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ABSTRACT

Missing value is one of the main factors that cause dirty data. Without high-quality data, there will be no reliable
analysis results and precise decision-making. Therefore, the data warehouse needs to integrate high-quality data
consistently. In the power system, the electricity consumption data of some large users cannot be normally collected
resulting in missing data, which affects the calculation of power supply and eventually leads to a large error in the
daily power line loss rate. For the problem of missing electricity consumption data, this study proposes a group
method of data handling (GMDH) based data interpolation method in distribution power networks and applies it
in the analysis of actually collected electricity data. First, the dependent and independent variables are defined from
the original data, and the upper and lower limits of missing values are determined according to prior knowledge
or existing data information. All missing data are randomly interpolated within the upper and lower limits. Then,
the GMDH network is established to obtain the optimal complexity model, which is used to predict the missing
data to replace the last imputed electricity consumption data. At last, this process is implemented iteratively until
the missing values do not change. Under a relatively small noise level (α = 0.25), the proposed approach achieves
a maximum error of no more than 0.605%. Experimental findings demonstrate the efficacy and feasibility of the
proposed approach, which realizes the transformation from incomplete data to complete data. Also, this proposed
data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of
electricity enterprises.
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1 Introduction

In the operation of the power grid, the difference between the power supply and sold counted
by the measuring meter is called the statistical power line loss, and the corresponding power line
loss rate is termed the statistical line loss rate [1]. Power supply enterprises hope that through
the calculation and analysis of power line loss, they can dynamically and accurately propose loss
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reduction targets for power line objects. Inaccurate user metering circuits, such as abnormal behavior
of electricity consumption and inaccurate magnification of metering devices, are important reasons for
the fluctuation of the power line loss rate [2–5]. In the intelligent analysis and modeling of abnormal
power consumption, there are evaluation indicators like power, load, alarm, and line loss. The data
quality of these indicators directly affects the result accuracy and the evaluation standard of the
models. Consequently, the data interpolation of missing values poses foundational importance to data
analysis in diverse fields.

To achieve better modeling and analysis effects, the sample data needs to be preprocessed firstly,
such as the missing data of power line loss needs to be filled by the results of appropriate algorithms,
and then the power line loss rate can be calculated by using the topological relationship of the
power line loss of branch lines. According to statistics, 0.5% of data missing is equal to the situation
that 5% noise is injected into the analyzed dataset [6,7]. This is why in many scientific disciplines;
data interpolation is a frequently-used method to complete missing data or to increase its resolution
[8–11]. Thus, missing data recovery has also become a research hotspot in a wide range of fields. The
idea of missing data interpolation with possible values comes from the fact that interpolating missing
data with the most probable values produces less information loss than deleting incomplete samples
altogether. Many different methods have been developed to implement missing data interpolation
depending upon the nature of the data and the accuracy required. The main methods are based on
statistical missing data interpolation methods [12–14] and machine learning (ML) based classification
methods [15–19]. By assuming the normal distribution of the dataset, Junger et al. [12] proposed an EM
algorithm-based method to implement the imputation of missing data in time series for air pollutants.
Despite obtaining good accuracy and precision, their proposed imputation method is strictly subject
tothe assumption conditions. Based on the random forest (RF) algorithm, Stekhoven et al. [20]
introduced a iterative imputation method, which they termed missForest, for the task of mixed-
type data interpolation. In the experimental analysis, the missForest outperformed other compared
methods and attained competitive results. Nevertheless, this method is based on RF, which is an
ensemble algorithm with high complexity. In another research, Picornell et al. [21] applied a moving
mean interpolation method to interpolate missing data in aerobiological databases, and they attained
a 70% success rate using this method. Although satisfactory accuracy has been obtained, the proposed
method, as a parametric statistics method, has certain subjectivity in parameter determination. More
than that, machine learning methods are of high computational efficiency and does not require too
much prior knowledge, which can make up for some shortcomings of statistical model-based methods.
Zhang et al. [16] proposed a novel k nearest neighbor (k-NN) imputation method to iteratively impute
missing data. The similarity between missing data and its nearest neighbors is measured by gray
distance. Though competitive performance is achieved by their method, the computational processes
of this method are complicated. Depending upon the adaptive neuro-fuzzy inference system (ANFIS),
Yang et al. [17] introduced a method for the interpolation of missing wind data. Their experimental
results indicate that the proposed method outperforms the compared wind shear coefficient (WSC)
method. However, this method relies on the condition that the correlation coefficient of data is greater
than 0.85. By applying the artificial neural network (ANN) method, Fallah et al. [18] established a two-
stage time series model for the interpolation of missing methane (CH4) data, and their model reached
an average mean absolute percentage error (MAPE) of 3.03% during the testing stage. Though the
high performance was achieved, the ANN-based method has the risk of overfitting and the prediction
results are difficult to explain. Thereupon, after reviewing the relevant literature, this study proposed
a GMDH-based data interpolation method for missing electricity consumption data. Concretely,
the upper and lower limits of missing values are first determined according to prior knowledge or
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existing data information, and the missing data were randomly interpolated within the upper and
lower limits. Then, the GMDH network with multiple variables as the input is established to obtain
the optimal complexity model. The missing value is predicted using the optimal complexity model to
replace the last interpolated data of the missing value. At last, the iterative loop is implemented until
the interpolation data does not change anymore. Overall, the major contributions of this paper are
recapitulated as follows:

