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ABSTRACT

Road traffic safety can decrease when drivers drive in a low-visibility environment. The application of visual
perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of
reducing the risk of accidents. To tackle the challenges posed by the low recognition accuracy and the substan-
tial computational burden associated with current infrared pedestrian-vehicle detection methods, an infrared
pedestrian-vehicle detection method A proposal is presented, based on an enhanced version of You Only Look
Once version 5 (YOLOv5). First, A head specifically designed for detecting small targets has been integrated into
the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.
Second, the Focal Generalized Intersection over Union (GIoU) is employed as an alternative to the original loss
function to address issues related to target overlap and category imbalance. Third, the distribution shift convolution
optimization feature extraction operator is used to alleviate the computational burden of the model without
significantly compromising detection accuracy. The test results of the improved algorithm show that its average
accuracy (mAP) reaches 90.1%. Specifically, the Giga Floating Point Operations Per second (GFLOPs) of the
improved algorithm is only 9.1. In contrast, the improved algorithms outperformed the other algorithms on similar
GFLOPs, such as YOLOv6n (11.9), YOLOv8n (8.7), YOLOv7t (13.2) and YOLOv5s (16.0). The mAPs that are
4.4%, 3%, 3.5%, and 1.7% greater than those of these algorithms show that the improved algorithm achieves higher
accuracy in target detection tasks under similar computational resource overhead. On the other hand, compared
with other algorithms such as YOLOv8l (91.1%), YOLOv6l (89.5%), YOLOv7 (90.8%), and YOLOv3 (90.1%), the
improved algorithm needs only 5.5%, 2.3%, 8.6%, and 2.3%, respectively, of the GFLOPs. The improved algorithm
has shown significant advancements in balancing accuracy and computational efficiency, making it promising for
practical use in resource-limited scenarios.
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1 Introduction

Pedestrians and vehicles are major players on the road. However, at night or under low-visibility
conditions, vehicle drivers’ field of vision can be limited, making it difficult to observe pedestrians and
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vehicles on the road, which may result in the inability to brake the vehicle in time, thereby increasing the
risk of accidents. The traditional detection technology [1] avoids obstacles through the integration of
advanced robot technology and sensor technology to conduct radar scanning of objects in front of the
robot; however, this approach requires highly accurate sensors and cannot identify the specific object
categories in front of the robot. Visual perception [2,3] is one of the key technological foundations for
solving the problem of driving at night or under low-visibility conditions and can be utilized to monitor
the surrounding environment in real time. Through an effective visual perception system, drivers can
have a clearer understanding of the situation on the road and take actions such as braking in time to
reduce the risk of accidents. However, the existing nighttime infrared image detection technology faces
several problems:

(1) Nighttime infrared images typically exhibit relatively low resolution, and the image details are
not clear enough, resulting in difficulties in accurately detecting and recognizing distant targets.

(2) The targets in nighttime infrared images are usually displayed in the form of heat, which
can easily lead to difficulties in detecting, recognizing, and classifying the targets because the targets
usually have a small temperature difference from the background environment.

(3) Complex image processing algorithms and computationally demanding tasks can hamper
processing speed, jeopardizing real-time requirements.

Detection techniques for nighttime infrared images can be categorized into traditional infrared
image target detection methods and deep learning approaches. The traditional methods mainly use
image segmentation to obtain regions of interest in the original image; then, window sliding is used to
extract features from these specific regions of the image, and The classifier is applied to the extracted
features for the final result output. Li et al. [4] introduced the concept of weighted Histogram of
Oriented Gradients (HOGs) algorithm for feature extraction of infrared pedestrian images; Xi et al. [5]
proposed a Scale-Invariant Feature Transform (SIFT) based and Oriented fast and Rotated Brief
(ORB) feature detection method for conducting common feature analysis between infrared and visible
images, including feature point detection; and Xue et al. [6] proposed a multifeature fusion algorithm
utilized in conjunction with a Support Vector Machine (SVM) for the extraction of features from
pedestrians and vehicles in low-light nighttime environments to confirm the presence of pedestrians
and vehicles within the extracted target area. Zheng et al. [7] proposed an SPD (symmetric positive
definite) manifold hashing algorithm based on random projection and quantization in the extended
data space to perform target detection tasks in low-dimensional space, which may accelerate the
calculation process and improve the efficiency of detection. Although traditional target detection
methods for infrared images can achieve target detection to a certain extent, manually designed feature
extraction methods may be limited by the complexity and diversity of the images, resulting in limited
detection performance.

In contrast, techniques utilizing deep learning have made remarkable advancements in infrared
image target detection. In addition, two primary categories encompass target detection algorithms
based on deep learning [8]: two-stage algorithms, which rely on candidate regions and are exemplified
by the R-CNN [9] series, these algorithms, characterized by high detection accuracy, tend to exhibit
slow detection speeds and poor real-time performance, which is not conducive to deployment in
practical applications; and one-stage algorithms represented by the YOLO [10] series of algorithms,
which have the characteristics of fast detection speed, good real-time performance, high accuracy,
and other characteristics. In this paper, we detect vehicles and pedestrians on the road while the car
is traveling, and there is a need to enhance both the detection speed and accuracy; therefore, we use
YOLO series algorithms for detection. Qing et al. [11] and others used the improved YOLOv3 model
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for the identification of people and cars in infrared images to enhance the overall precision of the
network model. Li [12] and others added category balancing in the YOLOv3 loss function, a solution
to the issue of an imbalanced distribution among categories is addressed in infrared images during the
nighttime driving process, and the accuracy has been significantly improved. Tao et al. [13] and others
proposed an algorithm based on the YOLOv4 algorithm for infrared pedestrian detection, resulting
in a notable improvement in detection accuracy. However, the above studies have problems such as
low accuracy in small target recognition, difficulty in category classification, and large computational
volume, this limitation hinders the application of deep learning in edge devices or resource-constrained
environments.

