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ABSTRACT

In recent years, various adversarial defense methods have been proposed to improve the robustness of deep neural
networks. Adversarial training is one of the most potent methods to defend against adversarial attacks. However, the
difference in the feature space between natural and adversarial examples hinders the accuracy and robustness of the
model in adversarial training. This paper proposes a learnable distribution adversarial training method, aiming to
construct the same distribution for training data utilizing the Gaussian mixture model. The distribution centroid is
built to classify samples and constrain the distribution of the sample features. The natural and adversarial examples
are pushed to the same distribution centroid to improve the accuracy and robustness of the model. The proposed
method generates adversarial examples to close the distribution gap between the natural and adversarial examples
through an attack algorithm explicitly designed for adversarial training. This algorithm gradually increases the
accuracy and robustness of the model by scaling perturbation. Finally, the proposed method outputs the predicted
labels and the distance between the sample and the distribution centroid. The distribution characteristics of the
samples can be utilized to detect adversarial cases that can potentially evade the model defense. The effectiveness
of the proposed method is demonstrated through comprehensive experiments.
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1 Introduction

In recent years, the rapid advancement of Deep Neural Networks (DNNs) has led to their extensive
application, including computer vision [1,2], audio recognition [3], and natural language processing
[4,5]. However, DNN models are vulnerable to adversarial examples [6], where slight modifications in
input data can lead to incorrect predictions. This raises serious security concerns, particularly in safety-
critical applications such as image classification [7], object detection [8,9] and autonomous driving [10].

To address these challenges, various defensive approaches have been proposed [11–13] to respond
to the emergence of adversarial attacks. Adversarial training [14–17] has gained more attention, and is
being considered as the most effective defense method among others. This method involves training a
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DNN model by using both natural and adversarial examples. Thus, the model learns to generalize
in the presence of adversarial examples. The adversarial training introduced by Madry et al. [14]
involves natural examples with adversarial examples generated through the projected gradient descent
(PGD) attack. Their study enhanced the models’ ability to defend against adversarial attacks by
pushing the predicted label of adversarial examples closer to the ground-truth. However, their study
did not consider natural accuracy. Regularization-based adversarial training methods [6,18,19] have
also been proposed to improve DNN robustness. These methods often face a trade-off between robust
and natural accuracy, using regularization terms such as Kullback–Leibler (KL) divergence and logit
pairing [19]. However, they overlooked the variations in the distribution of natural and adversarial
examples.

Previous studies [20,21] have revealed that natural and adversarial examples have distinct under-
lying distributions. Strengthening the model’s consistency for both types of examples may result in
a decline in the accuracy of natural examples. As shown in Fig. 1a, the model accurately classifies
natural examples (blue dots) but struggles to classify the corresponding adversarial examples (red
dots). Existing adversarial training methods [18,19] aim to ensure consistency between model output
for natural and adversarial examples. The model successfully classifies most adversarial examples, as
shown in Fig. 1b. However, this causes natural examples to move closer to or even cross the decision
boundary, resulting in decreased model accuracy. The proposed method encourages both natural
and adversarial examples to be close to the same distribution centroid. As shown in Fig. 1c, both
natural and adversarial samples follow the same distribution. Each distribution contains a distribution
centroid represented by yellow dots. Assuming that natural and adversarial examples originate from
distinct underlying distributions within the feature space, the task for a model to classify them as
belonging to the same class poses significant challenges, hence our motivation.

(a) Natural model        (b) Existing robust model (c) Our robust model  

Figure 1: Illustration of the decision boundary of the (a) Natural model, (b) Existing robust model,
and (c) Our robust model. Different shapes represent the expected features of images in various classes

The proposed method aimed to bring natural and adversarial examples closer to the distribution
centroid of the ground-truth class in the feature space. This is achieved by acquiring a robust
distribution centroid through gradient back-propagation using both natural and adversarial examples.
This method also allows for rejecting the classification of samples far from the distribution centroid. A
Gaussian mixture model is used as a classifier to capture the feature distribution of the input. Samples
close to the distribution centroid have a higher confidence, which complements the robustness of the
model. The main contributions of this work involve the following aspects:

• The distribution gap between natural and adversarial examples in the feature space is closed,
leveraging the learnable classification centroid to guide adversarial training.

• A decision-boundary-based adversarial attack algorithm is proposed for adversarial training,
which can generate adversarial examples close to the natural example distribution while
minimizing excessive distribution differences.
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• Adversarial examples are detected by analyzing the likelihood estimation of the model output.
This two-stage defense method allows a few adversarial examples to bypass the defense
mechanism.