- A GMDH-based data interpolation method is proposed for the interpolation of missing
electricity consumption data, which is useful for the calculation of power line loss and provides
a strong basis for the electricity theft diagnosis and metering fault analysis.

- This study proposes an approach for the determination of the upper and lower limits and
uses them for the random interpolation of missing values. On the basis of this, the GMDH
network is established to obtain the optimal complexity model, thereby predicting the optimum
interpolation data.

- The proposed GMDH-based interpolation method builds non-physical models under noisy
data, and it filters out the optimal complexity model with the best fitting accuracy and
prediction accuracy through internal and external criteria.

- The anti-interference ability is tested in the model, and considering the noise disturbances,
different noise level setups are implemented for the model. Experimental findings reveal the
efficacy of the model under different noise levels.

The remaining writing is decorated as: Section 3 presents the materials and methodology. The
proposed approach is importantly discussed to perform the data interpolation of missing electricity
consumption data. Section 4 dedicates to the experimental part and empirical research is implemented
in this section. Section 5 concludes this paper with a summary and points out the direction of
future work.

2 Literature Review

As mentioned in the Introduction, data interpolation which is crucial for timely data analysis
or prediction tasks has been widely studied by researchers in various fields. By using a neural latent
variable model, known as a Neural Process (NP), Sharma et al. [22] built generative models to
estimate missing values in clinical time-series data. Ahn et al. [23] compared and investigated the
effects of data imputation methods for building long short-term memory (LSTM) networks-based
time series forecasting model, and they used the mean absolute error (MAE) and weighted mean
absolute percentage error (WMAPE) as the evaluation metrics. Huang et al. [24] proposed a data
interpolation method for traffic generative modeling by applying discrete wavelet transform (DWT)
to decompose the complete traffic flow data into low-frequency and high-frequency data. Based on
the improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
and generative adversarial interpolation network, Zhao et al. [25] developed a missing interpolation
model for wind power data. By establishing a pixelwise dynamic convolution neural network (CNN),
Kim et al. [26] performed the interpolation for LiDAR depth data. Using multiple imputation models,
Zhang et al. [27] performed data imputation for missing values in land price dataset. Draman et al. [28]
applied rational corrected scheme comprising three local schemes defined on each triangle to perform
scattered data interpolation, and the metrics including the Root Mean Square Error (RMSE),
maximum error (Max error), coefficient of determination (R2) and CPU time (in seconds) are used
to evaluate the model performance. Lou et al. [29] proposed a wavelet-based convolutional block
attention deep learning network named W-CBADL to implement the interpolation for irregularly
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sampled seismic data, and they used the metrics such as MAE, MAPE, and structure similarity index
measure (SSIM) to evaluate the model performance. Table 1 summarizes the reviewed articles along
with their methodologies, databases, measurement metrics, and application fields that focus on missing
data interpolation.

