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ABSTRACT

The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-
cation techniques. Biometric credentials are increasingly being used for verification due to their advantages over
traditional methods, making it crucial to safeguard the privacy of people’s biometric data in various scenarios. This
paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems.
It proposes a noble and thorough taxonomy survey for privacy-preserving techniques, as well as a systematic
framework for categorizing the field’s existing literature. We review the state-of-the-art methods and address
their advantages and limitations in the context of various biometric modalities, such as face, fingerprint, and eye
detection. The survey encompasses various categories of privacy-preserving mechanisms and examines the trade-
offs between security, privacy, and recognition performance, as well as the issues and future research directions.
It aims to provide researchers, professionals, and decision-makers with a thorough understanding of the existing
privacy-preserving solutions in biometric recognition systems and serves as the foundation of the development of
more secure and privacy-preserving biometric technologies.
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1 Introduction

The science of identifying people based on their physical, behavioral, and physiological attributes,
such as the face, voice, iris, gait, and fingerprints, is known as biometrics [1]. Biometrics offers
enhanced assurance by verifying an individual’s identity through a unique, tangible trait. They are
useful for authentication due to their biometric features, which prevent them from being lost or
stolen like tokens and from being forgotten like passwords or pins. However, most users’ passwords,
PINs, and personal identifying information are susceptible to data breaches, allowing hackers to
access billions of accounts [2] and compromise traditional authentication methods [3]. With its speed,
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accuracy, and user-friendliness, biometrics is a valuable tool for mitigating cryptography’s inherent
security vulnerabilities by effectively identifying genuine users. Equipped with sensors like iris or
fingerprint scans, biometrics is an efficient and reliable solution in access control systems, offering
robust authentication [4]. Using a classical biometric authentication tool, physiological and behavioral
biometric parameters are collected, and distinguishing traits are extracted to create a biometric
template during enrollment. The system processes a different biometric input during verification or
identification and compares it to the stored template to determine acceptance or rejection [5].

Biometric authentication systems offer usability benefits but are vulnerable to threats due to
their fuzziness. Traditional encryption cannot protect biometrics due to their complexities. The
ramifications of successful attacks in biometric systems can be profound, adversely impacting users’
lives and breaching their privacy. Unlike traditional credentials, biometric information cannot be
kept secret or concealed; in the event of theft, compromised biometrics are not easily revocable [6].
Biometric templates carry a significant risk of compromise, including capture, cloning, or forgery,
which can result in identity theft or individual profiling. This risk is amplified when biometrics are
used across multiple databases. Stolen biometrics can potentially expose sensitive information about
individuals, such as their ethnic groups and genetic characteristics [7] and medical conditions [8], or
even engage in unlawful activity by compromising medical records [9]. Given the risks associated with
biometric data, it is crucial to develop procedures that ensure both the efficiency of authentication
systems and the privacy of biometric information. An effective biometric protection strategy should
be irreversible, making it computationally infeasible to reconstruct the original biometric data from
encrypted templates [10].

This paper delves into an extensive exploration of privacy-preserving techniques to protect
biometrics data and the potential threats to biometric systems. It introduces a novel and compre-
hensive taxonomy of privacy-preserving techniques, offering a structured framework for classifying
the existing literature in this domain. A thorough review of state-of-the-art methods is presented,
accompanied by an analysis of their security, performance, use cases, limitations, and advantages
within various biometric modalities, including fingerprint, face, and iris recognition. The survey
encompasses a wide range of privacy-preserving mechanisms, scrutinizes the trade-offs between
security, privacy, and recognition performance, and addresses pertinent issues while outlining future
research directions. This study aims to equip researchers, professionals, and decision-makers with a
complete understanding of the existing privacy-preserving solutions in biometric recognition systems,
thus laying the foundation for developing more secure and privacy-enhanced biometric technologies.

This paper is organized in a structured manner to provide an extensive exploration of the topic.
The following section offers a concise overview of the different biometric modalities employed in
authentication systems. Section 3 focuses on classifying major security concerns associated with
biometric authentication systems. This section highlights the vulnerabilities and potential threats
that must be addressed to ensure robust security in such scenarios. Section 4 is dedicated to the
categorization of privacy-preserving techniques. It offers a detailed analysis of various approaches
and strategies employed to protect the privacy of individuals in biometric authentication systems. This
section provides valuable insights into the different privacy-preserving mechanisms available. Section 5
serves as a significant section, encompassing an overall summary of the findings, a discussion on open
research problems, and an exploration of future work in the field. This section consolidates the main
points and identifies areas for further investigation, offering a comprehensive view of the current state
of research. Section 6 brings the paper to a close, summarizing the key findings and highlighting the
significance of the study conducted.
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2 Biometric Modalities

A biometric modality is any biometric information that can be used to distinguish individuals. A
biometric modality is a specific category within a biometric system, determined by the kind of human
characteristic it processes [11]. The majority of biometric data is statistical. More sample information
increases the likelihood of a distinct and dependable system. It can measure a person’s physical features
and behavioral tendencies utilizing a variety of modalities. Some biometric modalities last longer and
are more challenging to show and collect. Some are more susceptible to environmental variables that
lower sample signal-to-noise ratio and performance. An ideal biometric data set has the following
characteristics shown in Table 1.

Table 1: Ideal biometric data characteristics

Characteristics Description

Uniqueness Contains unique biometric data for each individual, making it difficult to
forge or counterfeit.

Permanency Maintains relatively unchanged biometric data over time, preventing it
from being quickly impacted by aging, injury, or disease.

Collectability High quality, ensuring reliable data collection, meticulous error review,
proper labeling, and organization.

Accuracy Precisely as possible, requiring reliable data collection and meticulous
review for errors.

Universality Includes biometric data from all individuals, not just specific groups like
those with disabilities or geographical locations.

Diversity Encompassing biometric data from individuals of all ages, genders, races,
ethnicities, and locations ensures accurate biometric recognition.

Volume An extensive database is crucial for training biometric recognition
algorithms, ensuring accurate recognition across various conditions.

