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ABSTRACT

The proliferation of Internet of Things (IoT) systems has resulted in the generation of substantial data, presenting
new challenges in reliable storage and trustworthy sharing. Conventional distributed storage systems are hindered
by centralized management and lack traceability, while blockchain systems are limited by low capacity and
high latency. To address these challenges, the present study investigates the reliable storage and trustworthy
sharing of IoT data, and presents a novel system architecture that integrates on-chain and off-chain data manage
systems. This architecture, integrating blockchain and distributed storage technologies, provides high-capacity,
high-performance, traceable, and verifiable data storage and access. The on-chain system, built on Hyperledger
Fabric, manages metadata, verification data, and permission information of the raw data. The off-chain system,
implemented using IPFS Cluster, ensures the reliable storage and efficient access to massive files. A collaborative
storage server is designed to integrate on-chain and off-chain operation interfaces, facilitating comprehensive data
operations. We provide a unified access interface for user-friendly system interaction. Extensive testing validates
the system’s reliability and stable performance. The proposed approach significantly enhances storage capacity
compared to standalone blockchain systems. Rigorous reliability tests consistently yield positive outcomes. With
average upload and download throughputs of roughly 20 and 30 MB/s, respectively, the system’s throughput
surpasses the blockchain system by a factor of 4 to 18.
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1 Introduction

The rapid expansion of the digital economy has resulted in a substantial increase in data volume
generated by various applications and systems. This surge presents significant challenges in ensuring
secure and trustworthy data sharing across institutions and systems. In the realm of IoT systems and
industrial production sectors, sensor networks produce vast amounts of data crucial for tasks such as
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security analysis and data forecasting. Despite its value, ensuring the secure storage, reliability, and
trustworthy sharing of this data remains a formidable challenge.

Regarding data storage, conventional distributed storage systems distribute data across multiple
devices to balance the storage workload, offering high capacity, superior performance, and scalability
[1]. However, these systems face challenges related to centralized management and lack of traceability,
leading to difficulties in data sharing, susceptibility to tampering, and lack of auditability. Cloud
storage systems offer an alternative, but concerns about data sovereignty, especially for core enterprise
data, raise apprehensions and may need to meet stringent data confidentiality requirements.

Regarding data sharing, blockchain technology emerges as a decentralized, immutable, traceable,
and collectively maintained distributed database [2]. Blockchain serves as a storage system, ensuring
the traceability of textual data, provides verifiable storage, and facilitates data sharing. Nonetheless,
blockchain has limitations in capacity, throughput, and latency. As of October 2023, Bitcoin’s
Blockchain Size has exceeded 500 GB [3], and Ethereum’s blockchain size has surpassed 1300 GB [4].

Traditional data validation methods, such as hash functions and Merkle trees [5], can confirm
data correctness but cannot rectify or recover erroneous data. Array codes [6], encode original data
blocks into specific check codes through simple XOR and cyclic shift operations. By employing these
check codes and partial original data, errors in data can be identified and corrected through these
operations.

To address these challenges, this study investigates the reliable data storage and trustworthy data
sharing framework based on blockchain and distributed storage technologies. The contributions of
this paper are as follows:

1. A collaborative storage scheme for on-chain and off-chain data is designed, achieving high-
capacity, high-performance, traceable, and verifiable data storage and access. Carefully crafting data
storage and data sharing processes, and designing a unified access interface.

2. A smart contract and its invocation interface based on Hyperledger Fabric are designed,
enabling traceability, verification and recovery of file information, thereby addressing the need for
traceable storage.

3. Utilizing the principles and features of IPFS Cluster, an easily scalable off-chain system and
interface are designed, ensuring reliable storage of massive raw data.

4. For the issue of data verification and recovery, by integrating Array code technology, the coding
and storage processes are designed, realizing collaborative verification and recovery functions for on-
chain and off-chain data, further enhancing the trustworthiness of shared data.

The subsequent sections of this paper are organized as follows: Section 2 introduces related
work. Section 3 presents related technologies. Section 4 outlines the system design. Section 5 describes
the methods for trustworthy data sharing. Section 6 conducts experimental evaluations. Section 7
concludes the study and outlines future work.

2 Related Works
2.1 Blockchain-Based Data Sharing

Blockchain technology has garnered significant attention in recent years, finding diverse applica-
tions across various fields. Researchers have explored methods to integrate blockchain, enhancing the
credibility of data sharing processes [7].
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In medical data sharing, Praveena Anjelin et al. pioneered a blockchain-based model [2]. Their
approach involved categorizing medical institutions and implementing an enhanced consensus mech-
anism, ensuring secure and swift data sharing. Another noteworthy system, MedRec, introduced by
Azaria et al. [8], operating on the Bitcoin network, employed proxy re-encryption technology to ensure
secure data access. However, these methods were based on public chains, facing challenges such as low
capacity, low throughput, and high latency. Solutions based on consortium chains are actively being
pursued to address these limitations.