The remainder of this paper is structured as follows. Section 2 describes the related work. Section 3
describes the proposed adversarial training method, including feature modeling and the pipeline for
adversarial example generation and training. In Section 4, numerous experiments are conducted,
and the potential uses of probability estimation for deployment are discussed, and finally, Section 5
describes the conclusion of the paper.

2 Related Work
2.1 Adversarial Attack

Since the advent of adversarial examples, a wide range of attack methods to generate adver-
sarial examples have been explored. Adversarial examples can readily fool DNNs in real-world
circumstances, thus becoming a major hurdle to DNN implementation. Nevertheless, this is worth
investigating, as the existence of adversarial attacks may accelerate the progress of the work on
adversarial defense.

2.1.1 Fast Gradient Sign Method (FGSM)

Goodfellow et al. [6] proposed a fast way to generate adversarial examples known as the fast
gradient sign method (FGSM). FGSM generates a one-step perturbation along the gradient of the
loss function concerning the natural image x.

x′ = x + εsign(∇xL(θ , x, y)). (1)

This equation computes the adversarial input x′, obtained by adding a slight perturbation ε to
the original input x. This perturbation is proportional to the sign of the gradient of the model’s loss
function L(θ , x, y) concerning the input features x, where y denotes the true label of the input.

2.1.2 Projected Gradient Descent (PGD)

Madry et al. [14] proposed a multi-step attack method termed projected gradient descent (PGD).
PGD generates the perturbation iteratively with small steps from a randomly initialized point around
the natural example and constrains the adversarial perturbation under the Lp − norm constraint:

x
′
0 = x, x

′
t+1 = �‖x′−x‖p≤ε(x

′
t + αsign(∇x

′
t
L(fθ (x

′
t), y))). (2)

where �(.) represents the projection operator, t denotes the current step, α denotes the step size, and
ε represents the magnitude of perturbation.

2.1.3 Carlini & Wagner (C&W)

Carlini et al. [22] proposed the C&W attack, which directly optimizes the L2 regularization term
and the difference between logits. The untarget attack version of C&W can be expressed as:

minδ[‖ x̃ − x ‖2
2 −Cfθ (x̃)],

fθ (x̃) = max(max
i �=y

{Z(x̃)i} − Z(x̃)y, −k),

x̃ = 1
2
(tanh (arctanh (x) + δ) + 1).

(3)
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where Z(.)i is the model output before the softmax, k denotes a confidence control parameter. The
C&W attack has outstanding transferability and high confidence.

2.2 Adversarial Defense

Several methods for adversarial defense have emerged after the discovery of the adversarial exam-
ple. Among them, adversarial training has become the common defense method against adversarial
attacks. Existing adversarial training methods can be categorized into three groups: PGD adversarial
training, regularization-based adversarial training and curriculum learning-based adversarial training.

2.2.1 PGD Adversarial Training

Madry et al. [14] suggested using a PGD attack for adversarial training. Madry et al. [14]
formalized adversarial training as a min-max optimization problem:

min
θ

ρ(θ), ρ(θ) = 1
n

∑n

i=1
(maxL(fθ (x

′
i), yi)). (4)

where x′ represents the adversarial example in the Lp-ball around the natural example x.

2.2.2 Regularization-Based Adversarial Training

Kannan et al. [19] proposed logit pairing to promote similarity between the logits of a natural
example and its corresponding adversarial example. Zhang et al. [18] proposed that misclassifica-
tions stem from both the classification error and the boundary error. Boundary error indicates the
closeness of the input features to the decision boundary. In addition to PGD adversarial training,
Zhang et al. [18] balanced the trade-off between robustness and accuracy by minimizing the loss of
the two parts:

min
θ

ρ(θ), ρ(θ) = 1
n

∑n

i=1
(L(fθ (xi), yi) + βmaxKL(fθ (xi) ‖ fθ (x

′
i))). (5)

where KL represents the divergence, L represents the classification loss, and β balances accuracy and
robustness.

2.2.3 Curriculum Learning-Based Adversarial Training

The min-max formulation always attempts to find the worst-case samples, but it sometimes hurts
the natural generalization. Some researchers have introduced the concept of curriculum learning to
adversarial training, which avoids selecting worst-case samples. Cai et al. [23] proposed curriculum
adversarial training (CAT), which gradually increases the number of iteration steps of PGD attacks
during the training period. Cai et al. suggested that adversarial examples generated by strong attacks
lead to overfitting during adversarial training. Zhang et al. [24] proposed friendly adversarial training
(FAT) by utilizing early stopping during PGD to generate adversarial examples that have just crossed
the decision boundary for training.

