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ABSTRACT

Recently, deep image-hiding techniques have attracted considerable attention in covert communication and high-
capacity information hiding. However, these approaches have some limitations. For example, a cover image lacks
self-adaptability, information leakage, or weak concealment. To address these issues, this study proposes a universal
and adaptable image-hiding method. First, a domain attention mechanism is designed by combining the Atrous
convolution, which makes better use of the relationship between the secret image domain and the cover image
domain. Second, to improve perceived human similarity, perceptual loss is incorporated into the training process.
The experimental results are promising, with the proposed method achieving an average pixel discrepancy (APD)
of 1.83 and a peak signal-to-noise ratio (PSNR) value of 40.72 dB between the cover and stego images, indicative
of its high-quality output. Furthermore, the structural similarity index measure (SSIM) reaches 0.985 while the
learned perceptual image patch similarity (LPIPS) remarkably registers at 0.0001. Moreover, self-testing and cross-
experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces, making it suitable
for diverse computer vision tasks.
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1 Introduction

In recent years, image hiding based on deep learning has gained significant attention owing to
its potential applications in various fields, such as secure communications [1], digital watermarking
[2], and steganography [3]. The prevailing approaches in this field involve embedding a secret image
within a specific region [4–6], which generally refers to texture regions or high-frequency regions of
the cover image. However, these conventional techniques have several limitations that hinder their
practicality and effectiveness. A key drawback of the current approach is the lack of self-adaptability
in the cover image [7]. This deficiency often renders the cover image incompatible with specific
application requirements, thereby limiting its use in real-world scenarios. For example, in applications
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where the cover image is expected to seamlessly blend into a specific environment, such as digital
advertising or camouflage systems, the lack of self-adaptability hinders concealment effectiveness and
increases detection risk. This limitation necessitates the development of novel techniques that can be
adapted for various application contexts. Furthermore, existing methods do not adequately consider
the correlation between cover and secret images during the embedding process [4,6,8]. As a result, there
is a risk of information leakage and weak concealment, jeopardizing the security and robustness of the
hidden image. The correlation between the cover and secret images can provide valuable contextual
information, which improves the effectiveness of the hiding process [9,10]. Ignoring this correlation
limits the ability to achieve high levels of concealment and increases the vulnerability of hidden
information to attacks and unauthorized extraction.

To address the pressing need to achieve an optimal balance between image quality preservation
and hiding capacity enhancement. By analyzing the relationship between the secret image domain
and the cover image domain, the proposed approach combines the attention mechanism of the mixed
domain and the Atrous convolution. To create a highly adaptable method that does not rely on a cover
image, the attention mechanism selects and manipulates regions within the cover image to enhance
concealment and improve robustness. Our method builds on the learning technique of secret images
in the existing general depth-hiding model [11] and incorporates the attention mechanism of mixed
domain and Atrous convolution. This combined approach significantly improves the reconstruction
performance of the cover secret information independent of the image-to-image network. This was
achieved by improving the secret feature reconstruction module and incorporating Atrous convolution
to enhance the sensitivity field of the hidden image recovery network. By leveraging the sparse
sampling of secret information from images containing hidden information, we successfully preserved
the spatial structure of the secret image while extracting high-level semantic features.

Moreover, recent advancements in deep learning have demonstrated the effectiveness of incorpo-
rating perceptual loss into image-generation tasks [12]. Perceptual loss, which is derived from deep
neural networks, captures high-level semantic information and encourages the embedded image to
align with human visual perception, resulting in more visually plausible and imperceptible hidden
images. By adding perceptual loss to the training process, the proposed method improves the similarity
perceived by humans between the embedded secret image and the cover image, further improving the
overall concealment effectiveness and ensuring a visually convincing output.

To evaluate the feasibility and effectiveness of the proposed algorithm, a comprehensive set
of experiments was carried out. The experimental results demonstrate promising outcomes, with
the proposed method achieving a peak signal-to-noise ratio (PSNR) value of 40.72 dB between the
stego and cover images. Moreover, self-testing and cross-experiments were performed to validate the
adaptability and generalization of the proposed model in the presence of unknown hidden spaces,
thereby confirming its applicability to diverse computer vision tasks.

In summary, the major contributions of this study are as follows:

• Proposed a cover-independent image-to-image hiding method based on a mixed-domain atten-
tion mechanism, it incorporates a secret redundant noise filtering module, which improves the feature
extraction ability and adaptability of secret images.

• Introduced the application of the mixed-domain attention mechanism to efficiently compress
essential secret information within images, thereby enhancing hiding efficiency and improving the
concealment of secret data in various cover images.
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• Introduced Atrous convolution enhances sensitivity, preserves the spatial structure, and captures
high-level semantics, significantly improving the capability of cover-independent image-to-image
networks to reconstruct hidden information.