Zheng et al. [9] addressed the problem of extensive credit investigation data and privacy protection.
The model adopts a consensus mechanism to solve the problem of large credit investigation data and
privacy protection of credit investigation data and realizes access control and management of the
shared data chain. In their model, data are stored on the cloud server and shared with the proxy
reencryption method. To address credit data queries, Liu et al. [10] proposed a dual-blockchain
integrated solution for credit data storage and query. Their approach employed two chains: one
for real-time credit data collection results and another for credit data query records. This dual-
chain strategy effectively mitigated concerns about excessive centralization associated with credit data
collection.

Zhu et al. [11] proposed a novel system architecture that leverages blockchain technology to
enhance the traceability of original achievements. Zhu et al. [12] investigated how to use blockchain
technology to enhance the traceability of infectious diseases. But the authors do not discuss the
scalability issues that might arise when the system is deployed in a real-world scenario with a large
number of users.

Qiu and his team designed an Edge-IoT framework based on blockchain called “EdgeChain” [13].
The core idea is to integrate a permissioned blockchain system into the edge cloud resource pool and
each IoT device’s account and resource usage, thereby linking the behavior of IoT devices. Despite the
security advantages of blockchain, the cost of integrating EdgeChain into specific IoT systems is a
factor that urgently needs to be considered.

Ali et al. [14] proposed a framework based on blockchain and multiple certificate authorization.
The policies and methods proposed overcome the disadvantages and security vulnerabilities faced by
single certificate authorization. However, this paper only designs a detailed process for access control,
does not provide a large-capacity storage infrastructure for electronic medical records, and cannot
achieve large-capacity data storage.

2.2 On-Chain and Off-Chain Collaboration

On-chain and Off-chain Collaboration [15] involves storing raw data off-chain while maintaining
hash values and index information on-chain, facilitating collaborative data storage and access. In a
broader context, it also includes aspects such as on-chain performance optimization, off-chain storage
scalability research, and collaborative computing.

To tackle data inconsistencies between on-chain and off-chain data in blockchain applications,
Zhang et al. [16] proposed ÐArcher. This method detected synchronization flaws between on-chain
and off-chain data, enhancing DApps’ security and reliability. However, it did not optimize the
reduction of test cases and execution time or handle changes in on-chain and off-chain interaction
patterns.

Addressing secure search concerns in cloud storage, Li et al. [17] introduced a blockchain-based
searchable symmetric encryption scheme (SSE). Data indexes and access control policies were stored
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on-chain, while the content was encrypted and stored in off-chain nodes. This approach effectively
achieved data privacy protection and integrity verification. Hu et al. [18] proposed an SSE solution
based on Ethereum to reduce unauthorized access by malicious nodes. Chen et al. [19] introduced a
blockchain-based searchable encrypted cloud solution, designing an index structure based on complex
logical expressions to enhance search efficiency and scalability.

However, these solutions were based on public chains, needing admission mechanisms for
participating nodes, compromising the security of on-chain data storage.

Sun et al. [20] proposed a solution using blockchain to store indexes and access control policies for
electronic medical records. The original data of electronic medical records stored in the InterPlanetary
File System (IPFS) was encrypted. Hao et al. [21] introduced a solution enabling dynamic authoriza-
tion and revocation of data through distributed hash tables, encryption algorithms, Merkle trees, and
proxy re-encryption technology.

Addressing privacy issues in cloud environments, some scholars have conducted research.
Zhu et al. [22,23] investigated the impact of live streaming on online purchase intention. Kaur et al. [24]
introduced a platform combining blockchain and cloud storage for managing electronic medical
records in a cloud environment. But their work did not showcase the implementation details and
technical challenges of blockchain technology in a cloud environment. Zhang et al. [25,26] proposed
a privacy-preserving online multi-task assignment scheme to deal with privacy issues in cloud-based
neural networks. Zhang et al. [27] investigated how to enforce readability and editability governance in
blockchain databases using cryptographic methods. Wang et al. [28–30] provided an effective method
for managing dynamic VM placement to alleviate resource contention between VMs in the data center.
However, the experimental results of these paper are based on the CloudSim simulator, which may not
fully reflect the situation in a real environment.

However, some scholars relied on code simulations of blockchain systems, while others imple-
mented solutions on public chains, leaving feasibility and performance open for discussion. This study
employed the mature third-generation open-source consortium blockchain platform Hyperledger
Fabric for on-chain systems, optimizing performance and scalability. For off-chain systems, this study
deployed a private network of multiple IPFS nodes and innovatively introduced IPFS Cluster for
cluster management, optimizing cluster expansion and data arrangement. Additionally, this study
proposed on-chain and off-chain collaborative verification based on erasure codes, further enhancing
data integrity verification and protection.

3 Related Technologies

In this section, we present the related technologies underpinning our collaborative storage scheme.
The on-chain system comprises blockchain technology and smart contracts, while the off-chain system
component is a distributed storage system. Furthermore, the Array code theory provides the basis for
data reliability assurance within our scheme.