Table 1: Missing data interpolation

Study Methodology Database Measure metrics Applications

Sharma et al. [22] Neural latent
variable model

MIMIC III dataset RMSE Clinical
time-series data

Ahn et al. [23] LSTM Air quality,
GECCO

MAE, WMAPE Time-series
forecasting

Huang et al. [24] Denoising
autoencoder

PeMS dataset RMSE, MSE, R2 Traffic flow
data

Zhao et al. [25] ICEEMDAN Wind power
dataset

MAE Wind power
time-series

Kim et al. [26] CNN Minivan, Whill RMSE, MAE LiDAR depth
data

Zhang et al. [27] Multiple
interpolation

Private dataset Mean, variance Land price data

Draman et al. [28] Rational quartic Seamount Max error, RMSE,
R2

Scattered data

Lou et al. [29] W-CBADL Synthetic dataset MAE, MAPE,
SSIM

Seismic data

3 Materials and Methods
3.1 Materials

The power line loss includes all the power loss from the primary side of the main transformer
of the power plant (excluding the power used by the plant) to the user’s electric energy meter. The
power line loss cannot be directly measured. It is calculated by subtracting the power supply and
the electricity sold. At present, power metering, marketing, business, and decision support systems
have basically realized networking and intelligence. It can easily collect, analyze and manage data
by using intelligent acquisition terminal equipment and communication network. Relevant data of
1000 10 kV feeder line losses in one year are randomly selected from the power metering system as
the research object. The major variables include the object number of 10 kV feeder line loss, voltage
level, statistical start time, end time, power input, and power output. Therefore, the line loss rate
can be computed as: line loss rate = (supplied power – sold power)/supplied power. Among them,
the supplied power is the power collected when entering the line and the sold power is the sum of
all the major users’ power consumption on the line. Because the power consumption of individual
users such as households is relatively small in a fixed power grid, and be ignored in general, this
study primarily focuses on the analysis of the power consumption of large industrial users on the line.
Fig. 1 portrays the topology relationship between the large industrial users and lines. It is noteworthy
that the electricity consumption of some large users cannot be normally collected due to certain
reasons, such as transformer trips, data missing, and terminal parameter setting errors. If this part
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of the data is lost, the calculation result of the supplied power will be affected, and the daily line
loss rate data will eventually lead to a large error. Therefore, it is necessary to interpolate the daily
electricity consumption data to achieve a better predictive modeling effect. Table 2 presents the partial
sample data.

Meter A

Meter Meter Meter

Big user 1 Big user 2 Big user 3

Line Line

Figure 1: Topological relationship between lines and large users

Table 2: The sample data of feeder line loss

No. Voltage level Start time End time Power input Power output Line loss
rate

1346 AC00101 2020-11-10 2020-11-11 57600 50035 13.1337
1347 AC00101 2020-11-10 2020-11-11 38800 34665 10.6572
1348 AC00101 2020-11-10 2020-11-11 10000 10080 −0.8000
1351 AC00101 2020-11-10 2020-11-11 15760 15321 2.7855
1352 AC00101 2020-11-10 2020-11-11 48880 47846 2.1154
1353 AC00101 2020-11-10 2020-11-11 0 0 0
13605 AC00101 2020-11-10 2020-11-11 36000 103743 −188.1750
1365 AC00101 2020-11-10 2020-11-11 59640 63064 −5.7411
1368 AC00101 2020-11-10 2020-11-11 41520 33312 19.7688
1369 AC00101 2020-11-10 2020-11-11 31440 26820 14.6947

3.2 Methods

3.2.1 GMDH Algorithm

The group method of data handling (GMDH) is a core algorithm of self-organizing data mining,
which can automatically determine the variables to enter the model, the model structure and parame-
ters in a self-organizing manner [30–34]. GMDH is essentially a heuristic self-organization algorithm.
First, it generates random combinations of input variables based on incomplete information of
complex nonlinear systems, and forms multiple combinations named partial descriptions. Then, the
optimal combination is selected according to the tentative criteria of adaptability to the external
environment. This operation is repeated to form a multi-layer network structure, where each layer
includes the formed partial description and selection operation, similar to the process of plant
breeding. Finally, the system that can adapt to the external environment is developed automatically,
which is termed complete expression. Fig. 2 depicts a typical GMDH network architecture.
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Figure 2: A typical GMDH network

Different from the artificial neural network (ANN) family, GMDH uses the form of mathematical
description, namely referential function, to establish the general relationship between the input and
output variables for modeling. In general, the Kolmogorov–Gabor (K-G) polynomial [33], which
can well represent the mathematical description and model any analytic single-valued transformation
through an algebraic sum of terms, is frequently used as the initial model of the algorithm [34]. The
K-G polynomial comprised of (v1, v2, ... , vn) variables is established as follows:

y = f (v1, v2, . . . , vn) =
n∑

i=1

aivi +
n∑

i=1

n∑
j=1

aijvivj +
n∑

i=1

n∑
j=1

n∑
k=1

aijkvivjvk + . . . (1)

where (v1, v2,..., vn) denotes the input variables, (a1, a2,..., an) means the vector of coefficient or weight,
and y is the output variable. Theoretically, as the independent variables and polynomial degree (also
known as complexity) increase, a polynomial sequence can fit any numerical data with the required
precision [30]. Hence, in practice, this method is often utilized for prediction problems in various
domains.