To tackle the previously mentioned concerns opts for YOLOv5s [14] as the basic model and
improves upon it to boost recognition accuracy while reducing computational overhead. The main
objectives are to:

(1) optimize the small target detection head, and fully utilize shallow feature information, to more
effectively capture subtle target features in infrared images and enhance the accuracy of small target
information;

(2) optimize the loss function to tackle challenges associated with target overlap and category
classification in infrared images and improve the ability to accurately classify and locate targets within
infrared imagery;

(3) optimize the feature extraction operators, introduce lightweight feature extraction operators,
minimize the computational workload in the model enhance its efficiency, and adapt to the require-
ments of actual application scenarios.

In Section 2.1, we present the fundamental YOLOv5 model, and in Section 2.2, we delve into
the theoretical foundations of the Infrared-You Only Look Once (IR-YOLO) model design and key
improvement points. In Section 3, experimental data processing is introduced, including experimental
verification indicators, experimental environment settings, and experimental dataset processing. In
Section 4.1, ablation treatment, experimental head optimization verification experiments, and opti-
mization of the loss function are undertaken, and a distributed shift convolution DSConv verification
experiment is performed. In Section 4.2, we evaluate the effectiveness of the proposed model and
benchmark it against popular network models, and in Section 4.3, the experimental picture effect is
tested. Finally, the article is summarized.

2 Materials and Methods

In this section, we present the methodology utilized, we present the YOLOv5s network model,
and the IR-YOLO infrared target detection method. The details of these methods are described in
each section.

2.1 YOLOv5s Network Model

Fig. 1 illustrates the network architecture of YOLOv5s. The structure comprises four main compo-
nents: input, backbone, feature amalgamation layer, and detection layer. At the input end, the original
image is preprocessed and converted into a 640 × 640 × 3 tensor for input into the network. The input
tensor is first sliced by a 6 × 6 convolution module, which realizes the downsampling operation and
increases the channel dimension. Second, the Cross Stage Partial Darknet-53 (CSPDarknet53) [15], the
configuration of the backbone network in YOLOv5s serves for the retrieval of characteristics from the
input. Third, the feature fusion layer is composed of the Spatial Pyramid Pooling-Fast (SPPF) module,
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feature pyramid network (FPA) module, and path aggregation network (PAN) [16] module, which
completes the transmission and fusion of the extracted features within the backbone architecture.
Finally, the features that have been extracted are predicted by a detection layer composed of a
classification, regression complete intersection over union (CIoU) loss function, and non-maximum
suppression (NMS) [17].

Figure 1: YOLOv5 network structure

Within the network architecture of YOLOv5s, the Convolution (Conv) module consists of
traditional convolution, Batch Normalization-2d, and the Sigmoid Linear unit (SiLu) activation
function. Traditional convolution is used for feature extraction and channel number adjustment,
whereas batch normalization is employed to expedite network convergence and enhance network
stability and generalizability. The SiLu activation function can improve the regularization effect and
prevent network saturation and gradient disappearance. The SPPF module structure consists of a
standard convolution module used to halve the input channel. After the fusion of local features and
full moment features, to improve the feature map’s expression and enable better identification of size
variations in the image, three maximum pooling operations of size 5 × 5 are utilized. There are two
types of C3 modules in YOLOv5s, which are divided into C3(T) and C3 according to the presence
or absence of residual edges. By introducing residual edges, the C3(T) module can better propagate
gradients and promote network convergence and optimization. In contrast, the C3 module has no
residual edges and is designed as a more lightweight module. The learning capability of the YOLOv5s



CMC, 2024, vol.78, no.2 2671

network is strengthened by the integration of the C3 module, maintaining commendable accuracy in
a lightweight manner, and concurrently reducing computing and memory costs.

For vehicle driving safety, early warning must be provided for remote pedestrians and vehicles.
In infrared images, distant pedestrians and vehicles are not clear enough. During training, the
YOLOv5s model is prone to problems such as a lack of obvious detection or disappearance of small
target features. When employing infrared devices for nighttime or other scene pedestrian and vehicle
detection, the background colors in infrared images frequently exhibit a close resemblance to the
colors of pedestrians and vehicles. During the training phase, issues such as uneven distribution in the
classification of detection samples arise in the YOLOv5s model. This calculation load of the YOLOv5
model is large, which may cause the processing speed to decrease, preventing it from meeting real-time
requirements in practical applications.

2.2 Infrared Target Detection Based on IR-YOLO

Subsequently, we present a comprehensive overview of a novel infrared target detection method
founded on the IR-YOLO structure. This method aims to solve a series of problems in the domain
of object detection for automotive infrared images, including problems related to the overall frame,
small target detection head optimization, loss function optimization, and feature extraction operator
optimization.