The remainder of this paper is organized as follows. Section 2 provides related works. In Section 3,
we present a cover-independent framework based on a mixed-domain attention mechanism with
detailed components. Section 4 describes the experimental setup, including the parameter settings
with software components, dataset selection, performance evaluation metrics, and details of the
experimental results and analysis. Finally, Section 5 presents the conclusion of the work presented
in this paper.

2 Related Works

The field of image hiding has witnessed significant advances in recent years, driven by the appli-
cation of deep learning techniques. These techniques offer promising solutions in various domains,
including secure communication, digital watermarking, and steganography. Traditional image-hiding
methods, which rely on manual design distortion cost functions, were extensively studied before 2017.
However, this review focuses on the emerging trend of using deep learning for image mapping and
storage.

2.1 The Method of Embedding Images-in-Images Based on Cover

To expand the transmission capacity of secret images in image-hiding tasks, researchers initially
explored the manual design of distortion cost functions to improve the hiding performance [13–17].
In a groundbreaking study in 2017, Baluja [18] introduced deep learning to image-hiding tasks for the
first time. By leveraging convolutional neural networks, the author developed a paired neural network
structure capable of embedding secret color images into color cover images of the same size. The
experimental findings revealed that the secret image information was distributed across all pixel bits
of the cover image, rather than being confined to the least significant bit (LSB). Moreover, modifying
a single pixel affects the number of bits in the seven surrounding pixels. This breakthrough has opened
new possibilities for image information hiding, garnering significant attention, and driving further
research in this domain.

Subsequent studies [4,5] explored secret images hiding within different spatial dimensions of cover
images, such as the RGB space and the YUV space. These approaches aim to preserve the quality of
secret images while maximizing the hiding capacity. This is in contrast to earlier methods, which relied
on manually designed feature functions. For example, Filler et al. [19], and Holub et al. [20] achieved a
substantial improvement in the hiding capacity, which was nearly 60 times greater. However, it is crucial
to note that higher hiding capacities often occur at the expense of security [18]. As the number of hidden
secret images increases, the risk of being detected by potential attackers also increases. Therefore, this
study primarily focuses on the case of hiding a single secret image to strike a balance between the
hiding capacity and security.

2.2 Methods Based on Cover Generation to Hide Secrete Images

Methods based on cover generation were introduced to generate cover images using generative
adversarial networks (GANs) [21,22]. Since the pioneering work of Goodfellow et al. [23] in 2014,
GANs have emerged as powerful tools in various computer vision domains. Volkhonskiy et al. [24]
were the first to combine image hiding with GANs, using the generator component to simulate random
noise suitable for the input cover image in the image hiding task. Attention-Driven Binary Hiding
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(ADBH) [8] is another method that leverages GANs and attention masks to achieve directional
concealment of secret information in specific regions of the cover images. ADBH first employs an
attention mechanism to generate a cover image attention mask. Subsequently, by adding the pixel
values of the original secret image and the attention mask, the authors synthesized a secret image
that resembled the cover image. Finally, a separate generator was utilized to recover the secret image
directly from the synthesized image. The recovery loss function constrains the discrepancy between
the generated secret image and the recovered secret image, ensuring that the secret image can be
regenerated from the target image. The integration of GAN image-hiding tasks offers a convenient
pathway, making image hiding akin to image translation, and improving the concealment of secret
images.

Although researchers have made significant contributions to image-hiding tasks using cover-
based embedding or cover-generated methods, these approaches typically require encoding secret
images based on specific cover images for practical applications [25,26]. Furthermore, most researchers
have focused on designing efficient network modules and complex network structures to enhance the
transmission capacity and concealment of secret information in covert communication [27]. However,
they often overlook the underlying reason for the success of image hiding, which lies in the distinct
frequency differences between the features of the secret image (after removing redundant information)
and the cover image [11]. These frequency differences enable cover-independent image hiding.

3 Methodology
3.1 Overall Framework

The key distinction between cover-independent and conventional approaches lies in the fact that
the cover image is unknown and independent. In the conventional approach, the cover image is
predetermined, whereas in the cover-independent approach, the identity of the cover image remains
undisclosed. This fundamental difference introduces complexities in adaptively concealing crucial
secret information within the cover image, thereby limiting the exploration of the hidden feature
representation space of the secret image. On the other hand, the task of hiding the image, independent
of the cover image, operates under a different paradigm. It involves encoding the cover and secret
images without requiring a conjugated attribute, which is often referred to as conjugated [28].
Fundamentally, the encoding of a secret image is performed independently of any specific cover image.
This pioneering approach allows for the decoupling of the hidden secret image from its reliance on a
particular cover image.