3.2.2 Proposed Approach

First, the dependent and independent variables are defined from the original data set, and the
upper and lower limits of missing values are determined according to prior knowledge or existing data
information. All missing data are randomly interpolated within the upper and lower limits. Then, the
GMDH network of all variables is established to obtain the optimal complexity model, which is used to
predict the missing data to replace the last imputed electricity consumption data. Finally, the iterative
loop is implemented until the missing values do not change. Fig. 3a portrays the specific processes of
the GMDH-based interpolation method, and the details are presented as follows:

Step 1 (Determine the dependent and independent variables): The variable xi with missing data is
determined to be the dependent variable, and the variable (x1, x2, . . . , xi-1, xi, xi+1, . . . , xn) without
missing data is determined to be the independent variable.

Step 2 (Confirm the upper and lower limits of missing values): According to prior knowledge and
existing data information, the upper and lower limits of missing values are counted and designated as[
yi, yi

]
. The value of each iteration does not exceed this range.
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Step 3 (Random interpolation for missing data): All missing data are randomly interpolated at the

first time, and the interpolated values are located in the interval of
[
yi, yi

]
.

Step 4 (Find the optimal complexity model): This step establishes a GMDH model between
variables with missing data and other variables, and finds out the optimal complexity model, as shown
in Fig. 3b.

Determine dependent and 
independent variables

Confirm upper and lower 
limits of missing values

Random interpolation for 
missing data

Find the optimal complexity 
model

Update the 
interpolation data

Iterate until the interpolation 
value does not change

1

2

3

4

5

6

Dataset grouping for 
power supply data

Create a reference function K-G polynomial

external criteria

First-layer intermediate 
models

The selection of f irst-layer 
intermediate models

Form the optimal 
complexity model

(b) Optimal complexity model(a) Data interpolation process

Figure 3: The process of GMDH-based interpolation method

There are two loops in the optimization process: one is the data interpolated by the GMDH
algorithm, where the loop is to find the optimum model; the other is to continuously update the filling
interpolation value through the loop. Thereafter, the best interpolation value of the model is obtained
through the two cycles to improve the accuracy. More specifically, the detailed process of building the
optimal complexity model is described as follows:

(1) Divide the electricity consumption data of industrial huge users into training set A and testing
set B (Nω = NA + NB, ω = A ∪ B). Especially, to establish a prediction model, the sampledataset is
further divided into a learning set A, validation set B, and testing set C. The ratio of training set,
validation set, and test set is 3:1:1, i.e., Nω = NA + NB + NC, ω = A ∪ B ∪ C.

(2) The general relationship between dependent variables (variables with missing data) and
independent variables (variables without missing data) is established as a “reference function”, where
the K-G polynomial is utilized.

(3) Select one or more criteria with the nature of external complementary as the objective function
(system), or called external criteria.

(4) Generate the intermediate candidate model of the first layer. The transfer function yk =
fk

(
vi, vj

)
(k = 1, 2, . . . , n) is employed to generate the intermediate candidate models in a self-

organizing way, and the number of variables and model structure are different. Whilst, the parameters
of yk are estimated on training A.
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(5) The selection of the intermediate models in the first layer. Depending upon the external
criterion, the first-layer intermediate models are selected on test set B, and the chosen intermediate
models ωk (e.g., k = 1, 2, 5, 10) are used as the input variables of the second layer.

(6) Form the optimal complexity model. Repeating the above (4) and (5), the intermediate
candidate models of the second to nth layers can be yielded in turn, and finally, the optimal complexity
model that can be analyzed and explicit is formed.

Step 5 (Update the interpolation data): The value calculated by the optimal complexity model
is used to replace the last interpolation value of the missing data. If the calculated value of a certain
iteration exceeds the upper and lower limits, the boundary value is used to interpolate the missing data.

Mathematically, in the ith iteration, if y(t)
i /∈

[
yi, yi

]
and y(t)

i < yi, then y(t)
i ← yi. Otherwise, if y(t)

i > yi,

then y(t)
i ← yi.

Step 6 (Iterate until the interpolation value does not change): Repeat the above processes from step
3 to step 5 until the interpolation value of the iteration does not change anymore. In summary, a brief
description of the above processes is presented in Algorithm 1.