3 The Proposed Method

Existing adversarial training methods use loss functions to guide the model to extract more robust
latent features, but do not impose explicit constraints on the feature distribution. In this paper, the
distribution of samples in the feature space is constrained to narrow the distribution gap between
natural and adversarial examples.
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It is argued by this paper that different underlying distributions are exhibited by natural and
adversarial examples. The difference in the distribution is not eliminated for natural and adversarial
examples, even if the same labels are assigned or various regularization terms are applied. As shown
in Fig. 2a, there are inherent distribution differences between natural and adversarial examples.

(a) Existing methods (b) Proposed method 

Figure 2: Comparison between (a) sample feature distribution of existing methods and (b) sample
feature distribution of the proposed method. The inherent difference between existing methods and
the proposed method, where the proposed method aligns both natural and adversarial examples to the
same distribution

In this paper, a learnable distribution adversarial training method (LDAT) is proposed to narrow
the gap in the feature distribution between natural and adversarial examples. As shown in Fig. 2b,
natural and adversarial examples both follow the same distribution in the proposed method. However,
natural examples are closer to the distribution centroid than adversarial examples. This is consistent
with human intuition that natural examples are closer to the classification centroid than adversarial
examples, resulting in the model making classifications with increased confidence.

The features of the samples are modeled in Section 3.1, and the adversarial attack algorithm that
generates samples for adversarial training is introduced in Section 3.2. Finally, the complete training
process for LDAT is summarized in Section 3.3.

3.1 Feature Modeling

The distribution centroid is obtained from the distribution by modeling the latent features of the
samples as described in Section 1. The Gaussian mixture model is used for classification instead of
fully connected layers. For a K-classification problem, given a dataset (xi, yi)i=1,...,n with xi ∈ R

d as a
natural example and yi ∈ {1, . . . , K} as its corresponding label. Each class in the Gaussian mixture
model has a Gaussian component. Therefore, the posterior probability of the ground-truth label yi

can be expressed as:

p(yi | xi) = N (hθ (xi); μyi)∑K

k=1 N (hθ (xi); μk)
. (6)

where hθ (.) represents the process of extracting features in the neural network, N (.) is the probability
density function of the Gaussian distribution. μk represents the Gaussian mean of class K, which is
the distribution centroid for each class.

For the setup of the Gaussian mixture model, the covariance matrix of the Gaussian mixture
model is set to the identity matrix, and the prior probability of each class is set to 1/K. The
classification margin and likelihood regularization to improve the extra intra-class compactness and
inter-class separability of the model. Ignoring the constant term and constant coefficient, the term for
likelihood regularization can be formulated as:
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Llkd = 1
N

∑

i

‖ hθ (xi) − μyi ‖2 . (7)

The likelihood regularization term serves as a constraint on the sample feature distribution. In the
proposed method, the likelihood regularization term aims to align the training data with the assumed
Gaussian distribution. It drives both natural and adversarial examples closer to the distribution
centroid for the corresponding class.

3.2 Adversarial Example for Adversarial Training

Recent studies based on curriculum learning [23–25] have suggested that adversarial examples
near the decision boundary are more beneficial for adversarial training compared to strong adversarial
examples. When adversarial examples significantly cross the decision boundary, it is difficult for the
proposed method to find the exact distribution centroid. At the same time, it is not beneficial to narrow
the distribution gap between the natural and adversarial examples.

When the accuracy and robustness of the model are low, it will be misclassified without introducing
any perturbation or with only a small amount of perturbation. As the model’s robustness improves, the
sample requires a larger perturbation to cross the decision boundary. As discussed above, to gradually
improve the robustness of the model, the magnitude of the perturbation is set based on the decision
boundary.

For the proposed adversarial training method, an adversarial attack based on a decision boundary
is introduced in this paper. The complete algorithm, encompassing all steps and procedures, is
presented in Algorithm 1. Adversarial examples can be studied over a larger range by controlling
the perturbation magnitude. The loss function used in the proposed adversarial attack algorithm is
cross-entropy.

Algorithm 1: Adversarial example for adversarial training
Input: An example x and ground-truth label y;
Input: Iterations K, step size of perturbation magnitude γ;
Output: Adversarial perturbation δ;

ε0 ← 1, δ0 ← 0
for k ← 1 to K do

if x + δk−1 is adversarial then
εk ← (1 − γ)εk−1

else
εk ← (1 + γ) εεk−1

g ← ∇δk−1
L(x + δk−1, y)

η ← δk−1 + g
||g||2

δk ← εk

η

||η||2

end for
return θ

To avoid overfitting the model to a particular attack, it is important to identify more general
perturbations. The proposed attack algorithm searches for adversarial examples in a larger range to
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determine a more optimal perturbation direction. The attack algorithm only clips the perturbation at
the end of the iteration.

