To ensure the accuracy of the study and facilitate reference, we summarized the main symbols in
Table 1.
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Figure 1: Cross-domain authentication architecture

3.2.1 Registration Process

First, the edge server generates identity tags LAi, public and private keys, (PKi, PVi) and times-
tamps Ti for the node nj. This information marks the uniqueness of the node’s identity. All information
is encrypted and stored on the blockchain, accessible only to edge servers. Then the edge server sends
a message Requesti to the blockchain node to apply for a registered node.

Requesti = (LAi, PKi, Ti, SG (PVi, LAi||Ti)) (1)

After receiving Requesti the blockchain node performs signature verification to ensure that the
source is legitimate and has not been tampered with. If the digital signature passes, the registration
information will be written to the blockchain. The registration is successful.

3.2.2 Certificate Issuance Process

The certificate issuance process is a key step for nodes in the same domain to apply for
certificates CA from edge servers. This process serves as the basis for trust establishment and identity
authentication in edge computing environments. The edge server first queries the identity information
and public key

(
LAj, PKj

)
of the certificate-issuing node through the blockchain. This information

is key for subsequent verification and communication. Then send the node information Ii to the
blockchain node together.

Ii = (
LAi, Tj, SG

(
PKi, LAi||Tj

)) ||EP
(
PKj, Re

)
(2)

If the information is correct, the blockchain server generates a number NUMi and certificate
information CAi and sends them to the application node. The certificate is successfully issued. The
certificate information is shown below:

CAi = EP
(
PKi, NUMi||Tj

)
(3)

3.2.3 Cross-Domain Authentication Process

Assume that the source node of the domain A needs to establish communication with the
destination node of domain B. First, the domain A edge server needs to query the domain B edge
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server’s public key PKB and label LAB through the blockchain and generate identity information
Message.i. Then ni use PKB encryption Message.A to generate a request message RequestA and send
it to nB.

Message.i = (LAi, CA, TB, SG (PVi, CA||TB)) (4)

RequestA = EP (PKB, MessageA) (5)

After the edge server of the domain B receives the request message RequestA, the server first
decrypts RequestA through the private key PVB to obtain the identity information Message.A. Then
query the public key PKi of the source node nA and the public key PKA of the server. The server of the
domain B will perform verification, and if all verifications pass, subsequent services will be provided.
Failure to authenticate will result in a denial of service.

3.3 Direct Trust Evaluation Mechanism

Direct trust is an important concept that can be measured. In the network, we can quantify the
task execution performance of nodes to define and calculate trust. VDni ,nj (t) present node nj trust value
at a time t.

Suppose that the task during the interaction between node ni and node nj in time t is represented
as a set of time series probability data:

qni ,nj
(t) =

{
λ1

ni ,nj
, .λ2

ni ,nj
, . . . , λt

ni ,nj

}
(6)

where λt
ni ,nj

∈ [0, 1] represents the ratio of the amount of successfully executed tasks and to the
total number of task interactions within the time. We use this metric to describe the success rate of
cooperative tasks. It expresses the probability of mission success. A record of the interaction between
the two nodes during this time window will serve as the basis for evaluating direct trust.

However, it is important to note that the effectiveness of interactive recording diminishes over
time. This is because early cooperative behavior may no longer reflect the current state of trust. We add
weights to reduce the impact of time. This factor takes into account the temporal impact of historical
interaction records, ensuring that time is taken into account when assessing direct trust. The definition
is as follows:

εi = e−(t−ti) (7)

λti
ni ,nj

= εiλ
ti
ni ,nj

(8)

where εi is the time attenuation factor of ti time, we weighted the time attenuation factor to each
historical interaction record for updating, and got the new historical record data:

qni ,nj
(t) =

{
εiλ

1
ni ,nj

, .ε2λ
2
ni ,nj

, .., εiλ
ti
ni ,nj

, . . . , εtλ
t
ni ,nj

}
(9)

The Beta distribution has flexible capabilities, and we refer to the beta distribution to enhance the
flexibility and adaptability of the direct trust assessment model to better capture time trends in the
historical record.

VDni ,nj (t) =
∑t

i=1 εiλ
ti
ni ,nj∑t

i=1 εi

α (10)
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α = 1 − 1∑
qni ,nj

(t)+ + δ
(11)

where α is regulator of direct trust value,
∑

qni ,nj
(t)+ represents the sum of success records.