Algorithm 1: GMDH-based data interpolation method
Input:
The variables (x1, x2 , . . . , xi-1, xi+1 , . . . , xn) without missing data, where i = 1, 2, . . . , n, x∈Rn.
Begin

1: Determine the upper and lower limits of missing values
[
yi, yi

]
.

2: The missing data are interpolated with the arbitrary values in the interval of
[
yi, yi

]
.

3: To depict the relations between variables with missing data and other variables, the GMDH is
used and the K-G polynomial is employed to generate middle candidate models, as written below.
y = f (v1, v2, . . . , vm) = ∑m

i=1 aivi + ∑m

i=1

∑m

j=1 aijvivj + ∑m

i=1

∑m

j=1

∑m

k=1 aijkvivjvk + . . .

4: The middle candidate models are selected according to the external criterion, as shown below.
y2

k = bk
1 + bk

2y
1
i + bk

3y
1
j , i, j = 1, 2, . . . , F1, i �= j, k = 1, 2, . . . , n2

5: Repeat Steps 3–4 until gaining the optimal complexity model, and use it to predict the missing
value.

6: Update the interpolated data. If y(t)
i /∈

[
yi, yi

]
and y(t)

i < yi, then
y(t)

i ← yi

x(1)
. Otherwise, if y(t)

i > yi,

then
y(t)

i ← yi

{y1, y2, · · · , yk}.
7: Repeat the above 3–6 until the interpolation value does not change

Output:
Get the final interpolation value {y1, y2, . . . , yk}.

End.

4 Experiments

To verify the validity of the proposed approach, this paper uses the actual data collected from
the line loss module of the electric energy metering automation system as the analysis object. A real-
world empirical study was performed using the proposed GMDH-based data interpolation method for
missing electricity consumption data imputation in power supply bureaus of Guangxi, China. Table 3
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summarizes the representative sample data, and each row of the original data in this table represents
the electricity quantity collected at 10 time points a day. Where the electricity quantity series x of a
certain day contains missing data, and the data of the electricity quantity series y of the previous day
is complete at the same time. Note that 2 data are missing in 20 sets of data and the missing rate
is 10%. Therefore, using the proposed GMDH-based data interpolation method, the missing data
are iteratively interpolated and the error rate between the interpolated data and the original data is
compared under different noise levels.

Table 3: Original power data and initial random interpolation

Customers Time

T1 T2 T3 T4 T5

y 224.44 226.01 227.06 234.54 241.33
x 226.3201 224.2701 220.7723 ? 225.2166
x(1) 226.3201 224.2701 220.7723 220.7723 225.2166
x(2) 226.3201 224.2701 220.7723 234.8939 225.2166

T6 T7 T8 T9 T10

y 224.84 225.725 228.14 214.79 219.84
x 234.8939 ? 227.971 226.989 227.3123
x(1) 234.8939 225.2166 227.971 226.989 227.3123
x(2) 234.8939 227.971 227.971 226.989 227.3123

Firstly, all missing data are randomly interpolated, and the interpolated values are located in the

interval of
[
yi, yi

]
. For example, the nearest data to the missing value x are 220.7723 and 225.2166

when y is equal to 234.54, as shown in Table 3. The first interpolation of missing data for x uses
the random value located in the range of [220.772 3225.216 6], and similarly, the nearest values of
the second missing data are 234.8939 and 227.971, respectively. The nearest neighbor values can be
randomly selected to interpolate into the missing data, and it can be taken as the initial scheme of the
next interpolation. By doing this, the data used for each interpolation is the intermediate data of the
interval, which ensures that the interpolated value will not exceed the initial upper and lower limits.
Subsequently, this study establishes the GMDH model between the variables with missing data and
other variables, and finds out the optimal complexity model. The K-G polynomial is selected as the
reference function, and to simplify the algorithm, the initial function selected in this experiment is as
follows:

y = f (x) = 1.5x1 + 2x2 − 3x3 + 2.5x4 − 0.7x5 + 1.1x6 (2)

where x1∼x6 are the 6 samples with the smallest distance (k = 6). In addition, the system is susceptible
to various noise disturbances, such as power reading errors, measurement errors, and various objective
factors. Therefore, considering the noise interference, the actual observed sample data conforms to the
following relationship:

y = f (x) + αZ (3)
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In Eq. (3), the value of α is in (0, 0.25, 0.5, 1), Z is 4 groups of random data located in the interval
[−0.5, 0.5], and α is equal to 0 when the system is not disturbed by noises. The x value under different
noise levels is compared with the data interpolated by the GMDH method, and the Z value of each
simulation is randomly generated by the computer. Table 4 displays the results of the GMDH-based
data interpolation method with the 10% percentage of missing data. Considering the measurement of
model efficiency, we investigate the performance using the metrics like the relative error (Erel) and root
mean squared error (RMSE), which are correspondingly calculated in Eqs. (4) and (5).