A binary classification problem was considered in this paper to offer a comprehensive understand-
ing of the proposed adversarial attack method, as shown in Fig. 3. Let x ∈ R

d and y ∈ {−1, +1}
denote input and output labels, respectively. A well-trained linear binary classifier is denoted by
f (x) = wTx + b, where prediction label ŷ = sign(f (x)). Assuming a natural example with a ground-
truth label y of + 1 can be classified correctly by a linear hyperplane F = {x : f (x) = 0}. For this
natural example, F+ = {x : f (x) > 0} indicates the input region that can be correctly classified, and
F

− = {x : f (x) < 0} indicates the input region that cannot be incorrectly classified. x ∈ B is used in
this paper to denote the region near the decision boundary. Samples x ∈ B are close to or even cross
the decision boundary.

Figure 3: Adversarial examples for a linear binary classifier. A natural example is indicated by green
dots, whereas the perturbed examples are indicated by red dots. The region near the decision boundary
is denoted by B , which lies between the two dashed lines

Existing adversarial training methods use adversarial examples x′ which are misclassified for
training, where x′ ∈ F

− Existing curriculum learning-based adversarial training methods include
moderately adversarial examples x′ in the training process, where x′ ∈ B

⋂
F

−. The proposed attack
method generates examples x′ in the neighborhood of the decision boundary for training, where x′ ∈ B.
The proposed adversarial attack method does not have an explicit constraint on the model output of
adversarial examples.

It is important to note that adversarial examples are typically intended to deceive the model.
However, for adversarial training, the purpose of generating adversarial examples is not to practically
attack the model. Therefore, it does not matter whether adversarial examples cross the decision
boundary in the proposed adversarial attack algorithm.

3.3 Adversarial Training with Learnable Distribution

A challenging issue in adversarial training is the difference in the distribution between natural and
adversarial examples. In this paper, natural and adversarial examples are forced to obey the assumed
distribution using the likelihood regularization term. Models are trained with a mixture of natural and
adversarial examples, following the suggestion of Dai et al. [13] and Kurakin et al. [26]:

arg min
θ

[E(x,y)∼D(L(θ , x, y) + max
δ∈S

L(θ , x + δ, y))]. (8)

where D is the distribution of the training data, L(θ , x, y) is the cross-entropy loss of data x, its corre-
sponding ground-truth label y, θ is the parameter of the model, δ is the adversarial perturbation, S is
the allowed perturbation range. The complete adversarial training method with learnable distribution
is described in Algorithm 2.
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Algorithm 2: Pseudo code of LDAT
Input: A set of natural images with labels;
Output: Parameter θ of the model with Gaussian mixture model;

for each training step do
Sample a natural example mini-batch x with label y;
Generate an adversarial perturbation mini-batch δ with Algorithm 1;
Project δ onto an Lp-ball around x;
Compute loss Lnat (θ , x, y) on natural mini-batch x;
Compute loss Ladv (θ , x + δ, y) on adversarial mini-batch x + δ;
Minimize the total loss w.r.t. model argminθ ((1 − β)Lnat(θ , x, y) + βLadv(θ , x + δ, y)) ;

end for
return θ

In Section 3.1, the latent features of the samples are modeled by a Gaussian mixture model. The
adversarial perturbation δ in Eq. (8) is derived from the adversarial attack algorithm in Section 3.2.
The cross-entropy of the posterior probability p(y | x) from Eq. (6) and the category labels are used as
the classification loss Lcls. The likelihood regularization term, Llkd is derived from Eq. (7). The final loss
function is given by Eq. (9). β is a trade-off parameter, and the loss function of the natural examples
Lnat (θ , xi, yi) shown in Eq. (10). The loss function of the adversarial examples Ladv (θ , xi + δi, yi) shown
in Eq. (11).

L = 1
n

∑n

i=1
((1 − β) Lnat (θ , xi, yi) + βLadv (θ , xi + δi, yi)) . (9)

Lnat (θ , xi, yi) = Lcls (θ , xi, yi) + λLlkd (θ , xi, yi) . (10)

Ladv(θ , xi + δi, yi) = Lcls(θ , xi + δi, yi) + λLlkd(θ , xi + δi, yi). (11)

The parameter λ, which can be tuned, is shared between Eqs. (10) and (11). The classification loss
Lcls is used to improve the model’s classification performance whereas the likelihood regularization
term Lcls is responsible for constraining the distribution of natural and adversarial examples. λ is a
parameter used to adjust the weights of Lcls and Llkd.