3.1 Blockchain and Smart Contracts

Blockchain, a decentralized, immutable, and traceable distributed database [1], interconnects
transaction records in blocks, forming an ever-expanding chain. Its core principles encompass
decentralization, distributed consensus, encryption algorithms, and block linking, ensuring secure data
storage, immutability, and trustworthiness.
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Decentralization in blockchain disperses data and power across numerous network nodes, mitigat-
ing single points of failure and bolstering system reliability [31]. Encryption algorithms and consensus
mechanisms fortify data security; each block contains the previous block’s hash value, thwarting
tampering and preserving immutability.

Blockchain is categorically divided into public chains, private chains, and consortium chains
[32]. Public chains, open to all, epitomize decentralization and transparency. Private chains restrict
participation, tailored for specific entities and internal use. Consortium chains, overseen by multiple
entities, feature nuanced permissions and consensus mechanisms, vital in collaborative business
contexts. Prominent consortium chains encompass Hyperledger Fabric [33] and FISCO BCOS [34].

Smart contracts, autonomously executing on the blockchain, operate on code and conditional
rules [35]. They trigger transactions or business logic upon meeting specific criteria, ensuring depend-
able, intermediary-free transactions and cooperative relationships across diverse applications.

3.2 Distributed Storage Systems and Scalability

Distributed storage systems distribute data across multiple nodes, delivering high-capacity, high-
performance, and exceedingly reliable storage solutions [36]. This system segments data into blocks or
objects, storing them across various nodes. Through distributed storage and parallel processing, these
systems optimize capacity, throughput, and availability.

These systems consist of interconnected nodes, each equipped with storage media, processors,
and network interfaces. The architecture integrates metadata servers [37], data distribution strategies
[38], data consistency protocols, and fault tolerance mechanisms [39], guaranteeing data reliability and
consistency.

Prominent distributed storage systems include GFS [36], Ceph [40], HDFS [41], Lustre [42], and
IPFS [43]. GFS, created by Google, remains proprietary. HDFS, a Hadoop subproject, excels in
large-scale data but may not suit extensive multimodal data storage. Lustre, an open-source, high-
performance parallel file system, finds widespread use in supercomputing. Ceph, designed for high
performance, reliability, and scalability, provides unified distributed file services. IPFS, a decentralized
peer-to-peer file system, utilizes content addressing and peer-to-peer technology, enabling decentral-
ized data storage and sharing.

Distributed storage systems exhibit remarkable scalability and performance [44]. Scalability
permits seamless addition of storage nodes and processing capabilities to accommodate burgeoning
storage needs. These systems employ data sharding, caching, parallel processing, and load balancing
to enhance performance, bolstering response speed and throughput.

3.3 Array Codes

Array codes [6] are a special class of erasure codes, which involve only simple XOR and cyclic
shift operations in both the encoding and decoding procedures, thus are much more efficient than the
well-known Reed-Solomon codes in terms of computational complexity. These codes have been widely
used in RAID architectures and distributed storage systems in recent years. Our research group has
obtained several important results in array codes, including lowest density array codes [45–47], highly
fault-tolerant array codes [48], efficient encoding and decoding algorithms for array codes [49,50]. It
is worth mentioning that, the R�-Code [47] and the generalized [48] remains the most efficient lowest
density array codes and highly fault-tolerant array codes, respectively. Therefore, these codes will be
used in our designed collaborative storage system.
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4 System Design

In the following sections, we present our overall design for a collaborative storage system that
integrates both on-chain and off-chain technologies. We then provide the data flow among system
components and roles, followed by a detailed discussion on the design of our smart contracts. Lastly,
we explore the process of cluster expansion and dynamic node management.

4.1 System Architecture

The on-chain and off-chain collaborative storage system combines blockchain and distributed
storage technology to achieve secure, trustworthy, and efficient file storage and access functionalities.
The on-chain system utilizes blockchain technology to store file metadata and verification data,
ensuring the immutability and transparency of the stored information. Meanwhile, the off-chain
system leverages distributed storage technology, providing highly accessible file storage and retrieval
functionalities. Users benefit from a unified access interface, simplifying operations like file upload,
download, and queries. Additionally, the system incorporates database components to facilitate
efficient index creation and management. This collaborative approach ensures data security, scalability,
and flexibility, thereby delivering adequate file storage and access services to meet the demands of a
growing user base.

Fig. 1 presents the hierarchical structure of our collaborative storage system, which is divided
into three layers. The Application Layer integrates various components into the Collaborative Storage
Server, including Unified Access, File Verification, ECC Encoding/Decoding, Contract Invocation,
and Data Storage/Access Services Provider. The Tracing Layer employs blockchain and our custom
smart contracts for managing metadata, hashes, R�-Code check blocks, and more, thereby achieving
decentralization, traceability, access control, and trusted traceability. The Storage Layer utilizes a
distributed storage cluster for data storage, load balancing, decentralization, fault tolerance, resilience,
redundancy, and data storage/access.