Ideal biometric features should be universally present, uniquely identifiable, remain constant over
time, be secure against spoofing, be affordable, socially acceptable, respect privacy, and be scalable
for large-scale deployments. Different features prioritize different aspects, with fingerprints and iris
patterns excelling in universality and uniqueness, while facial features and voice offer better cost and
social acceptance. These characteristics have varying strengths and weaknesses, and choosing the ideal
option depends on the specific application and its priorities [12]. The human characteristics that can
serve as biometric modalities encompass a diverse range. As illustrated in Fig. 1, these modalities are
commonly referenced in research and commercial applications and can be broadly classified into two
groups: (1) Behavioral biometrics and (2) Physical biometrics.

2.1 Behavioral Biometrics

Behavioral biometrics focuses on the patterns of human actions, typically represented as time
sequences. This is distinct from physical biometrics, which centers on inherent human features
like fingerprints or the iris. Behavioral biometrics evolves with changes in an individual’s behavior
over time. Common examples include keystroke patterns, walking rhythms, cognitive patterns, and
handwriting dynamics. The biometric field also considers other behavioral aspects such as hand grip
strength, lip movements, mouse dynamics, multi-touch gestures on mobile devices, facial expressions
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like smiling, brain wave patterns (EEG), vocal nuances, online social behaviors, driving habits, and
emotional responses. Behavioral biometrics offers a robust defense against fraudulent activities by
focusing on a user’s digital interactions and cognitive patterns. Instead of relying solely on static data
or physical attributes, it evaluates online behaviors to ascertain a user’s identity. By leveraging machine
learning, behavioral biometrics can discern patterns in human actions, verifying if an online user is
genuine or if the activity is potentially a cyber threat.

Figure 1: Various biometric modalities used for authentication and research purposes

2.2 Physical Biometrics

Physical biometrics focuses on the inherent physical attributes of an individual. These character-
istics, related to the form and structure of the body, typically remain consistent throughout a person’s
life. However, capturing these traits can be influenced by various external elements, such as the pressure
applied to the scanning device, the cleanliness of the scanning surface, and prevailing environmental
conditions. Commonly recognized physical biometrics encompass facial features, fingerprints, iris
patterns, palm prints, hand geometry, and overall body contour. Research has also delved into other
unique identifiers like body scent, brain formations, ear configurations, electrocardiogram (ECG)
patterns, genetic markers, hair patterns, head shape, specific imaging of body sections, lip formations,
nail characteristics, inner ear sounds, retinal patterns, vascular patterns in hands and fingers, skin
properties, footprints, sweat gland patterns, dental structures, thermal images, and toe configurations.

3 Biometrics Security Threats

Biometrics’ parameters, potential errors, scenarios, characteristics, system constraints, and mod-
ern approaches must be understood to improve or refine existing systems. No biometric system is
flawless, and there’s a continuous pursuit to boost its precision and efficiency. Despite their uniqueness,
biometrics cannot be reset or changed once hacked, making them vulnerable. A biometric data breach
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has two effects. First, stolen data might be misused maliciously. Secondly, unlike passwords, biometrics
are immutable, making them irreplaceable once compromised. Malicious attacks can compromise
biometric security and performance. Issues like spoofing, sensor inaccuracies, variations within classes,
and similarities between classes pose challenges. Comprehensive analysis and preventative measures
must be implemented into biometric system design for high-risk threats. Table 2 details biometric
system risks to present a wide view of biometric security challenges. Privacy-preserving approaches
cannot mitigate all of these dangers, although current research protects biometrics from most of them,
as mentioned in the next section.

Table 2: Most widely concerned biometric security threats

Threat Description Impact Mitigation strategies

Spoofing/Presentation
attacks [13]

Fake biometric sample
presentation to the
system, such as a
fingerprint mold, facial
mask, or voice
recording.

Unauthorized access to
the system.

Multi-factor
authentication,
implement
Anti-spoofing
measures, liveness
detection, artificial
intelligence
(AI)-based spoofing
detection

Replay attacks [14] Replaying a previously
captured biometric
sample to the system.

Illegal access to the
system.

Secure
communication,
session-based tokens,
strong encryption

Biometric data theft [15] Misuse of stored
biometric information
and unauthorized
access to it.

The ability to
impersonate the user.

Data encryption,
secure storage

Template aging [16] Changes in biometric
traits over time can lead
to incorrect matches.

System failure,
Interrupt the regular
use of the system.

Regular template
updating, robust
algorithm
implementation

Malware attacks [17] Used to infect the
biometric system and
steal biometric data or
disrupt the system’s
operation.

Physical/remote access
to the system.

Regular system
updates,
anti-malware
software

(Continued)
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Table 2 (continued)

Threat Description Impact Mitigation strategies

Privacy invasion [18] Collecting, using, or
disclosing biometric
data without the
individual’s consent.

Physical/remote access
to the biometric
database.

Strict privacy
policies obtain
consent from
individuals before
collecting, using, or
disclosing their
biometric data

Deepfakes and
AI-enhanced spoofing
[19]

Exploit the capabilities
of deep learning and AI
to create realistic fake
biometric samples.

Ability to acquire user
biometric data or access
the biometric system
remotely.

AI-based deep fake
detection, liveness
detection, and
anti-spoofing
measures

Biometric data breaches
[20]

Breaches of the
biometric database can
lead to the theft of
biometric data, which
can be used for
malicious purposes.

Remote access to the
database.

Secure and
encrypted data
storage, Intrusion
detection systems,
safe access control

Cross-device variability
[21]

Biometric templates
collected from different
devices may vary,
leading to false rejects.

Interrupt the regular
use of the system.

Standardization,
multi-modal
biometrics, robust
algorithm for
cross-device
variability

Physical harm/Coercion
[22]

Attackers may use
physical harm or
coercion to force a user
to reveal their biometric
data.

Physical access to the
user.

Duress detection
mechanisms, security
guards, and training
on resisting attacks.

Function creep [23] The use of biometric
data for purposes other
than those for which it
was initially collected.