However, constraining the feature distribution of the samples seems insignificant when the model
lacks sufficient classification ability. When the model has an acceptable classification ability, the
consistency of the distribution of natural and adversarial examples enhances the adversarial training.
The likelihood regularization constraints on the distribution of sample features, particularly in the
post-training period, can assist the model in breaking accuracy and robustness bottlenecks.

A hyperparameter adjustment strategy is required to maximize the roles of the loss functions
at different stages. In the early period of training, λ is set to a smaller value to emphasize the role
of classification loss and ensure that the model has an acceptable classification ability. In the post-
training period, a larger lambda is used to play the role of the likelihood regularization term, which
constrains the feature distribution of the training data and assists the model in improving classification
performance. The hyperparameter λ is set to grow linearly, as shown in Eq. (12).

λt = t
T

λinit. (12)
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T denotes the total number of training epochs, t ∈ {1, . . . , T} denotes the current epoch, λt is the
value of λ for the current epoch and λinit is the hyperparameter to be set. The static setting of λ often
leads to the following cases; if λ is set too large, the model may suffer from a lack of classification
ability; if λ is set too small, the likelihood regularization term is hardly working. The proposed
hyperparameter adjustment strategy overcomes these concerns. In this way, it not only influences the
fitting of the model in the early period of training, but also ensures that the likelihood regularization
term works in the post-training period.

4 Experiments

This section conducts extensive experiments on the benchmark dataset to validate the proposed
method’s effectiveness. The experimental setup is first specified, and then the robustness of the
proposed method is evaluated in both white-box and black-box environments. The results of the
ablation studies and feature visualization are used to demonstrate the characteristics and effectiveness
of the proposed method. Finally, the likelihood estimation of the samples is exploited to further
enhance the model’s capability against adversarial examples.

4.1 Experiment Setup

4.1.1 Datasets

Extensive experiments are conducted on two benchmark datasets (CIFAR-10 [27] and CIFAR-
100 [27]). CIFAR-10 consists of 6,000 color images with 10 classes, each with 600 images, whereas
CIFAR-100 has 100 classes with 600 images each.

4.1.2 Implementation

For CIFAR-10, PreAct ResNet-18 [28] is used as the model structure. For CIFAR-100,
WideResNet-28-10 [29] is used as the model structure. In particular, the Gaussian mixture model
is used to complete the classification work instead of the fully connected layer, where the classification
margin is set to 0.1 on CIFAR-10 and 0.05 on CIFAR-100. The trade-off parameter β is set to 0.5,
on CIFAR-10 and 0.3 on CIFAR-100. The initial value of λ is set to 1 for both CIFAR-10 and
CIFAR-100, and then decreases linearly to 0. The optimizer uses SGD with a learning rate of 0.1 on
the training set with the cosine annealing scheduler. 250 epochs were trained on CIFAR-10, and 300
epochs were trained on CIFAR-100 in this paper. The optimizer in the proposed attack algorithm is
Adam (leaning rate of 0.2). The scaling factor, γ is set to 0.2. The perturbation budget is set to 1.5 on
CIFAR-10 and 1 on CIFAR-100.

4.2 Robustness Evaluation and Analysis

4.2.1 Baselines

To analyze the effectiveness of our method, variants of the state-of-the-art defense methods that
stand as the most effective defenses to date were selected for this paper: (1) Standard [14], (2) TRADES
[18], (3) MART [30], and (4) LBGAT [31], where the trade-off parameter is set to six in TREADS and
LBGAT.

4.2.2 White-Box Robustness

Various types of white-box attacks (gradient-based, decision boundary-based, and optimization-
based attacks) are used to evaluate the robustness of the model in detail. The above adversarial attack
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methods are implemented by Foolbox [32] and Torch-Attack [33]. First, for L∞ threat model, the
perturbation budget ε∞ is set to 8 (out of 255) and attack step 40 for CIFAR-10 and CIFAR-100.
Several attack methods, including PGD [14], APGD-DLR [34], FAB [35], and DeepFool [36], were
employed by this paper to assess all defense models. For L2 threat model, the perturbation budget ε2

is set to 0.5 and the number of iterations is 40 for all the datasets. The following adversarial attacks
(the L2 version of PGD, APGD-DIR, FAB, and DeepFool) are used to evaluate all defense models.
Additionally, several optimization-based attacks such as DDN [37] and C&W [22] were included in
this paper.