Table 4: Interpolation results of the proposed method (percentage of missing values is 10%)

Original data α = 0 Original data α = 0.25

GMDH
interpolation

Relative error
%

GMDH
interpolation

Relative
error %

225.7250 225.7719 0.020 226.3201 224.5211 0.800
241.3300 241.3330 0.001 240.7719 239.5832 0.490
Avg. error % 0.010 Avg. error % 0.605
RMSE 0.033 RMSE 1.525

Original data α = 0.5 Original data α = 1

GMDH
interpolation

Relative error
%

GMDH
interpolation

Relative
error %

226.9152 223.5886 1.460 228.1055 221.4521 2.920
240.2138 238.7509 0.610 239.0976 236.1717 1.220
Avg. error % 1.030 Avg. error % 2.070
RMSE 2.570 RMSE 5.139

Erel =
∣∣ŷi − yi

∣∣
yi

× 100% (4)

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(5)

where yi and ŷi stand for the actual value and predicted value, respectively. It can be observed from
Table 4 that the calculation error of the proposed method is relatively small, and the maximum error
does not exceed 0.605% at relatively small noise levels (e.g., α = 0.25), which demonstrates that the
proposed method can effectively perform the interpolation for the missing data and has a certain anti-
interference ability.

Moreover, Table 5 presents the results of the GMDH-based data interpolation method with a
higher percentage of missing data (30%). From Table 5, it can be seen that when the missing rate of
the collected data is high, the GMDH-based data interpolation method can also be used to estimate
the missing data and obtain a relatively low error rate. Therefore, the model can be deployed to the
electricity metering system and applied to the power line loss analysis as well as other functional
modules that require high-quality data. It provides a basis for business applications such as power line
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loss analysis of the metering automation system. A comparative analysis of the line loss rate (LLR)
on a certain line before and after data interpolation is shown in Table 6, and the corresponding curve
is depicted in Fig. 4.

Table 5: Interpolation results of the proposed method (percentage of missing values is 30%)

Original data α = 0 Original data α = 0.25

GMDH
interpolation

Relative error
%

GMDH
interpolation

Relative
error %

224.44 224.430 0.0044 226.3201 228.1602 0.81
227.06 227.103 0.019 220.7723 221.0289 0.12
234.54 234.5155 0.0104 240.7719 238.4302 0.97
224.84 224.8784 0.0171 234.8939 232.6569 0.95
214.79 214.8204 0.0159 226.9887 227.3531 0.16
219.84 219.8549 0.00069 227.3123 229.4964 0.96
Avg. error % 0.012 Avg. error % 0.662
RMSE 0.029 RMSE 1.772

Original data α = 0.5 Original data α = 1

GMDH
interpolation

Relative error
%

GMDH
interpolation

Relative
error %

225.9932 226.9485 0.42 227.4604 228.8511 0.61
221.7045 223.6827 0.90 214.3678 212.7498 0.75
214.5789 212.833 0.81 239.0976 225.7581 5.58
240.2137 234.8317 2.24 227.5465 227.1765 0.16
227.8002 228.5258 0.31 228.0691 230.7598 1.12
223.7002 225.9169 0.99 228.1055 215.1146 5.70
Avg. error % 0.95 Avg. error % 2.32
RMSE 2.65 RMSE 7.73

Table 6: LLR comparison before and after data interpolation

Date Input power Output power
before
interpolation

LLR before
interpolation

Output power
after
interpolation

LLR after
interpolation

2021-4-2 1166.0544 1038.1907 10.9655 1038.1907 10.9655
2021-4-3 1205.7173 1077.3651 10.6453 1077.3651 10.6453
2021-4-4 1247.392 1083.2327 13.1602 1083.2327 13.1602
2021-4-5 1252.342 750.7963 40.0486 1077.7449 13.9416
2021-4-6 1151.3495 505.5928 56.0869 1021.1997 11.3041
2021-4-9 1273.3941 890.1392 30.0971 1127.033 11.4938