Physical/remote access
to the biometric system

Strict data use
policies, regulatory
oversight

Phishing [24] Used to trick users into
revealing their
biometric data or login
credentials.

Physical/remote access
to the user.

Implement security
awareness training
for users to help
them identify and
avoid phishing
attacks.
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4 Privacy-Preserving Technologies

Privacy-preserving biometric recognition technologies aim to protect an individual’s data while
allowing for accurate and efficient identity verification. These technologies are essential for ensuring
that biometric data is not misused or compromised. This section offers a new viewpoint on classifying
privacy-preserving biometric technologies. In this section, we have categorized privacy-preserving
techniques into specific groups, as outlined in Fig. 2.

Figure 2: Categorization of privacy-preserving technologies

4.1 Cryptography-Based Techniques

4.1.1 Homomorphic Encryption

Homomorphic Encryption (HE) is a transformative technique that allows data to be encrypted
into a form that can still be processed and analyzed as if it remained in its original state. This unique
capability ensures that encrypted data can undergo complex mathematical operations without ever
being decrypted, making it particularly valuable for preserving privacy in biometric authentication.
The idea of homomorphic encryption was first proposed by Rivest et al. [25], and in 2009, Gentry [26]
introduced a practical yet computationally intensive HE framework. Fully Homomorphic Encryption
(FHE), Partially Homomorphic Encryption, and Somewhat Homomorphic Encryption are three stan-
dard HE-based biometric encryption algorithms. Chandrasekhar et al. [27] proposed a methodology
using HE for secure facial authentication and data protection in cloud computing by generating facial
keys for encryption. They used facial templates for authorization and authentication and compared
facial keys with templates of face data for encryption. Chitrapu et al. [28] assessed the feasibility
of safeguarding an iris template database using FHE. They also provided an extensive overview of
biometric authentication through FHE, detailing HE-compliant algorithms and biometric template
extraction methods. Numerous studies have assessed HE methods’ robustness to side-channel, fault,
and chosen-plaintext assaults. The results reveal that HE-based methods can compute biometric
templates accurately and attack resistance. HE encryption promises to improve biometric privacy and
security, but additional research is needed to address latency, restrictions, and new applications.
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4.1.2 Functional Encryption

Functional encryption (FE) extends the concept of public-key encryption, allowing individuals
with a specific secret key to access a particular function of the encrypted content. Amit Sahai and Brent
Waters introduced the idea of functional encryption, which was then formalized by Boneh et al. in
2010 [29]. FE can be used to design secure systems that protect sensitive biometric information while
enabling selective access based on specific functions or features. Ernst et al. proposed [30] a secure and
privacy-preserving biometric-based two-factor authentication protocol in the Universal Composabil-
ity framework. The protocol uses FE to compute the distance between encrypted biometric templates,
achieving high security while protecting user privacy. They also presented an efficient instantiation of
the protocol using inner-product functional encryption. Shahzad et al. [31] surveyed the applications
of FE in the Internet of Things (IoT). They found that FE can provide fine-grained access control
for IoT devices, protecting them from security vulnerabilities. They also identified research trends
and open challenges in FE for IoT security. FE for biometrics is a potential encryption method, but
it is necessary for rapid and safe biometric authentication procedures, robust and accurate feature
extraction and representation, and standardized and interoperable biometric systems.

4.1.3 Secure Function Evaluation

Secure Function Evaluation (SFE) is another field of cryptography that focuses on crafting
algorithms that empower parties who might not trust each other to compute functions on their
respective inputs without compromising data privacy. SFE was initially introduced by Yao [32] and has
been applied in various domains [33], including biometrics, which can be used to compare biometric
templates securely or perform biometric identification. Oishi et al. [34] proposed an improved archi-
tecture for accelerating SFE using an Field-Programmable Gate Array (FPGA)-based GC accelerator.
The architecture allows managers to perform multiple rows of pipeline processing simultaneously and
optimizes RAM implementation. This results in a 26% performance improvement over the state-of-
the-art garbling accelerator while protecting privacy. With the combination of different encryption
techniques, various SFE algorithms have been proposed for biometric applications, including Garbled
Circuit-based SFE [35] and Oblivious Transfer-based SFE [36]. Each method has unique strengths and
challenges concerning efficiency, security, and scalability. Current research endeavors aim to refine
SFE’s efficiency, ensure its compatibility with prevailing biometric systems, and bolster its defense
mechanisms. Addressing these challenges will pave the way for broader SFE adoption, enhancing the
confidentiality and security of sensitive information.

4.1.4 Hybrid Protection

The Hybrid Protection technique combines cryptographic techniques that enhance biometric
data protection in storage and transmission. The technique combines encryption and obfuscation
to protect the biometric data against attacks. Bassit et al. [37] compared Bloom Filter (BF) and
Homomorphic Encryption (HE) approaches for biometric template protection. The authors proposed
a hybrid approach combining the benefits of both, achieving unlinkability, high accuracy, and seven
times faster performance than traditional HE. Shahreza et al. [38] developed a hybrid scheme that
merges cancelable biometrics with homomorphic encryption to protect biometric templates while
optimizing computational efficiency. Their model, tested on state-of-the-art facial recognition models
on MOBIO and LFW datasets, is open-source, inviting further enhancements. The Hybrid Protection
technique has consistently demonstrated its superiority in protection and efficiency. Current research
efforts aim to perfect this approach, particularly in developing domains like cloud computing.
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4.1.5 Lattice-Based Cryptography

The lattice-based cryptography technique, first introduced by Ajtai [39], has shown promise
in protecting biometric data. This approach transforms biometric templates into lattice points in
cryptographic operations such as encryption, signature schemes, and secure multiparty computation.
It offers several advantages for biometric data protection, including resistance to quantum attacks,
efficient computation, and strong security guarantees. Fu et al. [40] studied lattice-based attribute-
based encryption systems, focusing on expressiveness, complexity assumptions, efficiency, and security
and identifying areas for further research in this field. Althobaiti et al. [41] proposed a new face-
recognition cryptosystem that combines symmetric and asymmetric cryptography. The proposed
system is lightweight and efficient, making it suitable for smart world applications and 6G networks.
Lattice-based encryption is being investigated for biometric data security. Some approaches are
computationally costly; thus, security and efficiency must be balanced. Lattice-based operations affect
biometric matching algorithms, requiring additional design considerations. Key management and safe
biometric data exchange may benefit from novel algorithms, constructions, and lattice-based methods.