Table 1 demonstrates the white-box robustness of all defense models on the CIFAR-10 dataset,
where ‘Natural’ indicates the accuracy of the natural test images. The proposed method achieved an
accuracy of 89.02% on natural images. Under both the L∞ and L2 threat models, the best robustness
against all types of attacks was achieved in this paper.

Table 1: The white-box robustness (%) on CIFAR-10

Defense Natural L∞ threat model L2 threat model

PGD APGD FAB DeepFool PGD APGD FAB C&W DeepFool

Standard [14] 84.78 48.88 49.71 47.83 53.02 60.73 60.48 59.62 60.70 63.44
TRADES [18] 82.76 51.46 49.62 49.60 54.54 60.32 58.88 58.81 58.81 63.48
MART [30] 82.62 52.46 49.47 48.50 53.81 62.31 59.56 58.94 59.90 63.06
LBGAT [31] 85.35 51.58 50.81 50.88 55.34 62.54 61.35 61.23 61.58 65.53
LDAT (Ours) 89.02 58.44 59.63 48.57 69.19 64.55 69.28 64.21 66.66 72.59

The white-box robustness of the CIFAR-100 dataset is presented in Table 2. The proposed method
achieves a significantly higher accuracy than other defense methods on natural images, reaching
68.97%. For the L2 threat model, the proposed method achieves the highest robustness against most
types of attack methods. The adversarial examples for adversarial training are under the L2 constraint,
therefore, LDAT is more effective for defense against adversarial attacks under the L2 threat model.
The proposed method demonstrates robustness against various types of adversarial attacks.

Table 2: The white-box robustness (%) on CIFAR-100

Defense Natural L∞ threat model L2 threat model

PGD APGD FAB DeepFool PGD APGD FAB C&W DeepFool

Standard [14] 59.72 23.99 24.31 22.68 25.64 32.77 32.55 31.46 32.69 34.22
TRADES [18] 56.77 27.28 26.26 25.61 27.99 32.52 31.44 30.84 31.81 34.36
MART [30] 58.52 31.21 28.61 27.09 29.63 37.05 34.57 33.15 34.71 36.17
LBGAT [31] 60.11 34.4 30.1 29.24 31.92 39.18 35.31 34.17 35.69 38.05
LDAT (Ours) 68.97 33.87 30.24 28.21 40.31 37.71 38.83 36.55 38.51 43.97

As can be seen in Tables 1 and 2, LDAT has the highest natural accuracy and maintains robustness
across all the datasets. This is because LDAT boosts adversarial training by using distributions learned
from both natural and adversarial examples, rather than focusing on the distribution of adversarial
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examples. LDAT has a significant advantage over other defense methods against DeepFool. Because
the proposed adversarial attack algorithm is based on a decision boundary, the defense model is
more robust to similar adversarial attack methods. For certain adversarial attack methods, LDAT
is slightly less robust than the other defense methods. An imbalance in robustness still exists even if
the generalization of the perturbation is considered.

The trade-off parameter β in Eq. (9) is an important hyperparameter. Table 3 shows the sensitivity
of the trade-off hyperparameter on CIFAR-10. It is observed that as β increases, natural accuracy
decreases while robust accuracy increases. Note that when β is greater than 0.5, with the increase in β,
natural accuracy still decreases, but the improvement in robust accuracy is not significant.

Table 3: The sensitivity of the trade-off hyperparameter β on CIFAR-10

β 0 0.2 0.5 0.8 1

Natural accuracy (%) 95.02 93.12 89.02 85.14 82.33
Robust accuracy (%) 0 38.93 58.44 60.28 60.89

4.2.3 Black-Box Robustness

Three types of attack methods were chosen to target the surrogate model, evaluating black-box
robustness in this paper. Two different surrogate models are used here: i) undefended: undefended
model training with only natural examples on a more complicated model (for example, on CIFAR-10,
the surrogate model is ResNet-50; on CIFAR-100, it is WideResNet-28-10), ii) defended: robust model
through Madry’s method [14] on the model structure identical to the defense model. The surrogate and
defense models were trained separately on the training set, without additional data and pre-trained
models.

The natural accuracy of the natural training surrogate model on CIFAR-10 is 95.02%, and that
of the natural training surrogate model on CIFAR-100 is 80.57%. The following attacks (FGSM [6],
MI-FGSM [38], and PGD [14]) were employed to evaluate the black-box robustness under the L∞
threat model in this paper. The perturbation budget ε∞ is set to eight (out of 255) for all the datasets.
These settings are the same as those for the white-box attack. MI-FGSM with 10 steps and a decay
parameter of 1. PGD attacks for 40 steps with a step size of two (out of 255).