2.2.1 General Framework

Given the above problems in the target detection of automotive infrared images, this paper,
Fig. 2 illustrates the architecture of IR-YOLO. First, the module specialized in small target detection
undergoes optimization, and the original YOLOv5s model is enhanced by the addition of a small
target detection head. The shallow feature information is extensively utilized to extract nuanced target
features from the infrared image, thereby enhancing the precision of detecting small targets. Secondly,
to enhance the loss function, we substituted the CIoU loss function with the focal Generalized
Intersection over Union (GIoU) loss function, effectively addressing target overlap and sample
imbalance issues in infrared images. Finally, the feature extraction operator is optimized, and the
distributed shift convolution DSConv is employed as a replacement for traditional convolution
(Conv), reducing the computational burden of the model without affecting the detection accuracy
as much as possible and reducing the calculation pressure on automotive hardware.

2.2.2 Small Target Detection Head Optimization

The detection head aims to establish a relationship that enables the candidate target frame to
approach the real target frame wirelessly. The approach involves dividing the original image into a
grid of S × S units. Each grid predicts 3 prediction frames of different sizes and contains the position
coordinate points (x, y) dimensions (width, height) is (w, h), and confidence degree c of each prediction
box. The forecasted box is derived by translating and scaling the reference box. Fig. 3 illustrates the
relationship between the predicted box and the reference box. When the midpoint coordinates of the
real box are in a certain grid, the target is predicted from this grid. The confidence is determined by
the probability associated with the predicted box and the Intersection over Union (IoU) value with the
box that is currently present and the box that is anticipated. By setting the threshold of confidence, the
irrelevant prediction box is filtered out. Ultimately, the NMS algorithm is applied to obtain the final
predicted box without maximum suppression.
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Figure 2: IR-YOLO model structure diagram

Figure 3: Relationships between a prior box and a prediction box

The previous frame is indicated by the dashed line, whereas the predicted frame is represented by
the solid line. The coordinate calculation formula of the target prediction is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx = 2l (ix) − 0.5 + rx

dy = 2l
(
iy

) − 0.5 + ry

dw = qw (2l (iw))
2

dh = qh (2l (ih))
2

(1)
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In the equation, ix, iy, iw, and ih are the offsets relative to the vertex located in the upper left corner
of the grid, which suggests that the offsets are aligned within the range of [0, 1], rx, and ry. The offsets
within the grid cells are calculated concerning the upper-left corner of the image; qw and qh represent
the width and height of the reference frame, and dx, dy, dw, and dh indicate the center coordinates as
well as the dimensions of the anticipated box, representing its width and height, correspondingly.

The small-scale detection head, equipped with a generous receptive field, is employed specifically
for the detection of larger targets, while the large-scale detection head is used to detect small targets.
In this paper, a detection head with a scale of 160 × 160 is incorporated into the shallow feature layer
within the original YOLOv5s model designed for the detection of small targets. Table 1 outlines the
associations in the four different scales, there exists a relationship between the sizes of the feature maps
and the sizes of the reference frames.

Table 1: Prediction frame sizes at different scales

Feature map size Prior frame size [width, height]

20 × 20 [116, 90] [156, 198] [373, 326]
40 × 40 [30, 61] [62, 45] [59, 119]
80 × 80 [10, 13] [16, 30] [33, 23]
160 × 160 [5, 6] [8, 14] [15, 11]

This small target detection header can be implemented by adding additional convolutional layers
and pooling operations are introduced to the network to augment its receptive field and enhance fea-
ture extraction capabilities, which contributes to improving the precision of detection and the network’s
ability to withstand small targets. The specific improvement method for the YOLOv5s basic model is
shown in Fig. 4. First, a Conv module is added behind the 17th layer of the YOLOv5s basic structure.
Second, An UpSample module is incorporated to perform upsampling and enlarge the feature map
size by a factor of two. After the concatenation splicing module, tensor splicing is conducted using
the shallow features from output layer 2. Ultimately, feature extraction is accomplished through a
C3-False module, and the results are output to the detection layer.

Figure 4: Integrating a small target detection head improves YOLOv5s
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2.2.3 Loss Function Optimization

The core YOLOv5 model consists of three components: localization loss, confidence loss, and class
loss. The computation of confidence and class losses involves the utilization of a binary cross-entropy
loss function. The calculation formula of the positioning loss is shown in Eq. (2):

Lossloc = 1 − CIoU (2)

The CIoU is used in the YOLOv5 base model to calculate the positioning loss:⎧⎪⎪⎨
⎪⎪⎩

IoU = |A ∩ B|
|A ∪ B|

CIoU = IoU − r2 (d, dgt)

e2
− av

(3)

In the formula, a serves as an equilibrium parameter and does not contribute to gradient
calculations; r denotes the Euclidean separation between the center points; and v serves as a parameter
to assess the uniformity of the aspect ratio. d represents the distance between the midpoint of the real
frame and the predicted frame, and e represents the diagonal length of the smallest enclosing frame.
The CIoU comprehensively incorporates the overlap ratio, distance between center points, and aspect
ratio comparison between the actual and predicted boxes; however, for boxes of different sizes, the IoU
is the same, but the degree of overlap is different; that is, the CIoU is not sensitive to scale. In Fig. 5, A
represents the real box, B signifies the predicted box, C denotes the minimum enclosing box, and IoU
represents the overlapping area of the real box and the prediction box and the area and proportion
between them.