(Continued)
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Table 6 (continued)

Date Input power Output power
before
interpolation

LLR before
interpolation

Output power
after
interpolation

LLR after
interpolation

2021-4-10 1257.0694 1144.9149 8.9219 1144.9149 8.9219
2021-4-11 1250.4853 619.4804 50.4608 1126.5366 9.912
2021-4-12 1191.1197 1060.978 10.926 1060.978 10.926
2021-4-13 1089.2236 932.1412 14.4215 932.1412 14.4215
2021-4-16 1234.7428 235.0729 80.9618 988.2567 19.9625
2021-4-17 1399.9461 1295.8447 7.4361 1295.8447 7.4361
2021-4-18 1399.0054 1032.4415 26.2018 1269.3353 9.2687
2021-4-19 1386.9465 1241.0439 10.5197 1241.0439 10.5197
2021-4-20 1374.0141 1223.4084 10.961 1223.4084 10.961
2021-4-23 1430.1296 1263.6268 11.6425 1263.6268 11.6425
2021-4-24 1383.8304 636.1755 54.0279 1275.6444 7.8179
2021-4-25 1399.4091 1012.5836 27.6421 1247.5555 10.8513
2021-4-26 1393.7454 1241.4648 10.926 1241.4648 10.926
2021-4-27 1392.6802 791.8348 43.1431 1205.0195 13.4748
2021-4-30 1268.2400 775.3158 38.8668 1188.5005 6.2874

Figure 4: LLR comparison before and after interpolation

It can be seen from Fig. 4 that the data of many days before interpolation can be considered as
the line loss rate exceeding the standard (more than 15%), or even seriously exceeding the standard
(more than 30%). Thus, the suspicion of electricity theft is relatively high on this line. However, the
fact is that the electricity consumption data on this line has not been recorded, which causes the poor
prediction effect of the models. From the curve of LLR after interpolation, it can be observed that the
line loss rate exceeding the standard is only on 2021-4-16, indicating that many original missing data
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have been interpolated. As a result, the line loss rate has decreased and this is more in line with the
normal situation. In addition, considering different noise levels, e.g., α = 1.0, 0.6, 0.5, 0.33, and 0.1,
the 5 models with different α parameters are used to interpolate the missing electricity quantity data
of different users. The comparison results of different models are presented in Tables 7–9, respectively.

Table 7: Comparison of imputation data for different models (User A)

Date Act Model 1 Model 2 Model 3 Model 4 Model 5

Pred Erel % Pred Erel % Pred Erel % Pred Erel % Pred Erel %

2021/4/9 235 237.125 0.9043 236.8938 0.8059 236.7625 0.75 236.9063 0.8112 237.2792 0.9699
2021/4/18 230 235.5313 2.4049 235.6438 2.4538 235.8938 2.5625 236.2118 2.7008 236.8938 2.9973
2021/4/25 236 234.5521 0.6135 234.9719 0.4356 235.0667 0.3955 235.2292 0.3266 235.4458 0.2348

Table 8: Comparison of imputation data for different models (User B)

Date Act Model 1 Model 2 Model 3 Model 4 Model 5

Pred Erel % Pred Erel % Pred Erel % Pred Erel % Pred Erel %

2021/4/5 300 328.089 9.3632 326.948 8.9829 326.543 8.8477 325.921 8.6402 324.921 8.307
2021/4/16 395 206.435 47.738 278.350 29.5316 295.789 25.1167 325.094 17.6977 365.545 7.457
2021/4/27 400 416.879 4.2199 413.185 3.2962 411.659 2.9148 409.384 2.346 405.557 1.3892
2021-4-30 370 416.879 12.6701 413.185 11.6715 411.659 11.2592 409.384 10.6443 405.557 9.6099

Table 9: Comparison of imputation data for different models (User C)

Date Act Model 1 Model 2 Model 3 Model 4 Model 5

Pred Erel % Pred Erel % Pred Erel % Pred Erel % Pred Erel %

2021-4-6 517.876 514.89 0.5766 515.607 0.4382 515.664 0.4273 515.812 0.399 515.890 0.3835
2021-4-11 496.230 516.233 4.031 507.056 2.1817 506.922 2.1546 505.738 1.916 506.385 2.0463
2021-4-16 522.035 487.675 6.5819 474.834 9.0418 477.689 8.4947 479.753 8.099 489.113 6.3065
2021-4-24 442.035 642.348 45.316 639.469 44.6649 636.368 43.9634 632.258 43.034 623.965 41.1575