The black-box robustness of all defense models is presented in Tables 4 and 5. The proposed
method outperforms the other baselines in terms of robustness. When the surrogate model is a
natural training model, the robust accuracy of the model approaches that of natural images. When the
surrogate model is defended, the adversarial examples exhibit significant transferability. This implies
that the adversarial training model could serve as a surrogate model for black-box attacks, presenting
a practical solution to significantly enhance the transferability of adversarial examples.
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Table 4: The black-box robustness (%) on CIFAR-10

Defense FGSM MI-FGSM PGD

TRADES [18] 1 80.84 81.01 81.48
MART [30] 1 80.83 80.91 81.42
LBGAT [31] 1 82.76 82.89 83.67
LDAT (Ours) 1 86.72 86.79 87.45

TRADES [18] 2 65.13 64.04 62.91
MART [30] 2 65.00 64.07 62.90
LBGAT [31] 2 66.53 65.55 64.55
LDAT (Ours) 2 69.38 68.32 67.16
Notes: 1 The surrogate model for black-box attacks is the defended model.
2 The surrogate model for black-box attacks is the undefended model.

Table 5: The black-box robustness (%) on CIFAR-100

Defense FGSM MI-FGSM PGD

TRADES [18] 1 55.55 55.60 56.19
MART [30] 1 56.92 57.31 57.90
LBGAT [31] 1 58.41 58.54 59.17
LDAT (Ours) 1 65.57 66.03 67.32

TRADES [18] 2 41.70 41.17 40.77
MART [30] 2 43.69 43.13 43.02
LBGAT [31] 2 45.38 45.03 44.76
LDAT (Ours) 2 49.81 49.41 49.48
Notes: 1 The surrogate model for black-box attacks is the defended model.
2 The surrogate model for black-box attacks is the undefended model.

4.3 Impact of Perturbation Magnitude and Iteration Numbers on Model Robustness

Finally, the robustness of the model under various perturbation magnitudes and iterations of
adversarial examples was analyzed. The PreAct ResNet-18 model on CIFAR-10 is subjected to an
attack in this paper. For different perturbation magnitudes of adversarial examples, a PGD attack is
used to investigate the robustness of the defense model. The number of iterations of PGD is set to 40.
For different numbers of iterations of adversarial examples, the robust model is evaluated using the L∞
version of the PGD attack and the L2 version C&W attack. Under L∞ threat model, the perturbation
magnitudes ε∞ = 8/255. Under L2 threat model, the perturbation magnitude ε2 = 0.5.

The robust accuracy of the defense model with different perturbation magnitudes is shown in
Fig. 4. For small perturbation adversarial examples, LDAT does not exhibit many advantages under
various threat models.
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Figure 4: Robust accuracy (%) of defense models against PGD attacks on CIFAR-10. Under L∞-norm
threat model, the TRADES curves overlap with those of MART and LBGAT

The robustness of all defense models showed a significant decrease as the magnitude of pertur-
bation increased. However, the decrease in the robustness of LDAT is significantly less than that of
the other defense methods, and there is a trend toward a slower rate of decrease. This indicates that
the proposed method outperforms adversarial examples with large adversarial perturbations. This
phenomenon is attributed to the collaboration of the proposed method with the model classification
ability and sample distribution constraints.

The robust accuracy of the defense model for different iterations of adversarial attacks is shown in
Fig. 5. It can be observed that LDAT can defend against multi-iteration attack methods. However, as
the number of iterations increases, LDAT exhibits an obvious decrease in robustness, but still maintains
its advantage over other defense methods.

Figure 5: The robust accuracy (%) of the defense models against PGD (L∞ threat model, ε∞ = 8/255)
and C&W (L2 threat model, ε2 = 0.5) attack on CIFAR-10
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4.4 Impact of Adversarial Attack Algorithm

LDAT boosts adversarial training by introducing a learnable distribution that can be learned from
both natural and adversarial examples. It is difficult to learn the same distribution for natural and
adversarial examples when adversarial examples cross over with natural examples. As shown in Fig. 6,
the proposed attack algorithm is replaced with other common adversarial attack methods. When the
cross-entropy and KL versions of the PGD attack are used to generate adversarial examples, the final
robustness significantly decreases. This suggests that adversarial training using such attack methods
does not consider that the decision boundary suffers from insufficient learning.