A

B

C
d

e

Figure 5: Actual box A coincides with predicted box B in our analysis

In this paper, GIoU is adopted as the positional loss function, replacing CIoU. The GIoU [18] is
a target frame-matching metric commonly used in target detection. GIoU comprehensively considers
the overlap degree, area difference, center of gravity distance, and other factors between two target
frames and subtracts the proportion of the diagonal length spatial extent of the minimum convex
polygon to the overlap spatial extent of the target frame. The offset and size difference between the
target boxes are punished to more accurately measure the similarity between the two target boxes. Its
calculation formula is as follows:

GIoU = IoU − |C − (A ∪ B)|
|C| (4)

GIoU considers not solely the overlap between actual and predicted boxes but also non-
overlapping regions; thus, the GIoU is more effective in representing the intersection degree between
two regions than the original CIoU.
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This study aims to the Focal Loss as the optimization function for both the confidence loss and
category loss. Introduced by Lin et al. [19], the Focal loss acts as a primary loss function specifically
designed to tackle the challenge of category disproportion in target detection by assigning higher
weights to the cross-entropy loss. Through the adjustment of sample weights, emphasis is placed on
difficult samples. Consequently, the model’s classification performance is enhanced, particularly for
challenging samples.

Focal loss effectively mitigates the impact of easily classified samples by suppressing their weight
while simultaneously increasing the weight of difficult samples. This strategic adjustment serves to
heighten the model’s focus on challenging instances, ultimately improving its performance in scenarios
characterized by category imbalance.

The focal loss formula can be represented as:

FL (mt) = −∂t (1 − mt)
g log (mt) (5)

where ∂t is the category weight, mt represents the probability predicted by the model, and g represents
an adjustable focusing factor that adjusts the rate at which the weights of easily classified samples drop.

For binary classification problems, ∂t can be described as:

∂t =
{

∂, s = 1

−∂ + 1, s = 0
(6)

where s represents the true label of the sample and ∂ represents the coefficient of the weight.

For multiple classification problems, ∂t can be described as:

∂t =
{

∂, s = t

−∂ + 1, s �= t
(7)

where the sample’s true class is represented by t and ∂t represents the coefficient of the weight.

2.2.4 Feature Extraction Operator Optimization

In the YOLOv5s model, traditional Conv is used for feature extraction, but traditional Conv
requires a large number of multiplication and addition operations; in particular, when the convolu-
tional filter and there is a considerable number of channels in the input feature map, the computational
load increases exponentially, resulting in a slow calculation speed. In operation, a substantial amount
of convolutional kernel parameters is required, especially when the convolution kernel size is large;
more parameters are needed to capture more spatial information, resulting in an escalation of the
model’s parameter count.

To address these issues, this paper introduced the distributed shift convolution DSConv method,
which was proposed by Gennari et al. [20] of Oxford University in 2019, for extracting features within
the YOLOv5s model. Leveraging the advantages of DSConv, which encompass:

1) It can replace traditional Conv well, and it can “plug and play” as an alternative.

2) The quantitative method significantly speeds up the network and minimizes memory usage.

The primary aim of DSConv is to emulate the convolution layer’s behavior by employing
quantization and distribution migration techniques, as shown in Fig. 6, which is the distributed shift
convolution schematic. Initially, the input tensor transforms a mantissa tensor and an exponential
tensor; then, the VQK tensor is a dot product of each piece of the mantissa tensor, and KDS is added
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to the exponential tensor value of the input convolution. Finally, the result obtained from KDS is a
dot product with the result obtained from VQK to obtain the output of one of them.

Figure 6: Schematic of distributed shift convolution

Regarding the Variable Quantization Kernel (VQK), this tensor exclusively retains variable bit-
length integer values and maintains the same size as the original convolution tensor (Co, Ci, k, k), Co

stands for the output, The input is denoted as Ci, with k indicating the size of the convolution kernel.
Once configured, the parameter values undergo quantization from the original floating-point model
and remain static thereafter; this constitutes the quantization component in DSConv, enabling swifter
and more memory-efficient multiplication operations. Distribution shift: “Shift” refers to scaling and
bias operations that aim to move VQK, t his ensures the output aligns with the original weight tensor’s
value by traversing two domains through two tensors, the first being kernel distribution shift (KDS),
this causes a distribution shift within each slice of (1, BLK, 1, 1) in VQK. When BLK is a user-defined
hyperparameter for block size, The concept involves utilizing each value of the kernel shifter to shift
the BLK depth value of VQK; then, the size of this tensor is 2 ∗ (Co, CEIL(Ci/BLK), k, k), where
CEIL(x) refers to the operator that rounds up the value of x, maintaining values in single precision;
and the second tensor involves the round-up operator, preserving values in single precision. The second
tensor, known as Channel Distribution Shift (CDS), is responsible for redistributing the distribution
within each channel; alternatively, it modifies the distribution within each slice of (1, Ci, k), so this
constitutes a single-precision number tensor of size 2 ∗ (Co). This approach brings the network closer
to the optimal value, allowing for fine-tuning just before achieving peak accuracy.

Therefore, the original Conv can be equivalent to Fig. 7 below:

(k,k,c) (k,k,c/B) (1,1,B)

= +

Figure 7: Original convolution Conv equivalent graph

Where k is the convolution kernel convolution kernel conv size, c denotes the channel count, and
B signifies the number of channels within each block. Therefore, it can be seen from the figure that
the formula for diminishing the convolutional parameter count in DSConv compared with traditional
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convolution Conv is shown in Eq. (8).

k × k × c
B

+ 1 × 1 × B

k × k × c
(8)

For example, when the convolution kernel k is 3 with a channel count of 128, it is subdivided into
two coherent blocks., and the number of channels B in each block is 64. According to the calculation
of Eq. (5), the number of convolution parameters of DSConv is only 7% of that of traditional Conv.