4 Trust Evaluation Mechanism Based on Autoencoder Clustering

In this paper, indirect trust assessment is based on a distributed trust establishment approach.
Firstly, the intermediate trust assessment module collects trust feedback information from various
nodes in the entire network. The value of these feedback pieces of information is significant as
they reflect the trustworthiness exhibited by the assessed nodes when interacting with other nodes.
Evaluating nodes gather these feedback inputs from multiple nodes and consolidate them into an
overall trust assessment. This consolidation process employs a trust aggregation algorithm. The flow
chart of trust assessment is shown in Fig. 2.

Figure 2: Trust assessment flow chart

This dynamic information is expressed in the form of VIni (t), which clearly shows the growth
of the trust value of the node ni, and provides the nodes in the network with the latest information
about the behavior of the node being evaluated. This dynamic trust-building process helps nodes in
the network better adapt to changing trust needs and environmental conditions.

Assume that there are m evaluation nodes in the middle layer, and the set of nodes is E =
{e1, e2, . . . , em}. For evaluation node ei, interacts with all device nodes. As the number of interactions
increases, it means that the more frequently two parties interact, the greater the likelihood of trust. So
we set weights for the evaluation nodes:

μi,j = ri,j
t∑m

i=1 rt
i,j

(12)

where rt
i,j is the number of communications between nodes within the time t.

The indirect trust value is expressed as:

VIni ,nj (t) =
∑m

i=1
rt

i,jVDni ,nj (t) (13)

Evaluating whether a node is trustworthy is crucial to the evaluation of indirect trust. If the
recommendation node takes malicious actions for personal gain, such as delivering false reports to the
trust evaluation node, then this will seriously interfere with the final trust evaluation of the target node.
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4.1 Feature Extraction Based on Convolutional Autoencoder

Firstly, we introduce an autoencoder for feature extraction. The autoencoder first is the input
layer, where the user evaluation data is encoded as a high-dimensional feature vector. This is followed
by the hidden layer, which is responsible for feature extraction, and the output layer, which is
responsible for decoding the feature vectors to reconstruct the data. Autoencoders measure the
efficiency of feature extraction by comparing pre-encoding and post-decoding feature vectors. This is
achieved by calculating the reconstruction error. In node clustering, KL divergence is usually used to
calculate the reconstruction error. KL divergence is a measure used to measure the difference between
two probability distributions. The lower KL divergence indicates that the similarity between the two
distributions is higher, that is, the feature extraction effect is better. KL divergence is calculated as
follows:

KLi = −
∑n

i=1
{gi log [hi + (1 − gi) log (1 − hi)]} (14)

where gi and hi represent the input and output feature vectors, respectively.

When constructing a convolutional autoencoder, we introduce convolutional neural networks to
improve training efficiency. It is an effective regularization technique to introduce sparse constraints
into the hidden layer of the autoencoder. By leaving most neurons inactive, the complexity of the
network is reduced and overfitting is prevented. This helps the model to better generalize to previously
unseen data. By calculating the mean activation of each hidden neuron avgj, we can learn which
neurons are active and which are inactive. The sparse penalty term in the loss function measures the
difference through the KL divergence. This allows the network to learn from fewer activated neurons,
thereby reducing the risk of overfitting.

Suppose avj
i is the activation value of neurons j, N is the number of nodes, and K is the number of

hidden layer neurons. The mean activation of neurons j is:

avgj =
∑N

i avj
i

N
(15)

The loss function is expressed as:

J = L + ϕ
∑M

i=1
KLi (16)

where ϕ is the sparse penalty coefficient and KLi measures similarity based on KL divergence.

Once the encoder is trained, the value of the loss function is relatively small, indicating that the
encoder has learned an effective feature representation. Then we can use the encoder to extract the
features.

4.2 Trust Clustering Based on DBSCAN

In this section, the DBSCAN algorithm is introduced based on auto-encoder feature extraction.
DBSCAN organizes data by the density of sample points and performs clustering according to the
density of data points. The algorithm first defines the concept of neighborhood. DBSCAN defines
the neighborhood of each data point through the neighborhood radius, that is, the distance θ from the
point is considered as the neighborhood.