4.2 Hashing-Based Techniques

4.2.1 Biometric Hashing

Biometrics Hashing (BH) converts biometric data, such as fingerprints or facial recognition, into
a unique digital code that can be used for identification or authentication purposes [42]. Yu et al. [43]
introduced a Secure BH technique against Relation-Based Attacks that optimizes dependent min-
entropy to minimize distance relation leaking on source biometrics and offers improved security with
equivalent or superior recognition performance. The technique reduces the Equal Error Rate on the
face dataset LFW by 21% and has a low probability of successful white-box attacks. Yu et al. [44]
developed anti-similarity-attack hashing for privacy-preserving biometric recognition, enhancing
identification performance and security against similarity-based reconstruction attacks based on
experiments on publicly available biometric datasets. Raja et al. [45] proposed a unique hashing
strategy with semantic labels for biometric template security to avoid biometric data leakage and
likability difficulties, which may be extended to individual subjects by employing auxiliary pseudo-user
enrollment data. With experimental validation and security analysis, the proposed strategy achieves a
high valid match rate and a nearly equal error rate and meets the additional requirements of biometric
template safety. BH has the potential to protect biometric data storage and validation, but it faces
security vulnerabilities and performance issues. Building solid BH algorithms, studying multi-modal
BH, and using blockchain for safe data storage should be future goals.

4.2.2 Bloom Filters

Bloom Filters (BF) are efficient structures for storing and retrieving large data sets that were
first introduced by Bloom [46]. They have been studied for enhancing the privacy and security of
biometric templates. Bansal et al. [47] introduced a scheme that uses format-preserving encryption
and BF to protect biometric templates. It achieves high recognition performance and security for uni-
biometric and multi-biometric datasets. Zhou et al. [48] proposed a new BF-based biometric template
protection scheme that addresses the linkability issue of the original scheme. The new scheme achieves
high recognition accuracy while resisting reverse reconstruction attacks. BF-based biometric methods
can improve template security and privacy, but they have drawbacks. Biometric data fluctuation, false
positives, and data collisions are potential difficulties. Such systems may require specific equipment
and experience to deploy and maintain, and overcoming these problems is essential for practical use.
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4.2.3 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a method designed to identify approximate nearest neighbors
within vast, high-dimensional spaces. It was first proposed by Indyk et al. [49]. This technique benefits
biometrics, where data like fingerprints or facial scans must be swiftly compared to a comprehensive
database. The essence of LSH is to transform high-dimensional data into more manageable hash
codes, ensuring that similar data points likely end up with identical or closely related hash codes.
Alshahrani et al. [50] proposed an efficient LSH-based approach for face image retrieval using facial
soft biometrics. Their Soft BioHash method outperforms the Hard BioHash approach regarding
accuracy and retrieval speed on the LFW database. Mashnoor et al. [51] proposed a novel method for
network traffic fingerprinting based on LSH. Their proposed method achieves 12% higher accuracy
compared to state-of-the-art ML-based approaches. The biometric applications of LSH are promising,
yet obstacles remain. These include balancing security and performance, processing high-dimensional
data, and understanding biometric modalities. LSH research might focus on multi-modal biometrics,
continuous authentication, and privacy-centric biometric systems. Combining LSH with other new
methods can improve biometric system accuracy and security.

4.2.4 Secure Sketch

Secure Sketch (SS) is a cryptographic method designed to compute set operations like inter-
section, union, or difference between two parties’ inputs without compromising privacy. A sketch
is a randomized, fixed-length representation of biometric data generated by a one-way function.
Encrypting this sketch with a secret key makes it secure enough to save or communicate without
revealing the contents. SS in biometric systems increases storage and transmission security, allows data
revocation without system disruptions, and protects privacy when sharing or researching biometric
data. Jiang et al. [52] presented a face-based authentication system with a computational SS for
biometric privacy protection. The computational SS ensures error tolerance on face samplings and
guarantees the privacy of face features by preventing public information obtained by an adversary
from affecting the pseudo-randomness of the authentication key. SS maintains biometric data, but
accuracy and security are issues. Future directions are exploring machine learning, integrating with
other biometric systems, and building high-dimensional and multi-modal data structures.

4.2.5 Cryptographic Accumulator

Cryptographic Accumulator (CA) methods, first introduced by Benaloh et al. [53], offer a
promising way of safeguarding biometric information. Biometric templates are converted into a single
value using a one-way function. The user’s biometric input is transformed into this cumulative value
and matched with the stored value to verify authentication. The advantage is that the accumulated
value is kept, hiding the original biometric data. A comprehensive summary of CA was provided by
Ren et al. [54], including descriptions, characteristics, types, and security assumptions. Their research
examined the use of CA in many different contexts, including ring signatures, group signatures,
encrypted data search, anonymous credentials, and cryptographic promise. CA’s biometric data
protection method is clever but flawed. Cumulative value vulnerability is a significant risk. The system
could be compromised by reverse-engineering or using this value’s biometric data. Thus, protecting
this value is vital. CA’s computational needs, especially with massive biometric information, require
more efficient, secure methods. CA can be studied in secure multiparty computation, blockchain, or
machine learning to increase efficiency and security. Using CA with other biometrics could improve
security.
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4.3 Template Protection Techniques

4.3.1 Cancelable Biometrics

Cancelable Biometrics (CB) safeguards biometric data by creating multiple transformed versions
of the original template. Biometric data is transformed during authentication, creating a template
matched against stored ones, guaranteeing user privacy by making reconstruction difficult even if
an attacker acquires the templates. Kauba et al. [55] explored three distinct strategies for creating
cancelable templates from finger vein patterns, assessing their efficacy in recognition and renewa-
bility. Shahreza et al. [56] benchmarked several CB schemes, including MLP Hashing, BioHashing,
Bloom Filters, and two IoM-based strategies, and introduced a user-specific random transformation-
based baseline scheme. Their evaluation considers unlikability, irreversibility, and recognition per-
formance on deep learning-based templates extracted from various biometric characteristics, with
an open-source implementation provided for reproducibility. Recent CB difficulties include balanc-
ing security and performance, template changes, security assaults, usability, and user acceptance.
Bernal-Romero et al. [57] examined potential vulnerabilities in biometric authentication and proposed
hardware and software solutions to bolster biometric data security. Future research should examine
multi-modal systems, adaptive mechanisms, machine learning integrations, standardization, and
blockchain synergies to promote CB adoption across industries.