3 Experimental Data and Processing

The experimental data employed for training the network framework discussed in this study comes
from the FLIR ADAS dataset collected and produced by the FLIR Company, Wilsonville, Oregon,
USA. To fulfill deep learning’s demand for ample training samples and enhance model generalizability,
this paper employs random scaling, flipping, brightness, contrast, and color adjustments, along with
mosaic techniques to enhance the dataset through augmentation techniques. In order to enhance the
variability of the datasets, and enhance model generalization, accuracy, and robustness.

3.1 Evaluation Indices

To evaluate the effectiveness of the model in detecting pedestrians and vehicles in vehicle-mounted
infrared images, this paper follows these steps:

(1) P represents the precision measure, which calculates the proportion of correctly recognized
positive samples out of the total number of positive samples identified; The recall rate (R) is a measure
that denotes the proportion of accurately identified positive samples to the overall number of truly
positive samples within the dataset. The computation is presented in Eq. (9).⎧⎪⎪⎨
⎪⎪⎩

P = TPj

TPj + FPj

R = TPj

TPj + FNj

(9)

TPj indicates an accurate positive prediction for the specific class in the test results, and FPj

indicates that the test result is an incorrect positive prediction for the class. TNj indicates that true
positives for this category have not been detected.

(2) AP represents the mean accuracy for each category, while mAP calculates the average of these
mean values. The calculation is detailed in Eq. (10).⎧⎪⎨
⎪⎩

AP =
∫ 1

0

P (R) dR

mAP =
∑N

i=1
APi/N

(10)

N indicates the number of detection target categories.

(3) Computation (GFLOPs): 1 billion floating-point operations per second, indicating the model’s
complexity and influencing its detection speed.
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3.2 Experimental Platform

This paper outlines the experimental environment and specifies training parameters in Table 2.

Table 2: Experimental environment and detailed training parameter settings

Project Environment Parameters Value

System Ubuntu 14.04 Epochs 150
CPU Intel-core I5-8500 Learning rate 0.01
GPU Tesla P100 Optimizer NAG [21]
Memory 12 G Learning rate attenuation

weight
0.0005

Pytorch version 3.7.12 Batch size 16
CUDA 11.0 Parameters Value

3.3 Dataset

The dataset for this experiment is sourced from FLIR Corporation’s FLIR ADAS dataset. The
FLIR ADAS dataset uses video data from infrared cameras. This dataset contains images for training
(5582 images) and validation (2418 images), covering two main categories: people (12161 samples)
and cars (26511 samples). The dataset has the following characteristics: (1) The image background is
complex and includes urban, rural, and highway data, and each scene has different road and weather
conditions. (2) Infrared images can perceive heat that cannot be seen by the human eye; these images are
presented as grayscale images or false color images, and their color information is relatively limited. (3)
In urban scenes, pedestrians and vehicles are dense, there are more overlapping areas, and the targets
are smaller.

Fig. 8 demonstrates the experiment’s robustness testing, involving comprehensive model perfor-
mance evaluation through the introduction of Gaussian ambiguity, Gaussian noise, and Gaussian
mass operations to the FLIR raw dataset. In the data preprocessing phase, a series of transformations
are performed on the image of the FLIR original dataset, including Gaussian blur to simulate the blur
effect of the image, incorporating Gaussian noise to emulate real-world image noise, and Gaussian
quality manipulation to simulate changes in image quality. To verify the accuracy of the experiment on
different datasets, we conducted an accuracy test and shifted the focus to the BDD100k and VisDrone
datasets. By testing in this environment, which is different from previous datasets, we were able to
more fully evaluate the model’s generalization performance and accuracy. This dataset has different
scenarios, lighting conditions, and target categories than the original FLIR dataset, thus providing a
more diverse set of test scenarios. We will ensure that the experimental setup is consistent with that of
previous experiments on the FLIR raw dataset to maintain comparability of model performance.
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Figure 8: This experiment’s dataset and an example diagram of the comparison dataset are depicted

4 Experimental Results and Analysis

To confirm the efficacy of the proposed IR-YOLO model, experiments compare it with common
target detection algorithms. To explore the contribution of each module to the whole algorithm,
ablation experiments were carried out for small target detection head optimization, loss function
optimization, and feature extraction operator optimization. The above experiments were conducted
on the FLIR ADAS dataset for network model training. During the experiment, the experimental
conditions, such as the control equipment, training hyperparameters, and number of iterations, were
consistent.