As a result, this decoupling opens new possibilities for the development and advancement of
adaptive coding techniques. It provides flexibility to adapt the coding process to different cover
images, leading to improved efficiency and enhanced adaptability in the encoding and decoding of
secret images. Fig. 1 illustrates the overall framework of the cover-independent image hiding network
(CIIHN) based on the mixed domain attention mechanism. The CIIHN framework consists of two key
modules: the secret image self-coding network and the secret image feature recovery network. These
interconnected modules synergistically facilitate efficient image-hiding and recovery processes. In the
following subsections, we provide an in-depth explanation of each module.

3.1.1 Secret Image Self-Coding Network

In information theory, information entropy quantifies the reduction in the uncertainty. The law of
entropy increase states that isolated systems tend to increase their entropy [29]. In image processing,
the process of hiding a secret image in a cover image can be considered as an increase in entropy,
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where the information entropy of the secret image surpasses that of the cover and hidden images.
The challenge is to manage this entropy increase effectively. To address this challenge, we focus on
improving the adaptability of secret image hiding. Redundancy exists in feature representations within
the image space, including spatial, temporal, visual, information entropy, and structural redundancies.
By filtering redundant features in the channel and spatial domains, the information volume of the
secret image is reduced, allowing accurate extraction of essential information and enhancing the
adaptability to different cover images. Secret image feature extraction involves a subnetwork structure
with five-stage convolutional modules as shown in Fig. 2. The instance normalization and leakyReLU
[30] activation function described in Eq. (1) is applied to preserve the image details, resulting in a 512–
dimensional feature tensor in the image space of the input sample.
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Figure 1: The overall framework of the cover independent image hiding network (CIIHN) based on
the mixed domain attention mechanism

Secret image

Encoded Secret image

First_level convolution
Second_level convolution

Third_level convolution
Fourth_level convolution

Fifth_level convolution

Figure 2: The detailed workflow of secret image self-coding network



3006 CMC, 2024, vol.78, no.3

Prepdown(s) = leakyRelu (IN (conv (s))) (1)

where Prepdown(s) refers to the preprocessed secret feature of the secret image s after down-sampling,
and the feature tensor has a dimensionality of 512. conv represents a convolutional operation, IN
denotes instance normalization, which operates on a single channel of the image and normalizes the
mean of that channel for pixel-level feature processing, and leakyRelu denotes the activation function
employed in our approach.

To enhance adaptability, redundant feature filtering is performed in the channel and spatial
domains. Channel redundancy features are learned using a feed-forward neural network with a hidden
layer, whereas spatial domain redundancy is suppressed using pooling operations and convolutions.
The resulting hybrid domain feature filtering module effectively characterizes the essential information
of the secret image. Residual connections are utilized to preserve the underlying feature information.
The output of the secret image self–coding network represents a strongly encoded image suitable for
tasks where the cover image is independent of the image used for hiding. A specific training process
was implemented to allow training iterations that were independent of the cover images. The sampling
operations for the cover and secret images in each image space domain are mutually exclusive. These
efforts aim to enhance the adaptability and efficiency of secret image-hiding techniques in various
scenarios. The filter coefficient of the channel redundancy features is calculated as shown in Eq. (2).

1 − Mc (F) = 1 − σ (MLP (AvgPool (F)) + MLP (MaxPool (F))) (2)

where 1– Mc (F) denotes the redundant feature information after removing redundant information, σ

represents the activation function, and F is the 512-dimensional feature tensor after downsampling,
which is the weight coefficient of the vector dimension 1×1×C. This coefficient is the dot product of
a 512-dimensional feature tensor obtained from the feature extraction part to remove secret redundant
features in the channel domain.

3.1.2 Secret Image Feature Recovery Network

The process of eliminating redundant features from secret images is carried out to mitigate the
increase in entropy [29]. During extensive training, the neural network may tend to compensate
secret images with lower information content from the secret image domain. Thereby reducing their
dependence on the macro input for the image-hiding task. However, as the macro–input undergoes
processing through various components of the secret image self–coding network, the secret informa-
tion contained within it undergoes further reduction. As a result, the task content involving secret
images containing confidential information is diminished, making it more challenging to reconstruct
these secret images using the secret image recovery network.

To address these challenges, we employed Atrous convolution to enhance the receptive field of the
hidden image recovery network, enabling it to extract multiscale depth features from hidden images.
Moreover, to preserve the spatial structure of the recovered secret image, we introduce Atrous ratios
of 1, 2, 5, 1, 2, and 5 in the secret image recovery network distributed in a saw tooth pattern [31].
This form of Atrous convolution significantly expands the receptive field of the secret image recovery
network, resulting in an exponential improvement in each pixel acquisition degree within the same
feature tensor. Consequently, the recovered secret images demonstrate a higher precision and superior
quality. The detailed workflow of the secret image feature recovery network is shown in Fig. 3.
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Figure 3: The detailed workflow of the secret image feature recovery network