Figure 6: Replacing proposed attack algorithm with the variants of PGD attack, where ∗ denotes the
PGD of the L∞ version, and without ∗ denotes the PGD of the L2 version

In this paper, the magnitude of the perturbation is scaled based on the decision boundary. This
makes it as easy as possible for the model to learn natural and adversarial examples using the same
distribution. Samples with stronger adversarial properties were added to the adversarial training
process as the model robustness increased. Moreover, the adversarial example search range is wider
than that of the PGD attack in the proposed algorithm because the perturbation is clipped only at the
end of the iteration. These methods generate adversarial examples that are too strong, which prevents
the model from learning the exact distribution centroid, thus hurting the model’s robustness.

4.5 Feature Visualization

The latent features of the samples on the test images of CIFAR-10 were visualized in this paper.
Several natural examples and their corresponding adversarial examples are randomly sampled in each
class. Feature visualization of the latent features extracted from TRADES (left) and LDAT (right) was
performed by using t-SNE. Fig. 7 illustrates the well-clustered and separated latent features extracted
by LDAT. The proposed method performed well for both natural and adversarial examples.

The classification centroid learned from natural and adversarial examples can constrain the
distribution, both of which benefit the defense model in classifying natural and adversarial examples.
This leads to better robustness of LDAT than TRADES on attacks such as FGSM, PGD, and C&W.
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Figure 7: The t-SNE visualization of latent features extracted from TRADES (left) and LDAT (right)
on the CIFAR-10 test set

4.6 Likelihood Distribution of Adversarial Examples

Instead of the fully connected layer, the Gaussian mixture model can not only perform classifi-
cation, but also provide a likelihood estimation for the sample. Various types of adversarial examples
have been shown to exhibit distribution differences in likelihood estimations. PGD, C&W, and FAB
attacks were employed to generate adversarial examples on the CIFAR-10 test images in this paper.
The likelihood of the samples is normalized using SoftMax loss for comparison. The histograms of
the natural and adversarial examples are shown in Fig. 8.

Figure 8: Likelihood estimation histograms for natural and adversarial examples. SoftMax was applied
to the likelihood values of the model output to simplify visualization
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It is observed that adversarial examples generated by PGD attacks and natural examples are
classified with high confidence. This is consistent with the discovery of Zhang et al. [24], where
extremely strong adversarial examples were mixed with the corresponding natural examples. This
mixture phenomenon makes adversarial training difficult, and makes it difficult to distinguish natural
examples from adversarial examples in terms of likelihood estimation.

Moreover, some interesting phenomena of adversarial examples generated by specific attack
methods in the proposed method were observed. For some adversarial attacks, such as C&W (k = 0)
and FAB, both high-confidence and low-confidence adversarial examples exist among the adversarial
examples generated by these methods. According to the analysis of the above adversarial examples, the
adversarial examples that can be successfully attacked tend to have low confidence. This means that
the model can reject classification for low-confidence examples to defend against adversarial attacks.
A threshold value (e.g., 0.6) is set for detecting adversarial examples, which has almost no effect on
natural examples.

The defense success rate used to measure the robustness of the model, which is defined as
the combination of detection and classification accuracy. The detection accuracy indicated that the
misclassified samples in the test data were rejected. The classification accuracy represents the rate of
correctly classified samples in the test data after detection. The defense success rates of natural and
adversarial examples are shown in Fig. 9.

Figure 9: Defense success rates of natural and adversarial examples. The defense success rate is the sum
of the detection and the classification accuracy

For high-confidence adversarial examples, the threshold is not needed to improve the defense
success rate. However, for low-confidence adversarial examples, the samples that triggered misclassi-
fication can be detected easily. This indicates that the proposed method is robust to the model while
providing the model with the ability to detect partial adversarial examples.

5 Conclusion

In this paper, a novel adversarial training method is proposed, aiming to close the distribution
gap between natural and adversarial examples. In contrast to the existing adversarial defense methods,
the proposed method enables both natural and adversarial examples to follow the same distribution.
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Moreover, an adversarial attack algorithm for adversarial training was proposed based on the decision
boundary of the model in this paper. The proposed adversarial attack can gradually increase the pertur-
bation budget and help the model learn the robustness distribution centroid. Finally, comprehensive
experiments showed that adversarial-trained models using the proposed method performed well in
terms of both accuracy and robustness.

In the future, the adversarial attack algorithm will be further improved to obtain a more robust
classification centroid. In addition, more exploration on the possibility of improving model robustness
by exploiting the likelihood estimation of model output.
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