4.1 Ablation Experiment

To verify the efficacy of the proposed enhancements in boosting the performance of the YOLOv5s
model, a research study involving ablation was carried out. Model A: The basic YOLOv5s model is
enhanced by incorporating a compact 160 × 160 target detection head; Model B: In the YOLOv5s base
model, the Focal GIoU loss function replaces the CIoU loss function in this scenario; Model C: The
traditional convolution Conv is replaced by the distributed shift convolution DSConv in the YOLOv5s
basic model. Now, by adding different improvement strategies to the basic model of YOLOv5s, the
detailed outcomes of the ablation experiment are presented in Table 3. As depicted in the table, with the
addition of a compact target detection layer, the occurrence of undetected small targets is decreased,
the model’s accuracy rate rises by 1.12%, with a corresponding increase of 0.83% in the recall rate.
Small targets are often overlooked because of their small size, especially in traditional target detection
models. Incorporating a specifically designed small target detection head allows the model to focus
more on the features of small targets, thus reducing the missed detection rate. This ultimately leads
to an improvement in the model’s precision and recall performance when detecting small targets.
Substituting the CIoU loss function with the Focal GIoU results in a 0.26% increase in model accuracy
and a 0.23% increase in recall rate. The CIoU loss function may be too sensitive to samples that
are difficult to learn for target frame regression, while the Focal GIoU loss function can better
address difficult cases and improve the model’s learning effect for key targets by introducing a focus
mechanism. This helps improve the model’s accuracy and recall rates. By introducing the distribution-
shifted convolution GSConv, the model’s computational cost is diminished to 28%, with a marginal
sacrifice of only 0.37% in accuracy. Traditional convolution operations can be less effective when
dealing with specific patterns and targets. The introduction of distributed migration convolutional
DSConv can increase the sensitivity of the model to specific patterns, thus improving the model’s
performance. Moreover, the introduction of DSConv reduces the computational cost and increases
the model’s efficiency. In FLIR ADAS dataset experiments, our proposed algorithm achieves a 56.8%
reduction in computational cost compared to the basic model, while enhancing accuracy by 1.67%.
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Table 3: The experimental training data were ablated

Model mAP/% R/% FLOPs/G

YOLOv5s 88.43 80.41 16.0
Model A 89.56 81.28 27.1
Model B 88.69 80.64 16.0
Model C 88.06 79.71 4.6
Ours 90.10 82.62 9.1

Illustrated in Fig. 9, IR-YOLO outperformed the original YOLOv5s model on the native FLIR
dataset, showcasing a 1.7% increase in accuracy mAP. This improvement is due to the combined effect
of optimizing small targets, improving loss functions, and employing feature extraction operators.
When processing images with Gaussian blur, IR-YOLO showed greater robustness than YOLOv5s,
with the mAP improved by 2.6%. This shows that IR-YOLO, featuring a new small target detection
head, excels in capturing blurred target contours for improved detection. Compared to YOLOv5s on
images with Gaussian noise, IR-YOLO’s performance improved by 1.1% on maps. This shows that
IR-YOLO’s target detection ability in noisy environments is more robust than that of other methods
because of the special optimization for small targets and the refinement of the loss function. With the
introduction of target mass changes, IR-YOLO improved the performance of the mAP by 1.8% relative
to YOLOv5s, indicating that the model is more adaptable to different mass targets. This advantage
is due to the optimization of the loss function, which enables IR-YOLO to better handle detection
challenges caused by changes in the target mass. Together, these results highlight the robustness and
performance benefits of IR-YOLO in multiple test scenarios.

Figure 9: IR-YOLO and YOLOv5s robustness testing and different dataset testing

As shown in Fig. 9, on different datasets, the mAP comparison performances of YOLOv5s and
the IR-YOLO model are shown. Compared with that of YOLOv5s on the BDD100K dataset, the
IR-YOLO model achieved a significant 6.9% mAP improvement. By incorporating a dedicated small
target detection head, the model can prioritize its attention on smaller targets, enhancing detection
performance for this category. The focal loss function directs the model’s attention more towards
challenging-to-classify samples, which may be more effective in complex scenarios in BDD100K.
With large-scale images available in the BDD100K dataset, reduced computational effort can lead to
performance improvements, and distributed shift convolution helps reduce the computational burden
on the model without sacrificing detection accuracy as much as possible.” Compared with that of
YOLOv5s, the mAP of our model on the VisDrone dataset increases by 8%. In drone images, the target
size and visual complexity may vary greatly. The small target detection head introduced by Ours may
be more sensitive for detecting small targets and adapting to changes in different scenes. Leveraging
the Focal GIoU loss function may address issues related to target overlap and sample imbalance in
the VisDrone dataset, and the use of the distributed shift convolution function DSConv may help to
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reduce the computational burden on the VisDrone dataset and improve the model’s adaptability to
complex scenes.

4.1.1 Small Target Detection Head Optimization Verification Experiment

To comprehend the traits of sample targets in the FLIR ADAS dataset, Fig. 10 illustrates the
distribution of the ratio within the dimensions of the targets. During the training phase, the majority
of target width and height proportions concerning the image size are less than 0.4, with the aspect ratio
being predominantly less than 0.1. A potential issue arises when utilizing only the three detection
heads of the YOLOv5s model to detect distant pedestrians and vehicles. As the network depth
increases, the features of smaller targets may become more challenging to extract or may even vanish.
Additionally, information from shallow features might not be fully exploited, leading to reduced
recognition accuracy or potential instances of missed detection.