Figure 1: Hierarchical architecture and component functions of the collaborative storage system

The diagram depicted in Fig. 2 provides a comprehensive overview of the system’s architecture,
which includes Collaborative Storage Servers, a blockchain network, and a distributed storage cluster.
Each component has distinct functions, elaborated below:
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Distributed Storage Cluster: Constructed using IPFS Cluster, this cluster comprises multiple
storage nodes, each responsible for storing file data. Within the off-chain system, there are storage
nodes and monitoring nodes. These storage nodes, driven by IPFS, facilitate fundamental file storage
and access capabilities. IPFS Cluster supervises the replication and sharing of data across numerous
IPFS nodes. Each node runs the IPFS node daemon and IPFS Cluster Service daemon, establishing
connections with other nodes to create a decentralized network where all nodes are equal peers. This
off-chain system guarantees high availability, fault tolerance, and scalability, ensuring secure storage
and rapid file access within a distributed environment.

Blockchain Network: Built on the Hyperledger Fabric blockchain platform, this network primarily
manages file metadata and verification data. Leveraging the decentralized and tamper-proof features
of blockchain technology it ensures the integrity and traceability of files. The on-chain system achieves
metadata storage and verification data preservation through smart contracts, aiming to provide secure
and reliable file information traceability and data recovery functionalities.

Collaborative Storage Servers: These servers seamlessly integrate on-chain and off-chain data
interfaces, featuring a unified access interface for user-friendly services. Users can store data in
the collaborative storage system by uploading files through the data storage interface. The system
automatically generates multiple copies of the original data in the off-chain system, extracts metadata
and verification data, and stores them in the on-chain system, ensuring the authenticity and reliability
of the data. Additionally, users can download file content from the off-chain system through the data
retrieval interface for local access and usage. Moreover, users can efficiently query file information
from either the on-chain or off-chain sources using the query interface.

Figure 2: On-chain and off-chain collaborative storage system architecture
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4.2 Data Flow among System Components and Roles

As Fig. 3 shows, during the data upload process, the file owner first registers and establishes an
account within the system. Subsequently, the file is uploaded through the designated account. In this
process, ServerN extracts crucial information such as metadata, hash values, R�-Code check blocks,
and share tags. These details are securely stored in the blockchain network, ensuring the immutability
and transparency of the data. Simultaneously, ServerN stores the original file in the distributed storage
cluster to guarantee high availability and rapid access. This procedure ensures the secure and reliable
preservation of uploaded data within the system.

Figure 3: Comprehensive data flow for data upload and download processes

In the data download process, shared users undergo registration and account creation to gain
system access. When users require specific file details, they query the system for file information,
including metadata and other relevant data stored on the blockchain network. Upon requesting file
access, ServerN retrieves the original file from the distributed storage cluster. Subsequently, ServerN
utilizes the pertinent data from the blockchain to validate the integrity of the original file and delivers
it to the user, allowing local access and utilization. This process ensures that users efficiently obtain
file information while guaranteeing the integrity and reliability of the downloaded files. Through these
operations, the system plays a pivotal role in safeguarding data security and user convenience during
both the data upload and download processes.

4.3 Smart Contract Design

Smart contracts, known as chaincodes in Hyperledger Fabric, represent operational logic codes
within the blockchain network. They handle data management tasks on the blockchain, defining
functions and rules for operations such as data creation, reading, updating, and deletion. These
contracts are executed under specific circumstances: 1. Transaction Submission: Smart contracts
validate and execute transactions when participants submit them to the blockchain network, adhering
to predefined content and rules. 2. Query Requests: Participants can request specific data through
queries, and smart contracts provide relevant results based on the query’s content.

The design standards for these contracts are known as the chaincode specification, outlining
the interface and behavior of the code. This specification covers transaction proposal handling,
state management, event triggering, and more. Detailed chaincode specifications are in official
documentation, providing comprehensive explanations and example code snippets.
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The smart contract developed in this study manages diverse file-related information on the
blockchain, including the Unified Identifier (CID), file metadata, hash data, parity-check blocks, and
permission details. Through this contract, functionalities like file information management, integrity
verification, data recovery, and access control can be implemented on-chain.

As depicted in Fig. 4, the smart contract utilizes specific data structures and functionalities
to enable file storage, access control, and data integrity verification. This contract processes logic,
including file information management, integrity verification, recovery of lost data, metadata updates,
and uploader’s permission validation.

Figure 4: Smart contract architecture

The meanings and generation methods of some fields in the data structure of the smart contract
are as follows: File ID: A unique identifier distinguishing different files within the system. File CID:
A unique content identifier generated using encryption algorithms, representing the file’s unique hash
value for retrieval from off-chain systems. Metadata: Descriptive file information, including name,
size, creation time, permissions, and directory status. Hash: The file’s hash value used for integrity
and consistency checks. Parity Blocks: Redundant blocks generated using R�-Code, aiding in data
recovery for lost or corrupted files. User Info: User-related details associated with the file, such as the
owner and shared users. Share Tag: A permission indicator determining whether the file can be shared
with other users.