3.2 Error Propagation and Loss Calculation

The model utilizes the output features from the secret image self–encoding network to obtain a
secret image that closely resembles a cover image. This includes the secret coded image, the sum of the
tensor obtained by adding pixel values with a random cover image, and the error signal between the
feature tensor of the cover image. The error signal is propagated through the neural network layer–by–
layer, allowing for error signal adjustment and weight optimization in each layer to minimize pixel-
level differences between the secret and cover images. This process is governed by the hidden loss, as
expressed in Eq. (3).

encodedsecret =
N∑

i=0

(SA · (Mc (F) · F)i ⊕ (leakyRelu(IN(conv(s))))i) (3)

where i represents the coding phase, whose range is [0,5]. The SA denotes the spatial domain
redundancy feature filtering coefficient, (Mc (F) · F) corresponds to the image features after removing
redundant information, and ⊕ represents the pixel value addition operation.

In the image space U , which comprises the cover image domain RH×W×Cs and secret image domain
RH×W×Cs , two methods are used to recover the secret image without relying on the cover image.

Lcon(θ) =
∑N

i=1

∥∥H(i) − (
H

(
S(i)

) ⊕ H(i)
)∥∥

2
(4)

where S represents the secret image, i denotes the secret image feature at the i-th convolutional layer, H
represents the carrier image, and H (.) denotes the encoding process of the secret image. Lcon(θ) denotes
the value of the loss function that needs to be calculated during the hiding process, H corresponds to
the coding characteristics of the cover image and H

(
S(i)

)
represents the secret coding features.

The first method involves reconstructing the secret image directly from its representation, which

is denoted as S

‘

= R (H (S)) as shown in Eq. (4), and the second method involves recovering the

secret image from the secret encoded image expressed as S

‘

= R ((H (S) ⊕ H)). To ensure accurate
recovery, the hidden image recovery network is meticulously trained to minimize recovery loss. This
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loss function effectively measures the discrepancy between the recovered secret image and the original
secret image, as shown in Eq. (5).

Lrev(θ) =

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=1

∥∥S(i) − (
H

(
S(i)

) ⊕ H (i)
)∥∥

2
, recovered from H (S)

N∑
i=1

∥∥S(i) − H
(
S(i) ⊕ H (i)

)∥∥
2
, recovered from H

(
S(i) ⊕ H (i)

) (5)

where Lrev(θ) denotes the value of the loss function calculated during the reconstruction phase, S(i)

corresponds to the ith secret image selected from sets and H
(
S(i)

)
represents the secret coding features

after the secret image coding.

The weight of the secret image recovery network is not influenced by the error term between the
original cover image and the secret image. This is because the objective of the secret image restoration
network is to enhance the similarity between the secret images before and after they are hidden in the
cover image rather than directly restoring the original cover image. However, all the weight parameters
of the network components are affected by the error term between the original secret image and the
recovered secret image, as each component plays a role in preserving and transmitting information
about the secret image.

Traditional loss functions, such as the L2 norm, only consider the pixel–level similarity between
the secret images and cover image, as well as the secret image and recovered secret image, without
addressing the similarity at the feature level. To overcome this limitation, we introduced perceptual
loss, which is a technique commonly used in image style transfer algorithms. This constraint function
can be formally expressed as shown in Eqs. (6) and (7) for the hidden perceptual loss and reconstructed
perceptual loss, respectively.

Lpips(C, C ′) =
∑

l

1
Hl × Wl

∑
h,w

‖wl � (C − C ′)‖2
2 (6)

where (C, C ′) denotes the cover image and the stego image, Hl × Wl corresponds to the layer of
l, and ‖wl � (C − C ′)‖2

2 is the feature tensor after the perception weight and difference image dot
multiplication.

By leveraging the feature values extracted by a convolutional neural network, perceptual loss
measures the difference between the generated image and the target image at the feature level, thus
improving visual similarity.

Lpips(S, S′) =
∑

l

1
Hl × Wl

∑
h,w

‖wl � (S − S′)‖2
2 (7)

where Hl × Wl is the height of the feature tensor in the lth feature layer and Wl is the adaptive weight
of the image feature values, respectively. � represents the XOR operation. By calculating the distance
between the corresponding feature tensors layer by layer and continuously reducing the distance, the
image perception similarity was improved.

Loss = λLcon(θ) + αLrev(θ) + γ (Lpips (C, C′) + Lpips (S, S′)) (8)

where λLcon(θ) denotes the hidden loss with a tradeoff factor, αLrev(θ) correspond to the reconfiguration
losses with trade-offs, and γ (Lpips (C, C′) + Lpips (S, S′)) is the Pixel level perceptual loss.

Therefore, our model is trained using hidden loss (λ), recovery loss (α), and perceived loss (γ ) as
total compatibility measures and hyperparameters. The setting of the hyperparameter α was inspired
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by Baluja [18] and is set to 0.75. Finally, the gradient descent algorithm is used to update the weights
until the model converges.