Figure 10: Dataset width–height ratio distribution

To achieve this, a smaller target detection layer with a scale of 160 ∗ 160 is incorporated into the
detection layer of YOLOv5s, and the IoU is set at 0.5 Within the interval of 0.9. Each image is limited to
100 prediction boxes, and the pixel area of (0, 322) is set as a small target, that of (322, 962) as a medium
target, and that of (more than 962) as a large target. The objective is to validate the impact of the newly
introduced small detection head on enhancing the model’s accuracy and dataset performance. Results
before and after the enhancement are detailed in Table 4 for comparative analysis. The predicted value
is denoted as AP, while the recall rate is represented by AR. After the improvement, the AP and AR
of the small targets increased significantly, and compared with those of the small targets before the
improvement, they increased by 2.9% and 5.4%, respectively. For medium and large targets, there is
also a small increase. Experiments demonstrate that incorporating a smaller target detection head into
YOLOv5s enhances the accuracy of detecting distant pedestrians and vehicles captured in thermal
imagery during nighttime. The introduction of a small detection head serves to:

(1) Enhance the accuracy in detecting small targets. Small targets, typically challenging to detect in
nighttime infrared images due to distance from the camera and limited light, benefit from this addition.
The incorporation of a small target detection head directs the model’s focus toward learning small
targets, resulting in a substantial improvement in the accuracy of detecting such targets.
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(2) Impact on targets of medium and large sizes: Although the new small target detection head is
mainly for small targets, the experimental results also show some small improvements in medium and
large targets. This shows that the new design helps to improve target detection performance overall,
not just for small targets.

Table 4: Accuracy and recall rates for different targets before and after improvement

IoU MaxDets Area YOLOv5s Ours

AP AR AP AR

0.5:0.95 100 Small (area < 322) 37.9% 49.7% 40.8% 55.1%
Middle (322 < area <

962)
62.1% 68.7% 62.8% 69.7%

Large (area > 962) 73.7% 78.6% 73.1% 78.7%

4.1.2 Loss Function Optimization Verification Experiment

The YOLOv5s model was evaluated on the FLIR ADAS dataset, and comparative experiments
were conducted. “

√
” indicates the use of the corresponding methods. Results are displayed in Table 5

for reference. Improvement 1: Implementation of GIoU loss function; Improvement 2: Integration
of focal loss function; Improvement 3: Utilization of Focal CIoU loss function. Results from the
experiments demonstrate that the mAP of Improvement 1 is 87.95%, which is slightly lower than the
88.43% mAP of YOLOv5s. This observation suggests that, in a specific scenario or data distribution,
the GIoU loss function may not yield significant performance improvements compared to the CIoU
loss function.; however, this does not necessarily mean that the GIoU has no advantages. The GIoU
loss function is a measure of the matching degree of the target box; this function takes into account the
shape difference and position change of the target box and is more robust in some cases. Can better
adapt to changes in the target box, possibly depending on the specific dataset and task. The Focal
Loss function addresses class imbalance by introducing a scaling factor, reducing the impact of easily
classified samples and emphasizing challenging ones. The mAP of Improvement 2 was 88.41%, which
was similar to that of YOLOv5. This indicates that there may be some class imbalance in infrared
image target detection, but introducing the focal loss function successfully optimizes the model’s
learning ability for challenging target classification. The Focal GIoU loss function merges features
from both the loss functions, namely the GIoU loss and the focal loss. The GIoU loss function focuses
on the shape and position of the target box, the Focal loss function effectively addresses the issue of
class imbalance. By combining these two loss functions, the Focal GIoU loss functions effectively
address the learning issue of difficulty classifying objects while balancing shape and position. For
our improvement, compared with YOLOv5’s model using the Focal GIoU loss function, the overall
performance improved to some extent.
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Table 5: Accuracy of different IoU types for datasets

Methods IoU type mAP/%

CIoU GIoU Focal loss

YOLOv5s √ – – 88.43%
Improvement 1 – √ – 87.95%
Improvement 2 – – √ 88.41%
Improvement 3 √ – √ 88.54%
Ours – √ √ 88.68%

4.1.3 Verification of the Distributed Shift Convolution DSConv

To evaluate the impact of distributed shift convolution (DSConv) on reducing model computa-
tions, the FLIR dataset was the subject of four conducted experiments.: Experiment 1: the DSConv
module replaced the Conv module in YOLOv5s; Experiment 2: The YOLOv5s model now incorporates
the DSC3 module in place of the C3 module.; Experiment 3: Only the Convolution module and C3
module located in the main layer were replaced; Experiment 4: Both the Conv module and C3 module
within the feature fusion layer were replaced. The experimental results of the replacement strategies
at different positions are shown in Fig. 11. DSConv lowers convolution operation complexity via
distribution shift, which adopts the operation on a per-channel basis instead of a per-pixel basis.
This characteristic enables the model to significantly reduce the computational burden when DSConv
replaces traditional convolution operations, as shown in Experiments 1, 2, and 3. DSConv introduces
the mechanism of distribution shift during the convolution operation, which is helpful for better
information fusion. In Experiment 2, the DSC3 module replaces the C3 module, which may enhance
the model’s capability to express the target through the information fusion mechanism of DSConv
to maintain high detection performance. The distributed shift property of DSConv is friendly to
residuals and helps to ensure better model stability during module replacement. In Experiment 3 and
Experiment 4, the DSConv of the backbone layer and feature fusion layer were replaced, respectively,
and experimental outcomes revealed that DSConv could maintain the model performance in different
module applications. The final improved model achieves a significant reduction in computational
effort, while the mAP is slightly sacrificed relative to the benchmark model. This shows that by globally
replacing the DSConv module and the DSC3 module, the computational burden can be significantly
reduced while maintaining high detection performance.