The smart contract methods, although not limited to those depicted, include: InitLedger: Initial-
izes the ledger during contract deployment, setting the initial contract state, including data structures
and parameters. CreateFileInfo: Creates file information when a user uploads a new file, storing
metadata, hash values, and other details in the smart contract. GetFileInfo: Retrieves file details using
the file’s identifier (e.g., File ID) as a parameter, providing information like name, size, and upload
time. FileInfoExists: Validates the existence of specific file information based on the file’s identifier,
determining whether the file has been recorded.

4.4 Cluster Expansion and Dynamic Node Management

4.4.1 On-Chain System Expansion

Dynamic node management within a blockchain network is implemented by the blockchain,
adhering to the best practices and network security standards of Hyperledger Fabric to ensure stability,
security, and scalability. This process generally involves:

Designing Organizational Structure: Defining the structure of organizations, nodes, identities,
channels, and other elements, and determining roles and permissions for each organization in the
network, including configurations for new nodes.



2168 CMC, 2024, vol.78, no.2

Setting up Certificate Authority (CA) Services: Utilizing Fabric’s CA services to generate identity
certificates and keys for organizations and nodes. New nodes require appropriate identity certificates
to join the network.

Configuring Channels and Smart Contracts: Defining channels, configuring smart contracts, and
ensuring newly added nodes have the necessary permissions to join channels and participate in smart
contract transactions.

Updating Configuration Blocks: When new nodes join, a configuration block containing the
current network configuration information must be generated. New nodes require this block to
understand the network’s initial state.

Joining Channels: New nodes must send requests to join channels, which other nodes must validate
before allowing the new node to join.

Chaincode Installation and Instantiation: If new nodes need to execute specific chaincodes, these
chaincodes must be installed on the new nodes and instantiated on the channel.

4.4.2 Off-Chain System Expansion

Dynamic node management is fundamental in distributed storage systems. In the IPFS Cluster,
enabling dynamic management of new nodes involves configuring settings in the IPFS Cluster and
IPFS Swarm configuration files. Alternatively, APIs can be utilized to manage the dynamic addition
and removal of nodes, which generally include:

Initializing IPFS Cluster: Before launching IPFS Cluster, cluster configurations must be ini-
tialized. This includes defining the cluster’s identity (Cluster ID), configuring peering settings (API
endpoints, keys, and other elements), and specifying data storage locations.

Configuring IPFS Swarm: Ensuring correct configurations for IPFS Swarm (the underlying
communication layer of the IPFS network). Parameters such as listening addresses, ports, and
encryption methods must be set.

Node Identity Certificates: Ensuring that new nodes possess the correct identity certificates. TLS
certificates are necessary to secure communication between nodes.

Dynamic Node Addition: When a new node joins the cluster, it must connect to the cluster’s API
endpoint and undergo appropriate authentication. IPFS Cluster provides APIs for node management,
allowing new nodes to request cluster entry.

Configuring Discovery: Utilizing discovery services (such as mDNS, Bootstrap nodes) to enable
other nodes to discover new nodes and integrate them into the IPFS network.

Dynamic Node Removal: IPFS Cluster typically automatically detects inactive nodes. Suppose
a node remains offline for an extended period. In that case, the cluster marks it as unavailable,
automatically adapting by migrating storage and load requirements to other nodes to maintain overall
system stability and performance.

4.4.3 Collaborative Storage Server Expansion and Dynamic Node Management

The objective of the dynamic node management protocol is to facilitate the dynamic addition and
removal of nodes in distributed systems, ensuring cluster vitality and stability. This protocol enables
new nodes to join the distributed system at runtime while allowing nodes to securely exit without
affecting the entire system. Through periodic heartbeat messages, the protocol ensures the activity and
connection status of every node, preventing issues such as node disconnection due to faults or other
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reasons. When a node exits due to failure or other reasons, the cluster adapts automatically, migrating
storage and load requirements to other nodes, ensuring the overall stability and performance of the
system.

Firstly, a unique identifier and public-private key pair are generated for each node in the cluster.
Subsequently, each node regularly sends heartbeat messages to indicate its activity status. These
messages should include the sender’s identifier, status information, timestamp, and other elements.
A heartbeat interval is defined. Each node maintains a node status table, recording activity status, the
last heartbeat time, and other information about other nodes. If a node does not receive a heartbeat
message from another node for a prolonged period, it can mark that node as unavailable. When a new
node wishes to join the cluster, it can send a join request to any node in the cluster. The receiving node
can verify the new node’s identity, add it to the node list, and inform other nodes. Upon receiving the
notification, the new node can send heartbeat messages to other nodes. When a node intends to exit
the cluster, it can send an exit notification to other nodes in the cluster. The receiving nodes should
remove the exiting node from the node list and notify other nodes. The removed node stops sending
heartbeat messages. If a node does not receive heartbeat messages from another node for an extended
period, it marks the node as unavailable and initiates node replacement.