4 Experimental Results and Discussion
4.1 Experimental Setup

In the experiment, we employed the Adam optimizer [32] for the cover-independent image-hiding
model. The initial learning rate was set to 1 × 10−3, and a reduction of 20% was applied to the learning
rate when the loss value did not decrease for 8 consecutive epochs. The batch size for the cover image
and secret image was set to 4 samples each. In a batch, 4 cover image samples were randomly selected
from the cover image domain, and 4 secret image samples were chosen from the secret image domain.
The selection of secret and cover images was mutually exclusive for each batch. During training,
the dataset was shuffled, and four samples were chosen sequentially until the entire training set was
traversed. Detailed hyper-parameter settings employed in the experiments are listed in Table 1.

Table 1: Hyper-parameter settings

Parameter Value

Epoch 80
Learning rate 0.001
Decay 10
Normalization Instance
Iteration per epoch 2000
Batch size 4

The experimental platform consisted of a Linux system with an NVIDIA GeForce RTX3080
graphics card. The IDE used was VS-code, and the programming framework used was PyTorch 1.7,
CUDA version 10.1.

4.2 Datasets and Performance Measurements

4.2.1 Datasets

During the experiments, the proposed method was trained and validated using the ImageNet
dataset [33]. The ImageNet dataset contains over 1500 high-resolution images with labels for 22000
different image categories. Each image in the dataset underwent meticulous manual screening and
labeling. To create the training and validation sets, we employed a PyTorch data sampler, which
randomly selects samples from the ImageNet dataset. Before training, all the sample images were
resized uniformly to dimensions of 256 × 256 × 3 to ensure compatibility with the vector image-
independent model. Furthermore, we employed the DIV2K [34] and COCO [35] datasets to verify the
generalization ability of the proposed algorithm.

4.2.2 Performance Measurements

To evaluate the efficacy of the proposed method, the following performance measurement metrics
were used to appraise image quality: peak signal-to-noise ratio (PSNR) [36], structural similarity index
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(SSIM) [37], average pixel discrepancy (APD) [11], and learned perceptual image patch similarity
(LPIPS) [38].

• PSNR: The PSNR quantifies the difference in the peak signal-to-noise ratio between two
images, i.e., the cover image and stego image, as well as the secret image and recovered secret
image. The higher the ratio, the better the image quality. This is mathematically expressed by
Eq. (9).

PSNR = 10 log10

2552

MSE
(9)

where 10 log10 denotes the correlation coefficient and MSE represents the mean square error of the
pixels between images.

• SSIM: The SSIM measures the similarity between two images, that is, the stego image and cover
image, and is formulated by Eq. (10).

SSIM =
(
2μxμy + c1

) (
2σxy + c2

)
(
μ2

x + μ2
y + c1

) (
σ2

x + σ2
y + c2

) (10)

where μxσ
2
x is the average and variance of x, μyσ

2
y is the average and variance of y, σxy is the covariance

of x and y, c1, and c2 are constant with values c1 = m1L2 and c2 = m2L2 with m1 and m2 having values
of 0.001 and 0.003, respectively and L is the range of pixels.

• APD: This metric concisely measures the prediction error of the regression model. Because the
image-hiding task can be viewed as a regression task, the cover and secret images are treated
as the ground truth, while the secret image and the secret recovery image serve as the predicted
values. This is mathematically formulated as shown in Eq. (11).

APD = 1
n

N∑
i=1

|f (xi) − yi| (11)

where
1
n

denotes the coefficient of pixel difference, and |f (xi) − yi| represents the absolute value

between the input and output terms.

• LPIPS: Because our method incorporates perceptual loss in the training to optimize the model,
to assess the similarity of human visual perception between images, we introduced a novel
performance measurement metric called the LPIPS to evaluate the effectiveness of the image
hiding task by considering the perception of hidden images-in-images. It is defined by Eq. (12).

d(x, x0) =
∑

l

1
HlWl

∑
h,w

‖wl �
(
ŷl

hw − ŷl
0hw

) ‖2
2 (12)

where d denotes the spatial distance between points x0 and x. The model procures a feature stack from
the L-layer, subsequently applying unit normalization within the channel dimension. Vector wl serves
the purpose of diminishing the count of active channels, enabling the computation of the L2 distance.
Ultimately, spatial averaging is performed in conjunction with channel summation.
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4.3 Results and Analysis

In this section, we conduct comparison experiments with the conventional approaches in four
respects: (1) effectiveness of redundancy removal, (2) effectiveness of perceived loss, (3) validity of
Atrous convolution, and (4) generalization ability analysis.

4.3.1 Effectiveness of Redundancy Removal

We conducted several attempts to remove redundant information from the secret image (Table 2).
Initially, we encoded and transformed the secret image into channel dimensions to reduce the required
number of bits. By utilizing the local cross-channel interaction strategy (ECA) without dimensionality
reduction [39] and fast one-dimensional convolution, we effectively selected essential information from
the channel dimension, resulting in reduced redundancy.