DBSCAN defines a core point as a point that contains at least MinPts sample points in the
neighborhood. That is, if the number of nodes in the neighborhood of the node x is greater than
Minpts, then x is the core point. Assuming a core point x1, if the neighborhood x1 contains x2, then
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the x1 density is direct x2. DBSCAN uses the core point as the starting point to gather the points with
direct density into the same cluster, thus achieving data clustering operations.

During the clustering process, edge nodes have a variety of trustworthy attribute characteristics.
We assign different attribute weights according to the relative importance of each attribute in the
clustering process, and a larger weight means that the attribute occupies a greater weight in the
calculation of distance. Assuming a total of M attributes of edge nodes, the neighborhood distance
ND of any node r and node s is calculated as follows:

ND =
√∑M

i=1
βi (ri − si)

2 (17)

Algorithm 1: Trust clustering algorithm based on autoencoder
Input: Neighborhood radius θ ; Minimum of neighbor nodes Minpts; Feature node set F

Output: min F (G)

1: Begin
2: for each unvisited point f in the F do
3: mark f as visited point
4: find neighbor nodes Fb of f
5: if Fb nodes ≤MinPts then
6: Mark f as noise
7: else then
8: create cluster C and add fb to C
9: for each point fb in the Fb do
10: if fb is not visited then
11: mark fb as visited
12: find neighbor nodes F ′

b of fb

13: if neighbor nodes F ′
b ≥ MinPts then

14: add F ′
b to Fb

15: end if
16: end if
17: if fb is not yet a member of any cluster then
18: add fb to cluster C
19: end if
20: end for
21: end if
22: end for
23: Solve according to the constraints;
24: return min F (G)

25: End

Then we describe the clustering process. First, we randomly select a node as the starting point and
calculate the number of neighbor nodes. If the number of neighbor nodes is greater than MinPts, The
node’s neighbor nodes are added to the node cluster. The neighborhood expansion of the newly added
points is continued to ensure that all reachable core points are added to the cluster. If the neighborhood
of a core point contains other core points, they will be connected to the same cluster. All data points
that are not assigned to the cluster are labeled as noise points. These points do not belong to any
cluster. Repeat the above process until all data points have been accessed and classified. We end up
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with one or more clusters, each containing a set of data points dense with each other, while the noise
points do not belong to any cluster. The specific algorithm flow is shown in Algorithm 1.

Algorithm 2: Global trust evaluation based on entropy and adaptive weights
Input: Edge nodes set N; Evaluation nodes set E; Interactive record data qni ,nj

(t); Interactions rt
i,j;

Output: Overall trust value VOni ,nj (t)
1: Begin
2: if (t > 0) then
3: for i = 1 to m do
4: for j = 1 to m do
5: Calculate VDni ,nj (t) and feedback to the trust evaluation node ek;
6: end for
7: end for

8: calculate weight μi,j = rt
i,j∑m

i=1 rt
i,j

;

9: evaluation node ek calculat VIni , nj (t) ion and feedback to ni

10: overall trust value VOni ,nj (t) = ηVDni ,nj (t) + (1 − η) VIni ,nj (t)
11: return VOni ,nj (t)
12: end if
13: End

4.3 Overall Trust Evaluation

In this section, we comprehensively consider direct and indirect trust evaluation values to calculate
the final overall trust. However, determining the relative importance of these two trust parameters is a
key challenge. To solve this problem, we adopt an approach based on information entropy to determine
their weights more objectively. The information entropy is calculated as follows:

H
(
VDni ,nj (t)

) = −VDni , nj (t) ln
[
VDni , nj (t)

] − [
1 − VDni , nj (t)

]
ln

[
1 − VDni , nj (t)

]
(18)

H
(
VIni , nj (t)

) = −VIni , nj (t) ln
[
VIni , nj (t)

] − [
1 − VIni , nj (t)

]
ln

[
1 − VIni , nj (t)

]
(19)

The weight is calculated as follows:

η = H
(
VDni ,nj (t)

)
H

(
VDni ,nj (t)

) + H
(
VIni ,nj (t)

) (20)

Then the overall trust evaluation value is:

VOni ,nj (t) = ηVDni ,nj (t) + (1 − η) VIni ,nj (t) (21)

The overall calculation process is shown in Algorithm 2.