5 Methods for Trusted Data Sharing
5.1 Data Storage Process

The data storage process aims to receive files uploaded by users, store them in the server cache,
save the original files in the IPFS Cluster, store metadata and verification data in the Fabric network,
and index information in the database. As Fig. 5 shows, here is a detailed overview of the execution
flow:

Figure 5: Data storage flowchart

Upon receiving a file upload request, the server parses the user’s account information from their
previous login, capturing details like username and user ID for on-chain ownership identification. Any
errors trigger an error message response. The server records the file reception start time, creates a user
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directory, defines the storage path, and saves the uploaded file in the server cache. It then calculates
reception end time and latency consumption.

Simultaneously, a goroutine is initiated to save the file to the IPFS system. A channel is established
to receive IPFS file writing results, and the start time of this IPFS data write operation is noted. IPFS
File Saving Operation: The file is sent to the IPFS system for storage, and the result is communicated
through the channel. The system waits for IPFS upload results and the completion of on-chain
operations. In case of IPFS failure, an error message is returned. If successful, a JSON response is
generated, including reception duration, IPFS writing time, and output information, and sent back as
a confirmation.

Concurrent tasks handle file metadata retrieval, hash calculation, and parity-check block compu-
tation. Fabric SDK facilitates on-chain data transactions. The operation duration and potential errors
are returned.

Extracting parity-check blocks involves reading the specified input file, encoding it using R�-
Code encoder, and writing the last parity-check block to the output file. Here are the steps: Firstly,
the designated input file is opened. If unsuccessful, an error message is generated, and an error is
returned. Details about the input file, including its size, are retrieved. Block size (256 KB), the number
of data blocks (dataShards), and the total number of data and parity-check blocks (totalShards) are
calculated. The R�-Code encoder is initialized, and a two-dimensional byte slice is created to store
data and parity-check blocks. The file is read in a loop for encoding, and a data block slice is created
to store the read data. If a non-EOF read error occurs, an error message is generated, and an error is
returned. If the read data is less than a block’s size, zero padding is applied. The data and parity-check
blocks are passed to the encoder for encoding. If an encoding error occurs, an error is returned. An
output file is created to store the encoded data, and the last parity-check block is written to this file.
If writing to the output file fails, an error message is generated, and an error is returned. Finally, nil is
returned, indicating no errors occurred.

A goroutine is initiated to execute on-chain operations. A channel is established to receive results
from both uploads and on-chain operations. The start time of these operations is recorded. Once
executed, the results are sent to the channel. If both upload and on-chain operations fail, an error
message is returned. If successful, a JSON response confirming on-chain data storage, including
upload and on-chain operation duration, is generated and returned. Finally, file index information
is stored in the database.

5.2 Trusted Data Sharing Process

The Trusted Data Sharing Process serves to facilitate data download and recovery. It employs
multiple threads to acquire verification data and original files from Fabric and IPFS. Subsequently,
leveraging the obtained verification data, it verifies the integrity of the files and conducts necessary
recovery operations if required. Finally, the process furnishes the client with download links, veri-
fication results, and metadata in JSON format. This information includes relevant status updates,
download links, and detailed time consumption statistics.

As Fig. 6 shows, initially, the process entails parsing the request parameters and validating user
permissions. The system establishes a dedicated channel (ch) to handle data flow efficiently, acting as
a conduit for receiving hash data and verification information from Fabric, with the process’s start
time being meticulously recorded.
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Figure 6: Data download and verification flowchart

A dedicated thread is initiated to retrieve hash data and verification details from Fabric. This
operation is facilitated through the initialization of the Fabric SDK, establishing a crucial link
with the Fabric network. Comprehensive file details are then extracted, specifically reading detailed
information of the designated CID file. The acquired data is promptly dispatched to channel ch for
further processing.

Simultaneously, another thread is launched to download files from IPFS, employing the IPFS
client. During this operation, the file’s destination path is defined, and the precise start time for the
IPFS download process is noted. In the event of any download errors, these issues are meticulously
logged and transmitted to the error channel. The overall time taken for the IPFS download process is
accurately calculated.

Verification data procured from channel ch is stored in a designated file. Subsequently, the process
systematically verifies the file’s integrity. If no recovery is necessitated, the process accurately calculates
the duration required for file recovery. In such cases, a null value is dispatched to the error channel.
Conversely, if file recovery is imperative, the process seamlessly executes recovery operations utilizing
the R�-Code.