4.3.2 Fuzzy Vault Scheme

The revolutionary Fuzzy Vault Scheme (FVS) uses biometric authentication to secure cryp-
tographic systems. This approach encodes a key as a polynomial whose coefficients form curve
points. A “fuzzy” key is created by slightly altering these positions. This changed version underpins
cryptographic applications like digital signatures and encryption. One must fix these altered spots
using particular error-correcting methods to recover the key. Kaur et al. [58] unveiled a cutting-edge
SURF-based Biometric Cryptosystem method. This method integrates the FVS for data protection,
and the SURF technique for biometric verification has demonstrated superior performance metrics
across various benchmarks. The extended fuzzy vault strategy used to protect face feature vectors
created using deep convolutional neural networks for biometric data was examined in a recent paper
by Rathgeb et al. [59]. The proposed feature translation technique and template protection strategy
protect facial reference data and digital keys, providing excellent security. Abiega-L’Eglisse et al. [60]
created a fuzzy vault biometric system without chaff points or polynomial degrees that uses cryptog-
raphy to prevent brute-force attacks. Firmly without passwords or hybrid systems, the system is secure
for the present and future. Song et al. [61] presented a multi-secret sharing FVS to solve identity
authentication’s computational complexity and communication inefficiency. The strategy improves
authentication efficiency by splitting the main secret into multiple sub-secret values and using RS
code multi-secret sharing decoding. Future research could address FV’s needs for more effective and
scalable systems, deep learning integration, multi-modal biometrics, adversarial attacks, and practical
deployment in real-world scenarios to improve FV for biometrics.

4.3.3 Fuzzy Extractor

The Fuzzy Extractor (FE) approach utilizes biometric data for enhanced digital security, securely
storing and comparing data and generating a secret key for encryption. Zhang et al. [62] proposed a
biometric-based authentication and key agreement scheme for WBANs. Their method utilizes a fuzzy
extractor for anonymous identity authentication, a privacy-preserving key agreement algorithm, and
a blockchain for secure storage of biometric data. Sathish et al. [63] presented a novel method for
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secure cloud data access using biometric authentication with Particle Swarm Optimization. Their
approach utilizes a three-level security mechanism and Adaptive ElGamal encryption to prevent
data loss and unauthorized access. FE faces obstacles and unexplored areas despite substantial
research. Standardized practices, privacy, and ethical issues, resilience against threats, efficiency for
large-scale biometric endeavors, synergizing with deep learning methodologies, enhancing multi-factor
authentication, post-quantum security, and real-world application testing are needed.

4.3.4 Fuzzy Commitment Scheme

The Fuzzy Commitment Mechanism (FCS) introduced by Juels et al. [64] is a biometric cryp-
tosystem that uses cryptography and error correction codes to provide secure biometric recognition.
User biometric data is converted into a “fuzzy commitment” and stored on a server. A new biometric
sample can be submitted to validate identity. Chang et al. [65] proposed a user-specific random padding
scheme to enhance the security of fuzzy commitment biometric template protection techniques by
eliminating impersonation attacks. The scheme demonstrated enhanced recognition performance and
a 2k attack complexity, where k is the secret message length. Another improved FCS was presented
by Chauhan et al. [66] for template protection of biometric data, which uses multiple keys to increase
security. Their scheme demonstrated superior security to the traditional FCS. Bajaber et al. [67] created
an alternative FCS for touch-gesture templates in a touch authentication system that is deep learning-
based. The technique demonstrated its effectiveness in dynamic authentication systems using a binary
Bose-Ray-Chaudhuri code with adjustable vital lengths. Wu et al. [68] proposed a palmprint FCS
based on a deep hashing network-generated discriminative deep hashing code. The recommended FCS
balances accuracy, storage expense, and computational complexity to produce a low EER of 0.0001%.
FCS offers secure biometric recognition for access control, financial transactions, and healthcare.
Standardization, privacy, and attack resilience require more research and real-world testing.

4.4 Computation-Based Techniques

4.4.1 Secure Multiparty Computation

Secure Multiparty Computation (SMC) is a cryptographic approach that lets many parties
compute a function over their inputs without sharing them, first proposed by Yao [32]. It protects
data privacy even during computing, making it useful in collaborative situations. SMC’s ability to
protect biometric data makes it popular in authentication, identification, and access control. Li
et al. [69] explored SMC by devising a protocol to compute the least common multiple using Shor’s
quantum period-finding algorithm. Their work underscored the potential of quantum computation
in enhancing the efficiency of secure multiparty computations. An SMC solution was introduced by
Pentyala et al. [70] for training DP models that are more accurate than pure DP and provide privacy.
The SMC technique faces challenges such as high computational complexity, communication costs,
scalability limits, security assumptions dependency, and security vulnerabilities. In this lecture series
[71], Choudhury et al. focused on passively secure SMC protocols, which address eavesdropping
adversaries during protocol execution. It covers theoretical results, security proofs, and efficiency
enhancement techniques. With other privacy-enhancing technologies, SMC can improve privacy with
minimal computational overhead. Real-world deployment studies are needed to evaluate usability,
efficacy, and efficiency in finance, healthcare, and social media.
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4.4.2 Secret Sharing Scheme