Table 2: Evaluating the effectiveness of mixed attention mechanisms on overall performance

Errors APD PSNR SSIM LPIPS � PSNR

UDH C 2.51 36.22 0.982 0.0001 –
Baseline network UDH S (from_C’) 4.53 32.49 0.938 0.0850 –

UDH S (from_Se) 2.64 36.49 0.983 0.0150 –

Local UDH C 2.78 37.51 0.978 0.0004 +1.29
cross-channel UDH S (from_C’) 2.88 36.21 0.977 0.0160 +3.72
interaction UDH S (from_Se) 2.63 37.04 0.982 0.0101 +0.55

UDH C 1.83 40.72 0.985 0.0002 +4.50
CIIHN (Ours) UDH S (from_C’) 2.54 36.73 0.983 0.0159 +4.24

UDH S (from_Se) 2.06 38.54 0.988 0.0074 +2.05

The experimental data in Table 2 validate the effectiveness of the proposed method, where ‘UDH
C,’ ‘UDH S (from_C),’ and ‘UDH S (from_Se)’ respectively represent: the metrics (APD, PSNR,
SSIM, LPIPS) between the carrier image and the hidden image; the metrics (APD, PSNR, SSIM,
LPIPS) between the secret image and the reconstructed secret image from the carrier image; and the
metrics (APD, PSNR, SSIM, LPIPS) between the secret image and the reconstructed secret image
from the secret encoded image. The second row of Table 2 demonstrates the positive impact of these
attempts, with increased numerical indices between the secret image and the recovered secret image, as
well as between the cover image and the stego image by 1.29 and 3.72 dB, respectively. However, the
local cross-channel interaction strategy focuses only on the channel dimension and fails to fully explore
the spatial representation ability of the secret information. To overcome this limitation, our algorithm
removes redundant features from both the channel and spatial domains, enabling a more convenient
hiding of secret information in any cover image. The effectiveness of this approach is confirmed by the
experimental results in the third row of Table 2.

4.3.2 Effectiveness of Perceptual Loss

The primary objective of hiding images-in-images is to minimize pixel-level differences using a
similarity measurement function. The basic loss function achieves this by constraining pixel-level
Euclidean distance. However, it only considers local pixel differences and overlooks overall image
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dissimilarity. To address this, we incorporated perceptual loss into the model training, enhancing
the perceptual similarity between the secret image and the recovered secret image, as well as between
the cover image and the secret image. By adding perceptual loss, we achieved a significant reduction
in perceptual similarity between the secret image and recovered secret image (60% reduction) and
between the secret image recovered from the encoded image and the original secret image (21.3%
reduction). These results shown in Table 3, highlight the effectiveness of incorporating perceptual loss.
This approach strikes a balance between the cover image and the secret image without relying solely
on metrics such as PSNR and LPIPS. By improving perceptual similarity, we enhanced the overall
performance of the image-hiding task.

Table 3: Evaluation of the effectiveness of perceptual loss overall performance

Errors APD PSNR SSIM LPIPS

UDH C 2.51 36.22 0.982 0.0001
Base loss UDH S (from_C’) 4.53 32.49 0.938 0.0850

UDH S (from_Se) 2.64 36.49 0.983 0.0150

UDH C 2.69 37.88 0.975 0.0054
Base loss ++ LPIPS (S,S) UDH S (from_C’) 2.92 35.87 0.974 0.0340

UDH S (from_Se) 2.36 37.63 0.986 0.0118

UDH C 2.78 37.38 0.972 0.0006
Base loss ++ LPIPS (C,C’) UDH S (from_C’) 2.72 36.29 0.986 0.0207

UDH S (from_Se) 2.54 36.70 0.992 0.0090

UDH C 1.83 40.72 0.985 0.0002
CIIHN (Ours) UDH S (from_C’) 2.54 36.73 0.983 0.0159

UDH S (from_Se) 2.06 38.54 0.988 0.0074

4.3.3 The Validity of Atrous Convolution

In this experiment, we aimed to validate the efficacy of Atrous convolution [31] in the secret
image recovery network. To achieve this, we incorporate Atrous convolution into the deep secret image
recovery module of the deep hidden network, which we refer to as the basic model. The results of these
experiments are listed in Table 4. The performance of the model deteriorates when Atrous convolution
is applied solely to the secret image recovery network of the baseline model.