The integrity of the file is scrutinized through erasure coding mechanisms. This approach assesses
the file’s completeness and triggers data recovery as needed. Fundamental steps include opening the
input file, retrieving essential file information such as size, and calculating the number of data blocks
(dataShards) and total blocks (totalShards). Initialization of the R�-Code encoder follows, wherein
appropriate settings for data blocks and parity-check blocks are configured. A two-dimensional byte
slice (data) is generated to meticulously store original data blocks and parity-check blocks. File content
is read in manageable chunks, with the final parity-check block extracted from the parity file and
stored appropriately. Erasure coding is then meticulously executed to determine the necessity for data
recovery. In cases of verification failure, meticulous data recovery processes are activated. An output
file is created to store the recovered data securely. Conversely, if verification attests to the file’s integrity,
signifying that no recovery is needed, pertinent information is relayed accordingly.
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Lastly, a comprehensive JSON response is crafted, encapsulating diverse status updates, download
links, and detailed time-related statistics. This JSON response undergoes encoding into a string format,
accompanied by configuration of response headers. The finalized response is then disseminated.

6 Experimental Evaluation

In this section, we explore the experimental setup and performance evaluation of our collaborative
storage system. We compare the capacity of our system under different erasure coding parameters. We
conduct system reliability tests to assess the system’s fault tolerance and recovery capabilities under
various abnormal conditions. Finally, we evaluate the system’s latency and throughput using diverse
open-source datasets.

6.1 Experimental Environment and Deployment Information

This section provides a comprehensive overview of the deployment process for the experimental
hardware and software setups, detailing the configurations of the Hyperledger Fabric system and the
IPFS Cluster cluster. All components of our collaborative storage system were distributed across three
servers, as detailed in Tables 1 and 2.

Table 1: Hardware environment of three servers

Item Description

CPU Intel (R) Xeon (R) Silver 4216 CPU @ 2.10 GHz
Memory Samsung 2400 MHz DDR4 96 GB
SSD WD BLACK SN770 500 GB

Table 2: Software environment of all servers

Item Description

OS Ubuntu server 20.04 LTS
Golang Version 1.20.3
MySQL Version 8.0.33
Kubo (IPFS) Version 0.19.1
Ipfs-cluster-service Version 1.0.6
Hyperledger-fabric Version 2.5.0
Hyperledger-fabric-ca Version 1.5.6

In this deployment, IPFS components were distributed across the three servers, and all IPFS Clus-
ter components were co-located. Hyperledger Fabric was containerized, employing three containers on
the first server to simulate three nodes. The Hyperledger Fabric CLI and chaincode were containerized
and deployed on the first server as well. Hyperledger Explorer was deployed on the first server, with
port forwarding configured on the host machine, facilitating seamless access to Hyperledger Explorer
through the browser. All other necessary software packages were systematically deployed across these
three servers.
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6.2 Capacity Comparison

In the collaborative storage system, raw data is stored off-chain, while metadata and erasure
coding check blocks are stored on-chain. The capacity improvement of the collaborative storage system
under different sizes of erasure coding check blocks depends on the specific parameters of erasure
coding and the on-chain storage capacity. Fig. 7 illustrates the storage capacity of the collaborative
storage system relative to the blockchain system under different ratios of erasure coding check blocks,
with its storage capacity being 4 to 10 times that of the blockchain system. It is evident that the
collaborative storage system significantly reduces on-chain storage requirements, enhancing storage
efficiency while ensuring data reliability and security.

Figure 7: Storage capacity of collaborative storage system relative to blockchain system under different
erasure coding check block ratios

6.3 System Reliability Testing

System reliability testing is a crucial step in ensuring the system operates smoothly under various
abnormal conditions. In the blockchain system, all data is fully replicated, with each node possessing
all data. In our implemented system, the redundancy parameter for distributed storage is set to three
copies. In the reliability tests, various potential crash scenarios were tested to verify the system’s fault
tolerance and recovery capabilities.

During distributed storage node crash tests, two distributed storage nodes were manually shut
down to simulate node failures. We added an additional node and the system’s data redistribution and
successful data pinning to other nodes were observed. Additionally, user access to data was tested to
ensure normal functionality. When a node fails, the cluster automatically re-pins the file to a new node,
ensuring data redundancy. This ensures that the off-chain system continues to operate normally and
provides the required file services. Fig. 8 displays the automatic re-pinning log information for a data
block in case of an abnormality.
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Figure 8: Log information of IPFS cluster automatically pinning data blocks

In tests simulating blockchain node failures, one container was manually closed to simulate a
blockchain network failure. The response of the blockchain client was observed, checking if blockchain
data could be obtained through other nodes or backup nodes. The results demonstrated that the system
could continue to obtain blockchain data through other nodes, ensuring the integrity and availability
of blockchain data.

During collaborative storage server crash tests, services on one node were manually shut down.
The system load seamlessly switched to other nodes, ensuring the ability to continuously provide file
upload and sharing services.

6.4 Latency and Throughput Testing

For performance testing, diverse open-source datasets were used for file storage and sharing
tests. File sizes ranged within the expected processing scope of our system, gradually increasing, with
some files surpassing 500 MB for comprehensive performance evaluation. Test scripts were utilized
to construct file upload requests and record results. These automated tests saved results persistently,
capturing each upload’s start and end times and facilitating upload latency calculation.