According to the results predicted in the above tables, the total errors of these five models
are 134.4196, 113.5041, 106.8864, 96.6144, and 80.8589, respectively. Whilst, depending upon the
electricity quantity value predicted by different models, the corresponding power line loss rates are
calculated, respectively. Table 10 summarizes the power line loss rate statistics based on the prediction
results of different models, and the corresponding curve is depicted in Fig. 5.
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Table 10: LLR comparison of different models

LLR Date

Model 1 Model 2 Model 3 Model 4 Model 5

2021-4-2 10.9655 10.9655 10.9655 10.9655 10.9655
2021-4-3 10.6453 10.6453 10.6453 10.6453 10.6453
2021-4-4 13.1602 13.1602 13.1602 13.1602 13.1602
2021-4-5 13.8505 13.9416 13.974 14.0237 14.1036
2021-4-6 11.3664 11.3041 11.2992 11.2863 11.2795
2021-4-9 11.4756 11.4938 11.5041 11.4928 11.4635
2021-4-10 8.9219 8.9219 8.9219 8.9219 8.9219
2021-4-11 9.1782 9.912 9.9228 10.0175 9.9657
2021-4-12 10.926 10.926 10.926 10.926 10.926
2021-4-13 14.4215 14.4215 14.4215 14.4215 14.4215
2021-4-16 24.7469 19.9625 18.3189 15.7784 11.7443
2021-4-17 7.4361 7.4361 7.4361 7.4361 7.4361
2021-4-18 9.3661 9.2687 9.3402 9.3175 9.2687
2021-4-19 10.5197 10.5197 10.5197 10.5197 10.5197
2021-4-20 10.961 10.961 10.961 10.961 10.961
2021-4-23 11.6425 11.6425 11.6425 11.6425 11.6425
2021-4-24 7.6098 7.8179 8.0419 8.3389 8.9382
2021-4-25 10.8813 10.8513 10.8445 10.8329 10.8174
2021-4-26 10.926 10.926 10.926 10.926 10.926
2021-4-27 13.2095 13.4748 13.5843 13.7477 14.0225
2021-4-30 5.9961 6.2874 6.4077 6.5871 6.8889

Figure 5: LLR comparison diagram of different models
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From the comparison of electricity prediction errors of different models in Table 10, it can be
assumed that model 1 has the largest deviation owing to the influence of relatively high noise levels.
Also, it can be observed from the LLR comparison chart of different models in Fig. 5 that the curve
of model 1 has the largest fluctuation range, which indicates the relatively large errors of this model.
On the contrary, model 5 has the smallest prediction error of electricity quantity and the LLR curve
almost coincides with other curves, which implies the overfitting risks of this model. Therefore, we
remove these two models in the interpolation analysis of missing electricity consumption data.

5 Conclusion

In intelligent power management, such as adaptive anti-theft diagnosis modeling, there are
evaluation indicators like power, load, alarm, and line loss, and the data quality of these evaluation
indicators is very important and will affect the accuracy of the modeling results. Due to network packet
loss, terminal failure, electricity cut, and other factors, some metering points may be offline or data
cannot be collected in the power metering system, resulting in missing and incomplete data. The lack of
electricity data not only affects the collection integrity rate, average electricity consumption, electronic
marketing settlement, and other utility indexes but also influences the effectiveness of the electricity
theft diagnosis and metering device fault detection. Thereupon, to address these challenges, this paper
proposes a GMDH-based data interpolation method for missing electricity consumption data. The
upper and lower limits of missing values are initially determined according to prior knowledge or
existing data information, and the missing data were randomly interpolated within the upper and
lower limits. Then, the GMDH network with multiple variables as the input is established to gain the
optimal complexity model, which is used to predict the missing value to replace the last interpolated
dataiteratively.

The empirical analysis result shows that the calculation error of the proposed approach is relatively
small, demonstrating the efficacy and feasibility of the proposed approach. It has successfully updated
the missing electricity consumption data, automatically realized the organization and management of
data, and offered the basis for the analysis of abnormal electricity consumption, such as electricity
theft, illegal power utilization, metering device faults and errors. In future development, we expect to
embed the model into the electricity metering system to automatically interpolate the values for the
missing electricity consumption data. Meanwhile, this approach can be transplanted to other related
fields, such as data exception processing, online prediction analysis, sparse signal recovery, and others.
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