Secret Sharing (SS) is a cornerstone in cryptography, primarily designed to protect cryptographic
keys. The essence of SS lies in dividing a secret into multiple fragments, known as shares or shadows.
These fragments are distributed among users, and only a subset can reconstruct the original secret
collaboratively. Francis et al. [72] conducted an in-depth analysis of contemporary SS techniques. Their
study also introduced an enhanced threshold scheme to address challenges like cheating detection
and cheater identification. Chandramouli et al. [73] surveyed existing perfectly secure Verifiable SS
schemes that tolerate computationally unbounded adversaries in three transmission environments:
synchronous, asynchronous, and hybrid. Their survey gave scholars interested in advancing the state-
of-the-art with a complete grasp of various methods. Li et al. [74] proposed a dynamic quantum
SS system that enables sharing of multiple secrets while resisting attacks like collusion and revoked
participant attacks. The system uses a one-to-one relationship between shadows and hash values
for participant honesty. Due to quantum computing and privacy concerns, standard systems may
become unfeasible as participants rise. Designing algorithms for huge numbers without overhead,
studying cryptographic approaches to withstand quantum attacks, and adding zero-knowledge proof
for privacy are future research priorities.

4.4.3 Zero-Knowledge Proofs

Zero-Knowledge Proofs (ZKP), introduced by Goldwasser et al. [75], offer a unique cryptographic
method where a prover can validate a statement’s truth without revealing any information beyond its
veracity. This approach is pivotal for maintaining privacy and security across various digital platforms.
Gaba et al. [76] developed an Authenticated Key Agreement protocol based on ZKP for Internet
of Healthcare applications to assure confidentiality, anonymity, and security against cyber threats.
Their protocol achieves its goals with minimum computing, storage, and transmission costs by utilizing
ZKP, physically unclonable functions, biometrics, symmetric cryptography, and message digest. A new
method presented by Carney [77] for quantum identity authentication protocols by applying the logic
of classical ZKPs to quantum circuits and algorithms. This method wraps a secret in a quantum state.
It delivers it to the verifier over a quantum channel, making the protocol resistant to eavesdropping
or manipulation and potentially valuable for a future “quantum Internet.” Chen et al. [78] provided
an overview of privacy-preserving IoT architecture, ZKP authentication methods, and their benefits
while highlighting potential challenges and future possibilities. ZKP improves privacy and security
but faces complexity, scalability, standards, and adoption. Future ZKP innovations should improve
efficiency, applications, standards, education, and awareness.

4.4.4 Secure Enclave

Secure Enclave (SE) is a technique for securing biometric data and protecting it from unauthorized
access. The technique involves using a hardware-based security feature, such as Intel SGX, to
create a secure environment within a device or server. Biometric data, such as fingerprints or facial
recognition, is stored within the SE, which can only be accessed by authorized applications or users.
Gu et al. [79] introduced UniTEE, a ground-breaking programming abstraction that simplifies SE
migration between several trusted execution environments technologies, including Intel SGX, AMD
SEV, and ARM TrustZone. Their design, rooted in microkernel architecture, offers a consistent
programming model and showcases efficient migration with minimal overhead. Privacy-preserving
computation SE in biometrics struggles to secure data even on compromised devices or servers.
Attackers may evade the SE or steal data, causing data breaches and identity theft. The SE’s success
depends on biometric data quality and confidentiality. Open-source SE libraries, cloud-based SE
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services, and layered security can minimize the cost and time of good encryption. Building effective
enclave data encryption and decryption techniques, analyzing SE usage, and developing SE-based
biometric data-sharing solutions for several devices and platforms should be the focus of future
research.

4.4.5 K-Anonymity

K-anonymity term, proposed by Samarati et al. [80], is a technique designed to protect individual
privacy within biometric systems. It operates by modifying biometric data so that each individual’s
information blends in with at least K-1 others, ensuring that specific data cannot be traced back
to a single person. Methods like randomization and perturbation can be employed to achieve k-
anonymity. This approach has been applied across various biometric data types, from fingerprints
to facial recognition. For instance, large biometric databases, like those maintained by the National
Institute of Standards and Technology, have utilized k-anonymity to enhance user privacy. Mobile
biometric systems, which gather and transmit data on handheld devices for remote verification,
have also benefited from this method. Qian et al. [81] proposed a new k-anonymity technique
called “multi-level personalized k-anonymity” that uses a dynamic k-value sequence to achieve
personalized anonymization. It allows for greater flexibility and reduces information loss compared
to the traditional k-anonymity approach. The authors also presented three practical algorithms to
implement the proposed model. K-anonymity must balance privacy with recognition accuracy and
securely store and transport biometric data.

4.5 Differential Privacy Techniques

4.5.1 Exponential Mechanism

The Exponential Mechanism (EM) proposed by McSherry et al. [82] is a popular differential
privacy method that enables the selection of items from a database while maintaining user privacy.
This method randomly selects database items based on their “privacy cost,” which measures the
information they share. Setting biometric data features less likely to reveal sensitive details protects
privacy in biometrics. The EM can be used to choose face traits less likely to expose sensitive
information like race or gender, eliminating discrimination and maintaining privacy while allowing
facial recognition for identification. Gopi et al. [83] presented a modified EM for non-smooth
convex optimization problems, attaining optimal empirical recovery and offering an implementation
technique with a nearly matching lower bound on evaluation queries. Ramsay et al. [84] explored
concentration inequalities for EM output in the population objective function, focusing on objective
functions with modest regularity constraints. They developed finite-sample performance guarantees
for depth-based multivariate medians. They numerically demonstrated their results using a Gaussian
contamination model. EM is a powerful tool for differential privacy, but it struggles to balance privacy
and usability. Future studies should improve process accuracy or utility while maintaining privacy.
Given EM’s processing expense, high-dimensional data is crucial. Practical algorithms for high-
dimensional data and problem-specific processes can boost performance. Customizing mechanisms
for different uses is essential.