Fig. 9 illustrates the latency to file size concerning (a) file upload, (b) erasure coding, (c) query, (d)
download. Generally, upload latency increases with file size. In Fig. 9a, “Upload Duration” signifies
total upload time, “IPFS Write Time” indicates time taken to store the original file in the off-chain
IPFS Cluster system, and “Chain Data Time” represents latency for data extraction and storage in
the on-chain Fabric system. Notably, upload latency gradually rises with file size, exceeding 30 s for
files larger than 500 MB. Large file upload latency is mainly due to the distributed storage system’s file
storage process; blockchain consumption is comparatively minor. Our system’s performance is on par
with enterprise-level storage services. On-chain data storage time ranges from 0 to 200 ms, well within
acceptable limits.

In Fig. 9b, “Encode and Read Parity Time” illustrates latency to file size for encoding and reading
parity check blocks using R�-Code relative. Erasure coding time is significantly smaller than the time
taken to store files in the distributed storage system. In Fig. 9c, “Ipfs Delay” represents the time taken
to query file information from off-chain IPFS, and “Fabric Delay” represents the time taken to query
file information from on-chain Fabric. Query latency for file-related metadata remains within 60 ms. In
Fig. 9d, “Receive Time” indicates the time taken to obtain files from the server. Overall, the download
time is considerably shorter than the upload time and falls within acceptable limits.

Fig. 10 demonstrates throughput to file size for (a) file upload, (b) download. Clearly, under
gigabit network bandwidth, our collaborative storage system achieves a maximum upload throughput
of 38 MB/s, averaging 20 MB/s. During file downloads, maximum throughput reaches 50 MB/s,
averaging 30 MB/s. Compared to using the blockchain alone, the throughput of the collaborative
storage system has significantly improved. When processing test files ranging from 100 to 500 MB,
its throughput surpasses the on-chain system by a factor of 4 to 18.
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Figure 9: Performance by file size for (a) File upload, (b) R�-Code encoding, (c) Query, (d) File
download

Figure 10: Performance by file size for (a) File upload, (b) File download
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7 Conclusion and Future Work

This study explores the reliable storage and trustworthy sharing of data in Internet of Things
(IoT) systems. To address the limitations of traditional systems and meet the increasing demand
for data security, we propose an innovative system architecture integrating on-chain and off-chain
collaboration. This architecture merges blockchain and distributed storage technologies, achieving
high-capacity, high-performance, traceable, and verifiable data storage and access functions. This
approach supports the optimization and decision-making processes within IoT systems.

In the on-chain system, we utilize Hyperledger Fabric, incorporating smart contracts and smart
contract invocation interfaces. This design facilitates the management of metadata, validation data,
and permission information for raw data. Simultaneously, in the off-chain system, we employ the IPFS
Cluster, designing interfaces that ensure reliable storage and efficient access to large-scale files. We
develop a collaborative storage server that integrates both on-chain and off-chain operation interfaces,
enabling extensive data collaboration and providing users with a user-friendly interaction experience.
Simultaneously, by formulating sensible data sharing mechanisms and privacy protection strategies,
secure data sharing can be realized, fostering data reuse. By integrating R�-Code technology, the
design of the coding and storage processes enables collaborative verification and recovery functions
for both on-chain and off-chain data.

Empirical findings substantiate that our collaborative storage system significantly enhances
storage capacity compared to the standalone use of blockchain. Regarding system fault tolerance, it
can withstand the failure of all other copies of a specific piece of data, ensuring uninterrupted service
provision. Furthermore, the system exhibits high scalability and incorporates an automatic disaster
recovery mechanism. Concerning data integrity verification, our methodology employs a triple-
redundant protection mechanism encompassing redundant storage, hash verification, and erasure
code verification, thereby ensuring secure data storage and trustworthy shared data. Regarding system
performance, extensive stress tests conducted on open-source datasets reveal that its throughput
surpasses the on-chain system by a factor of 4 to 18.

This study, implemented on the third-generation blockchain platform Hyperledger Fabric, known
for its superior performance and scalability. While existing research predominantly focuses on public
chains, discussions related to consortium chains often neglect system scalability.

Furthermore, our study introduces the IPFS Cluster for cluster management, as previous scholars
have yet to explore this avenue. Many existing IPFS-based studies restrict their focus to single-node
setups, neglecting the potential of distributed clusters. Our study enhances cluster management and
data orchestration, improving system performance and scalability.

An innovative aspect of our study is proposing a collaborative verification method based on
erasure codes for on-chain and off-chain data. In traditional research, erasure codes are only employed
for data verification in distributed storage systems. Our method significantly bolsters data reliability.

In conclusion, this paper materializes a collaborative on-chain and off-chain storage system
based on blockchain and distributed storage, affirming its feasibility and effectiveness in IoT data
storage and sharing. Future endeavors could focus on optimizing system performance and exploring
applications in more practical scenarios. Additionally, we have observed significant fluctuations in
system performance, which warrants further investigation into the causes of these fluctuations and
subsequent optimization in future studies.
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