5 Simulation and Analysis

This section verifies the effectiveness of the proposed trust model and trust evaluation mechanism
based on autoencoder clustering (TEE) through simulation experiments.
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5.1 Analysis of the Trust Evaluation Model

In this section, we simulate and test the performance of the credit model. We analyzed model
performance at different node sizes. According to the actual network conditions, most nodes are
trusted nodes, so we set the number of malicious nodes to 30%. We use two key metrics to evaluate
the effectiveness of the authentication architecture based on trust assessment. Based on the average
response time (RT) and malicious detection recall rate (Recall) to assist in evaluating the performance
of the model.

RT reflects the system’s ability to quickly adapt to changes and is very important for perfor-
mance evaluation in IoT edge computing environments. In the experiment, we use different trust
computing mechanisms, including DME (Distributed reputation management), RMD (Robust multi-
dimensional trust mechanism), ART (A reliable trust mechanism), and the proposed TEE mechanism.
By comparing the RTS of these mechanisms, we can verify which mechanism has faster computation
speed and thus better ADAPTS to changes in the network environment. As shown in Fig. 3, TEE,
ART, and DME mechanisms are significantly more capable of detecting malicious nodes than RMD
mechanisms. This shows that the TEE mechanism is not only excellent in terms of computational
efficiency, but also very powerful in detecting malicious behavior. According to the experimental
results, the proposed TEE mechanism is significantly superior to ART, RMD, and DME mechanisms
in Recall. TEE performs better in Recall as the number of devices increases.

Figure 3: The value of Recall and RT varies with the number of devices

5.2 Analysis of Trusted Clustering Algorithm Based on Autoencoder

In our study, we found that the AEDC algorithm performs well in clustering tasks with different
weight configurations. As illustrated in Fig. 4, under lower weights, such as 0.3 and 0.4, the AEDC
algorithm exhibits superior performance compared to K-MEANS. This can be partially attributed to
the adaptability of the AEDC algorithm, which enables it to better accommodate the characteristics
of the data under varying weight settings. It excels in recognizing different features within the
data, allowing it to capture subtle differences more effectively under lower-weight conditions, thus
enhancing clustering accuracy. This adaptability is of paramount importance in numerous application
domains, particularly in cases where the emphasis on different features may evolve, such as in
recommendation systems.
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Figure 4: The score of K-MEANS and AEDC varies with the number of clusters at weights equal to
0.3 and 0.4

Furthermore, we investigated the impact of different weight settings on the performance of the
AEDC algorithm and the K-MEANS algorithm. Our research demonstrates the stability of AEDC
algorithm performance under higher weight values and its lower sensitivity to data features. As
illustrated in Fig. 5, with the weights gradually increased from 0.3 to 0.6, we observed a convergence
in the performance of both algorithms. This implies that the AEDC algorithm maintains outstanding
performance in high-weight environments, with minimal interference from variations in data features.
This is particularly exciting, as it suggests that the AEDC algorithm can consistently deliver excep-
tional performance across various application scenarios.

Figure 5: The score of K-MEANS and AEDC varies with the number of clusters at weights equal to
0.5 and 0.6

This phenomenon of gradual convergence in performance offers increased flexibility in algorithm
selection for real-world applications. It allows us to choose suitable algorithms flexibly based on
specific weight setting requirements without concerns about performance degradation. This has
significant practical value in data mining tasks and cluster analysis, as the characteristics and demands
of data may evolve continuously in practical applications.
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6 Conclusion

In conclusion, this study introduces an innovative trust evaluation mechanism for accessing IoT
edge devices, significantly enhancing system performance by integrating key elements such as cross-
domain authentication, trust clustering, and adaptive weight considerations. Firstly, we successfully
introduce a blockchain-based cross-domain authentication process, ensuring secure interoperability
among devices in different domains, thereby enhancing system reliability. Secondly, we design a trust
clustering algorithm based on autoencoder, improving trust assessment accuracy by comprehensively
considering data, and effectively supporting system reliability and accuracy. Lastly, we introduce
an adaptive weight calculation method, further enhancing system performance by comprehensively
considering various factors affecting trust assessment. The evaluation mechanism provided in this
article can be applied to actual IoT scenarios. Especially scenarios involving several elements such as
the Internet of Things, blockchain, and trust assessment. Its limitation is that the blockchain limits
the overall efficiency of the network and increases the network’s operating costs. How to improve the
processing efficiency of network tasks while ensuring high network reliability is a challenge.
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