4.5.2 Laplace Mechanism

The Laplace Mechanism (LM) adds random noise to statistical queries for sensitive data protec-
tion. Noise depends on query sensitivity and desired concealment. It is proportional to the query’s
sensitivity, which evaluates the output difference when a single individual’s data is added or deleted.
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A new noise addition mechanism was introduced by Muthukrishnan et al. [85] for differential
privacy that samples noise from a hybrid density resembling Laplace and Gaussian distributions.
Their simulations show that the proposed approach outperforms existing methods in privacy and
accuracy. Ünsal et al. [86] explored recognizing adversaries by altering LM output, balancing privacy,
sensitivity, and attacker advantage. They also developed a threshold for detecting attacks and applied
Kullback-Leibler differential privacy to adversarial classification. LM is a popular data analysis,
machine learning, and statistical inference method that calculates average values, scores, or frequency
to safeguard individual data. It provides strong privacy protection against attacks, but noise might
reduce data analysis accuracy and usability. Researchers must balance privacy, precision, and utility
using the LM.

4.5.3 Randomized Response

Randomized Response (RR) is a privacy-enhancing technique introduced by Warner in 1965
[87] for structured survey interviews. It adds random noise to biometric data, making it difficult for
attackers to determine the true biometric characteristic. Respondents use a coin flip to hide their
responses and protect their anonymity. A random number generator adds a random bit to biometric
data with an equal chance of being 0 or 1. An authentication system removes the random bit and
matches the biometric data against a template. RR secures biometric data like fingerprints and facial
recognition when authenticating. In the early stage of using this technique in the practical field,
Blair et al. [88] examined and offered several designs and strategies for employing the RR method as
a survey tool to eliminate bias and safeguard respondent privacy when questions regarding sensitive
behaviors and beliefs were asked. Later, Chaudhuri et al. [89] gave a complete method for evaluating
data relating to sensitive and confidential topics in their book Randomized Response, encompassing
both finite and infinite population configurations. However, the RR technique involves authentication
inaccuracies that may lower the system’s accuracy. Thus, privacy protection must be balanced with
application precision.

4.5.4 Pufferfish Privacy

Pufferfish Privacy (PP) is an advanced extension of differential privacy designed to offer enhanced
flexibility in defining sensitive data and incorporating domain-specific knowledge into the privacy
framework. It was introduced by Kifer et al. [90]. This approach safeguards sensitive datasets, such
as health or financial records, while ensuring precise data analysis. PP stands out by integrating
explicit prior knowledge into its privacy evaluations, making it adaptable to specific applications.
Maughan et al. [91] introduced Tabular dependent differential privacy, a version of PP for high-
dimensional statistics with imperfect correlation in survey data, which significantly outperforms the
Laplace mechanism of dependent differential privacy. To address privacy issues, Ding et al. [92]
discreetly released IoT event data with timestamps. They showed how modifying event timestamps or
adding false events may address three privacy concerns. They extensively tested discreetly publishing
discrete event timestamps under Pufferfish privacy. Another research by Ding [93] employed the
exponential process to obtain pufferfish privacy via generalized Laplace noise. With calibrated noise to
Kantorovich’s optimum transport plan sensitivity, released data is pufferfish private, and a Gaussian
method approximates this privacy. Pufferfish Privacy is a complex data analysis technology that
guarantees strong privacy while allowing practical data analysis. Scalability, utility-privacy trade-
offs, mathematical model complexity, real-world applications, adversarial attacks, integration with
other privacy solutions, and legal and ethical considerations are its obstacles. Future research should
improve privacy, scale algorithms, build user-friendly interfaces, and follow data protection laws.
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5 Discussion & Analysis

The field of biometric technologies strongly emphasizes protecting the privacy and security of
individuals’ sensitive biometric data. Various privacy-preserving technologies have emerged to address
this imperative, offering methodologies that balance safeguarding personal information and enabling
accurate identification and authentication. A comparative overview of the most widely used privacy-
preserving techniques for biometric systems is shown in Table 3. This table meticulously outlines
the strength, security, performance, ease of use, applications, advantages, and limitations of existing
privacy-preserving techniques.

Table 3: Summary of existing privacy-preserving technologies

Method Security Performance Ease of use Applications Advantages Limitations

Cryptography-based techniques

Homomorphic
encryption

High Low Medium Cloud
computing,
machine
learning, data
analytics

Secure
computations on
encrypted data,
protects privacy

Computationally
intensive, fewer
operations than
plaintext

Functional
encryption

High Medium Low Access control,
data sharing,

Granular access
control protects
computations

Complex scheme
with less
functionality
than HE or SFE.

Secure function
evaluation

High Medium Medium Collaborative
computation,
privacy-
preserving data
analysis

Protects sensitive
inputs and
private data,
allows joint
computations

Computationally
intensive,
Requires
communication
and protocol
between parties

Hybrid
protection

High Medium Medium Data sharing,
access control

Provides layered
protection, can
leverage
strengths of
different
techniques

Complexity and
potential
overhead require
careful
integration of
different
technologies.

Lattice-based
cryptography

High Medium Medium Machine
learning, data
analytics,
encryption, key
exchange, digital
signatures

Resistance to
quantum
attacks, proven
security against
specific
mathematical
problems

Computational
overhead, limited
practical
deployment due
to relative
newness and
complexity

(Continued)
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Table 3 (continued)

Method Security Performance Ease of use Applications Advantages Limitations

Hashing-based techniques

Biometric
Hashing

Medium High Low Authentication,
identification

Protects privacy,
enables efficient
comparison
without
revealing
sensitive
information

Irreversible
process, collision
possibility,
limited to
verification
scenarios rather
than
identification

Bloom filters Medium High High Data filtering,
set membership
testing

Space-efficient
representation of
data, enables
quick
membership
testing, and has
a low
false-negative
rate.

Collisions may
cause false
positives,
inability to access
initial filter items,
and scaling issues
as element count
increases

Locality-
sensitive
Hashing

Medium High Medium Data retrieval,
data mining

Enables efficient
similarity search
and nearest
neighbor search,
allows for
approximate
matching

Reduces
similarity
matching
precision, and
fine-tuning
hashing settings
to obtain
desirable
trade-offs is
difficult.