4.2 Performance Comparison with Mainstream Network Models

Once the structure of the enhanced network is established, to demonstrate the efficacy of the
enhanced algorithm put forward in this study, thorough experiments were performed on the FLIR
ADAS dataset (Epoch = 150), current mainstream target detection models were selected from the
same dataset for comparison experiments. The target detection algorithms for comparison include
YOLOv3 [22], YOLOv6 [23], YOLOv7 [24], and YOLOv8. Table 6 displays the comprehensive results
of the conducted experiments in great detail. (1) In terms of performance, YOLOv8l leads in 91.1% of
the maps, while IR-YOLO also performs well in 90.1% of the maps. IR-YOLO has a slightly lower mAP
than YOLOv8l does, but it has a large advantage in terms of computational resources and parameter
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count. (2) In terms of computing resource efficiency, IR-YOLO has relatively few GFLOPs and few
parameters—9.1 and 7.3 M, respectively. This makes IR-YOLO more efficient in terms of computing
resources, and YOLOv5n and YOLOv5s are also relatively small in terms of their GFLOPs and
reference counts; however, IR-YOLO performs better on maps than on other methods. (3) Compared
with the number of model parameters, IR-YOLO has a relatively small number of parameters, which
is suitable for resource-constrained environments and boosts the efficiency of model training and
inference. YOLOv3-tiny and YOLO7-tiny also have a small number of parameters, but their mAPs
are lower, indicating that IR-YOLO has obvious advantages when it comes to performance.

Figure 11: Different position replacement strategies used for the DSConv and DSC3 modules

Table 6: This chapter compares the algorithm’s performance with mainstream network models

Model mAP/% GFLOPs Param/M Model mAP/% GFLOPs Param/M

YOLOv6l 89.5 391.9 59.6 YOLOv7 90.8 105.1 35.48
YOLOv6m 89.3 161.6 34.9 YOLO7t 86.6 13.2 5.72
YOLOv6n 85.7 11.9 4.7 YOLOv5n 83.3 4.2 1.68
YOLOv6s 88.4 44.2 18.5 YOLOv5s 88.4 16.0 6.69
YOLOv8l 91.1 165.7 43.7 YOLOv3 90.3 283.3 98.90
YOLOv8m 90.7 79.1 25.9 YOLOv3t 78.2 19.1 11.6
YOLOv8n 87.1 8.7 3.2 YOLOv3s 90.4 283.8 99.95
YOLOv8s 89.9 28.6 11.2 IR-YOLO 90.1 9.1 7.3

Overall, the exceptional performance of IR-YOLO can primarily be attributed to the subsequent
stages: (1) IR-YOLO introduces a head specially used for small target identification, and refining
the small target detection head improves the model’s ability to extract fine target features in infrared
images, thus enhancing the accuracy in detecting small targets; (2) IR-YOLO uses the Focal GIoU to
address the problems of target overlap and sample imbalance in infrared images. (3) The distributed
shift convolution DSConv is introduced to substitute the traditional convolution (Conv) to lower
the model’s complexity of computations. The use of DSConv helps to minimize the computational
load while sustaining this detection accuracy to the maximum extent, enhancing the applicability of
IR-YOLO for effective real-time detection in environments with limited resources. Therefore, IR-
YOLO combines a high mAP with a low computational overhead and parameter count, making
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IR-YOLO a strong choice for deployment in resource-constrained environments, especially where
high-performance detection is needed.

4.3 Test of the Effect on the Experimental Picture

To confirm the actual detection performance of the proposed algorithm., the weight file after
training is called for testing, and the location of the detected object is marked. As shown in Fig. 12a,
when the target is small and overlapping, the original YOLOv5s model is prone to missing detections,
while the IR-YOLO model is better at handling such cases. As shown in Figs. 12b and 12d, when there
is little difference between the background and foreground, the deeper the network depth is, the more
likely the feature information is to be lost, and missing detection is likely to occur. The IR-YOLO
model makes full use of shallow information to solve this problem. As depicted in Fig. 12c, IR-YOLO
has greater confidence than the target before the improvement, which can effectively avoid the case of
false detection.

4 peoples, 1 car
Ours

3 peoples, 1 car
Yolov5s

9 car
Ours

6 car
Yolov5s

5 peoples, 4 car
Yolov5s

6 peoples, 4 car
Ours

10 people,1 car
Ours

9 peoples
Yolov5s

(a) (b)

(c) (d)

Figure 12: Comparison of actual test performance before and after improvement

5 Conclusion

The YOLOv5s model has been enhanced to tackle the challenges associated with reduced
precision and a large number of calculations in the current infrared image pedestrian-vehicle detection
algorithm. Results demonstrate that adding a small target detection head improves accuracy and
recall for small targets. To tackle the problem of sample imbalance, the loss function was enhanced
by integrating the Focal GIoU function and target overlap and increasing the convergence speed.
Using distributed shift convolution DSConv to replace traditional Conv reduces the computational
burden and improves the efficiency of infrared pedestrian and vehicle detection. Compared to the
basic YOLOv5s model, the performance is improved, the IR-YOLO model’s average accuracy reached
90.1%, and the recall rate reached 82.6%. When comparing the basic YOLOv5s model, the accuracy
and recall rate saw a 1.67% increase, and there was a 2.2% rise in the rate of recall. The calculation
time was only 9.1 G, and the average processing time for a single image was just 8.3 ms, which realized
infrared image pedestrian-vehicle detection with high accuracy, high speed, and low cost. This study
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concentrated on detecting pedestrians and vehicles in infrared images during driving. The next phase
will involve extending the target detection to other road scenes.
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