Table 4: Evaluating the effectiveness of the Atrous convolution on the overall performances

Errors APD PSNR SSIM LPIPS

UDH C 2.51 36.22 0.982 0.0001
Baseline UDH S (from_C’) 4.53 32.49 0.938 0.0850

UDH S (from_Se) 2.64 36.49 0.983 0.0150

(Continued)
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Table 4 (continued)

Errors APD PSNR SSIM LPIPS

Baseline + Atrous UDH C 2.78 37.38 0.972 0.0006
CIIHN (Ours) UDH S (from_C’) 2.72 36.29 0.986 0.0207

UDH S (from_Se) 2.54 36.70 0.992 0.0090
Baseline + Cbam + UDH C 1.83 40.72 0.985 0.0002
LPIPS1 + LPIPS2 + UDH S (from_C’) 2.54 36.73 0.983 0.0159
Atrous CIIHN (Ours) UDH S (from_Se) 2.06 38.54 0.988 0.0074

This declination can be attributed to the inherent nature of Atrous convolution, which employs
sparse samples of image pixels at a specified dilation rate, as opposed to utilizing all pixels for
conventional convolution operations. Consequently, when Atrous convolution is applied solely to the
secret image recovery network without reinforcing the secret information, it leads to information loss
during the recovery process. Moreover, the accuracy of the final model was lower than that of the
baseline. Therefore, as indicated by the results in row 3 of Table 4, the model’s performance reaches
optimal levels only when the Atrous convolution is utilized in conjunction with the mixed-domain
attention mechanism. However, it is important to note that Atrous convolution is not necessarily the
optimal solution for enhancing the performance of a cover-independent secret image recovery network
within this domain.

4.3.4 Generalization Ability Analysis

To evaluate the generalization ability of the cover-independent image-hiding method, we con-
ducted self-tests and cross-tests on two datasets, DIV2K and COCO. The experimental results
presented in Table 5 highlight the performance of the model. By analyzing the first and third lines of the
experimental data, we observed that the model effectively accomplished image hiding without relying
on specific cover images in both the DIV2K and COCO datasets. The numerical indicators obtained
from these experiments were highly compelling, further reinforcing the strong generalization ability
of the model. In particular, the model exhibited exceptional adaptability even within the unfamiliar
hidden space of the DIV2K dataset, which was originally intended for super-resolution tasks. It
successfully conceals secret images within various cover images, including those with a high resolution,
vibrant colors, and complex textures. Moreover, the model demonstrated an excellent performance on
the COCO dataset.

Table 5: Evaluation of the generalization ability of the proposed method for different datasets

Train Validation Errors APD PSNR SSIM LPIPS

ImageNet DIV2K
UDH C 2.08 39.50 0.988 0.0002
UDH S (from_C’) 3.85 33.55 0.971 0.0281
UDH S (from_Se) 2.84 35.81 0.984 0.0088

DIV2K DIV2K
UDH C 6.44 31.06 0.930 0.0599
UDH S (from_C’) 8.89 26.57 0.858 0.2360

(Continued)
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Table 5 (continued)

Train Validation Errors APD PSNR SSIM LPIPS

UDH S(from_Se) 7.35 27.91 0.897 0.1887

ImageNet COCO
UDH C 3.21 36.56 0.087 0.0789
UDH S (from_C’) 4.16 34.78 0.945 0.0987
UDH S (from_Se) 3.89 35.67 0.956 0.0060

COCO COCO
UDH C 2.62 38.19 0.977 0.0014
UDH S (from_C’) 4.00 32.97 0.968 0.0326
UDH S (from_Se) 3.34 34.53 0.977 0.0140

An important finding lies in the last line of the experimental data, which reveals a peak signal-to-
noise ratio of approximately 38.19 dB between the cover and secret images. This achievement represents
a remarkable breakthrough in image hiding without relying on the cover image itself. In other words,
the model based on this scheme exhibits notable adaptability when confronted with unknown domain
image spaces. Through careful analysis, it is fair to state that the proposed model exhibits robust
generalization abilities, demonstrating its potential for real-world applications in various image-hiding
scenarios.

One subset of hiding images, denoted as (a), (b), (c), and (d), was discreetly employed during
the course of the experiment. After the removal of the hidden redundant attribute through the
implementation of the secret self-coding network, cover images (a), (b), (c), and (d) featured in
the uppermost row of Fig. 4, undergo a process of concealment. This procedure culminates in the
emergence of hidden images, as presented in the second row of Figs. 4a–4d. The visual analysis reveals
a strikingly high degree of similarity between the hidden images and their corresponding cover images.
This outcome can be attributed to the intrinsic adaptability of the hidden image within the cover-
independent image-hiding model, allowing proficient integration of essential hidden information into
diverse cover images. Upon traversing the secret image reconstruction network, the hidden image was
subjected to restoration.

The discernible divergence between the restored hidden image and its original counterpart,
in terms of visual appearance, is minimal, thereby validating the effectiveness of the algorithm.
Additionally, the provided summary elucidates pixel disparity images, which elucidate variations
between the cover image and the hidden image, as well as between the hidden image and its restored
form. These images, featured in the third row of both Figs. 4 and 5, afford insights into the absence of
substantial reliance on the image hiding model by the cover image, thus ensuring the preservation of
confidential information.