Secure sketch High Medium Medium Data
aggregation,
data analysis

Offers privacy
protection while
enabling error
correction,
efficient data
aggregation

Only when error
correction is
acceptable, noise
addition may
diminish data
utility

Cryptographic
accumulator

High Low Low Data integrity,
non-repudiation

Enables efficient
proof generation
and verification
and preserves
the privacy of
individual
elements

Some use cases
demand
accumulation and
proof creation,
but dynamic data
changes are
limited

Template protection techniques

Cancelable
biometrics

Medium High Medium Authentication,
identification

Canceled and
re-created if
compromised

Less accurate
than regular
biometric
authentication

(Continued)
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Table 3 (continued)

Method Security Performance Ease of use Applications Advantages Limitations

Fuzzy vault
scheme

High Medium Medium Authentication,
identification

Identify
individuals
without
revealing their
biometric data.

Complex to
implement and
use

Fuzzy extractor High Medium Medium Authentication,
identification

Extract a unique
key from
biometric data

Vulnerable to
spoofing attacks

Fuzzy
commitment
scheme

High Medium Medium Authentication,
identification

Data
commitment
validates without
releasing it

Vulnerable to
replay attacks

Computation-based techniques

Secure
multiparty
computation

High Medium Medium Secure
collaboration,
data sharing

Many parties
can compute a
function on their
inputs without
sharing

Computationally
expensive

Secret sharing
scheme

High Medium Medium Data
distribution,
secure
collaboration

Allows many
people to share a
secret without
reassembling it

Complex to
implement and
use

Zero-knowledge
proofs

High Medium Medium Authentication,
data verification

Does not require
extra
information to
verify

Computationally
expensive

Secure enclave High Medium Low Data protection,
code execution

Provides a
trusted execution
environment

Complex to
implement and
use

K-anonymity Medium High Medium Data
anonymization

Alters data to
make it difficult
to identify
individuals

Vulnerable to
re-identification
attacks

Differential privacy techniques

Exponential
mechanism

High Medium Medium Data sharing,
statistical
analysis

Provide robust
privacy
protection

Computationally
expensive

Laplace
mechanism

High Medium Medium Data sharing,
statistical
analysis

Provides strong
privacy
guarantees

Computationally
expensive

Randomized
response

Medium High Low Data collection,
surveys

Simple to
implement and
use

Less accurate

Pufferfish
privacy

High Medium Medium Data sharing,
statistical
analysis

Offers robust
privacy
protection

Computationally
expensive
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From Table 3, it is shown that the best privacy-preserving technique for a given application
depends on specific requirements, such as the desired security level, performance requirements, and
ease of use. Cryptography-based methods are secure yet computationally demanding and may not
perform well. These are ideal for cloud computing, machine learning, and data analytics. Hashing-
based methods provide medium security and excellent performance. They work well for authenti-
cation, identification, data filtering, and membership testing. The new lattice-based cryptography
technology offers exceptional protection and resistance to quantum attacks. It works well for machine
learning, data analytics, encryption, key exchange, and digital signatures. Although computationally
intensive, computation-based solutions provide high security. They are ideal for secure collaboration,
data sharing, retrieval, communication, matching, and set comparison. Template protection solutions
provide medium security and are ideal for authentication and identification. Differential privacy
techniques offer good security and protection against re-identification threats. They are ideal for data
sharing and statistical analysis.

Many intriguing research gaps exist on this topic. AI-based biometric matching approaches
like deep learning emerge as AI deployment develops. AI-related attacks may target these methods
increasingly. As mobile biometric authentication becomes increasingly prevalent, privacy-preserving
authentication becomes more crucial. IoT and cloud outsourcing are growing. Therefore, crypto-
graphic protocols will use biometric authentication for key management, encryption, and decryption.
Biometric data encryption must be continuously researched and developed. Biometrics combined with
passwords or tokens can boost security. Multi-factor authentication decreases reliance on a single
biometric property and makes system compromise harder. These methods should improve biometric
system security while reducing computing overhead and maintaining accuracy. Effectively revoking
and replacing compromised biometric templates prevents unauthorized access to compromised data.

Secure key manufacturing, storage, and delivery should be researched to protect encryption keys.
Biometric key secrecy can be achieved by key diversity, isolation, and storage. Biometric systems must
be checked routinely to identify and fix security vulnerabilities. Continuous monitoring and timely
patching strengthen the system against shifting threats. Privacy-preserving biometric technologies
must be standardized and compatible to spread. Standardizing protocols and formats enhance system-
wide security and efficiency. Biometric system design and deployment require user understanding
and agreement. People can make informed decisions about biometric data by explaining biometrics’
benefits, risks, and privacy consequences and using transparent permission mechanisms. Biometric
technology development should prioritize ethics. Research should address biometric biases, prejudice,
and unforeseen consequences. Designing and deploying these technologies must be fair, accountable,
and transparent. These strategies and security and efficiency as design principles can improve
biometric privacy-preserving technologies to protect individuals’ biometric information better while
maintaining accuracy and usability in various applications.

6 Conclusion

This study introduces a new way to categorize biometric authentication methods that protect
user privacy, taking into account privacy-preserving mechanisms at the protocol level. If researchers
in the fields of biometrics and cryptography want to successfully integrate their work, they can use
this taxonomy as a neutral roadmap that provides a more holistic view of the area. This article
delves into the difficulties of biometric authentication from a privacy perspective, including the pros
and cons of the technology, possible dangers to privacy-preserving systems, and attack methods. It
highlights the feasibility of privacy-preserving biometric technologies and proposes strategies to lessen
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the impact of these dangers. The paper also discusses weaknesses and potential solutions to open
research problems that lie at the nexus of biometric security, authentication, and cryptography. New
biometric identification technologies are becoming increasingly important, and there is a growing need
to preserve privacy; this study also predicts trends based on upcoming research areas, including the
Internet of Things, the cloud, and current electronics. Overall, this work offers a thorough taxonomy,
tackles open research difficulties, and predicts future developments in privacy-preserving biometric
authentication, which is a significant contribution to the area.
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