Furthermore, in Fig. 5, there is a significant resemblance between the secret-containing image and
the cover image. This high similarity arises from the model design, wherein the cover image remains
independent of the secret image, exhibiting a notable adaptability to conceal the secret information
more efficiently within any cover image. In the first row, one can observe the presence of secret images
(a), (b), (c), and (d), which become recoverable after undergoing the secret image recovery network.
The resulting recovered secret image is presented in the second row of the figure.
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(a) (b) (c) (d)

CI

SI

CI vs SI

Figure 4: Visual effect obtained by applying the proposed method for secret image hiding. The elements
depicted in the figure included the cover image (CI), stego image (SI), and CI vs. SI

(a) (b) (c) (d)

SI

RSI

SI vs RSI

Figure 5: Visual effectiveness of the proposed method for secret image hiding recovery: similarity
analysis secret image (SI), recovered secret image (RSI), and SI vs. RSI

In addition, Table 6 offers a rigorous comparative analysis of the experimental findings derived
from the evaluation of deep learning image-hiding models using the renowned ImageNet dataset.
The primary objective of this analysis was to meticulously assess the performance and efficacy of
established image-hiding techniques in concealing sensitive information within images while upholding
the overall image quality. The table comprises essential performance metrics that were judiciously
selected to evaluate the image-hiding models in terms of precision and comprehensiveness. These
critical metrics encompass but are not limited to APD, PSNR, SSIM, and LPIPS. Each row in the table
corresponds to specific image-hiding models that were subjected to meticulous evaluation, whereas the
columns represent the corresponding results for the aforementioned performance metrics. To provide
an insightful overview of the model’s comparative performance, the table also includes aggregated
scores for each metric.
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Table 6: Comparative analysis of different methods

Method Errors APD PSNR SSIM LPIPS

UDH C 2.35 39.13 0.985 0.0001
UDH [11] UDH S (from_C’) 3.56 35.00 0.976 0.0136

UDH S (from_Se) 1.98 39.18 0.992 0.0022

(Cover,Stego) 2.51 36.22 0.982 0.0001
UDH [11] (Secert,re_secert)(C’) 4.53 32.49 0.938 0.0850

(Secert,Se)(Se) 2.64 36.49 0.983 0.0150

Baluja [18] (Cover,Stego) – 39.60 0.980 –
(Secert,re_secert) – 32.05 0.910 –

Baluja [40] (Cover,Stego) – 36.59 0.952 –
(Secert,re_secert) – 34.13 0.925 –

Rehman [41] (Cover,Stego) 29.60 0.880 31.30 0.880
(Secert,re_secert) 32.90 0.960 36.60 0.960

HiDDeN [42] (Cover,Stego) – 34.79 0.938 –
(Secert,re_secert) – 35.70 0.960 –

ISGAN [43] (Cover,Stego) – 34.89 0.968 –
(Secert,re_secert) – 33.42 0.947 –

ABDH [8] (Cover,Stego) – 33.91 0.958 –
(Secert,re_secert) – 30.21 0.948 –

HiNet [44] (Cover,Stego) – 38.50 0.954 –
(Secert,re_secert) – 35.38 0.955 –

(Cover,Stego) 1.83 40.72 0.985 0.0001
CIIHN (Ours) (Secert,re_secert) (C’) 2.54 36.73 0.983 0.0159

(Secert,re_secert) (Se) 2.06 38.54 0.988 0.0074

This diligently conducted analysis serves as a foundational reference for researchers, practitioners,
and stakeholders involved in the domains of image hiding and data security. The methodological
findings obtained from this study will contribute significantly to the advancement of image-hiding
techniques and aid in the informed selection of suitable models for diverse use cases, including secure
communication, data watermarking, and confidential information protection. To further reinforce
the robustness and generalizability of the findings, supplementary details concerning the experimental
setup, dataset specifications, and statistical significance are deemed essential.



CMC, 2024, vol.78, no.3 3017

5 Conclusion and Future Work

In conclusion, our research advances hidden image embedding for secure and efficient data
transmission via steganography. However, a significant limitation is the disparity in PSNR values
between the secret and reconstructed images caused by the inherent convolution characteristics
during encoding, which results in information loss in the image features. To address this limitation,
our future research will take a multidisciplinary approach, including the investigation of advanced
neural architectures, such as attention-based models and GANs, to improve security and minimize
information loss while optimizing temporal efficiency for real-time embedding. We also aim to develop
robust countermeasures against steganalysis techniques to bolster security, while expanding our
approach to encompass diverse multimedia data types, including audio and video, for comprehensive
secure communication. By overcoming these challenges, we aim to advance secure data embedding,
enhancing both security and efficiency, while extending its applicability across various multimedia
platforms, underscoring our dedication to advancing the field of steganography and secure data
transmission.
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