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ABSTRACT

Video description generates natural language sentences that describe the subject, verb, and objects of the targeted
Video. The video description has been used to help visually impaired people to understand the content. It is also
playing an essential role in devolving human-robot interaction. The dense video description is more difficult when
compared with simple Video captioning because of the object’s interactions and event overlapping. Deep learning
is changing the shape of computer vision (CV) technologies and natural language processing (NLP). There are
hundreds of deep learning models, datasets, and evaluations that can improve the gaps in current research. This
article filled this gap by evaluating some state-of-the-art approaches, especially focusing on deep learning and
machine learning for video caption in a dense environment. In this article, some classic techniques concerning the
existing machine learning were reviewed. And provides deep learning models, a detail of benchmark datasets with
their respective domains. This paper reviews various evaluation metrics, including Bilingual Evaluation Understudy
(BLEU), Metric for Evaluation of Translation with Explicit Ordering (METEOR), Word Mover’s Distance (WMD),
and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) with their pros and cons. Finally, this article
listed some future directions and proposed work for context enhancement using key scene extraction with object
detection in a particular frame. Especially, how to improve the context of video description by analyzing key frames
detection through morphological image analysis. Additionally, the paper discusses a novel approach involving
sentence reconstruction and context improvement through key frame object detection, which incorporates the
fusion of large language models for refining results. The ultimate results arise from enhancing the generated text of
the proposed model by improving the predicted text and isolating objects using various keyframes. These keyframes
identify dense events occurring in the video sequence.
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1 Introduction

Humans can easily describe a video image or event in normal language, it is difficult for machines
or algorithms to do so. It uses several computer vision and Natural Language Processing (NLP)
approaches to comprehend multiple entities and identify various event occurrences in a video scene
[1]. These issues become even more challenging when the videos are crowded or event-related. The
background landscape, light and shadows, objects, human, human-object collaboration, and other
events simultaneously occur in a video. The NLP techniques must be used to accurately express all
of this information. Recently, computer vision and NLP have been integrated to address the issues in
understanding and describing the video sequence [2]. The video description has been used in auto video
subtitling, robot environment interaction, and video surveillance. It also helped the visually impaired
people to understand the content by generating the description of the environment using speech
synthesis and reading out the video description. Presently, these processes are expensive, exhausting,
and operate as a manual process [3]. The definition of sign language is another application of video
description. It may also provide textual instructions for people or robots by turning actions into basic
steps that are shown in a video. For example, there are some events like demonstrating how to down-
load video songs, cooking some foods, walking with dogs, or driving [4]. These developments in video
description unfold massive opportunities in various functional domains. It is predicted that humans
will cooperate with robots similar to humans in the future. Assume that video description is advanced
enough to comprehend various real-world occurrences and transmit them in spoken language. In
that scenario, it enables service robots or cutting-edge phone applications to identify human actions
and various events to interact with people in a way that is more evocative and understandable. For
instance, they might answer a user’s inquiry about their requirements or expectations to think about
what they ought to offer visitors. In an industrial setting, they may assist workers with any procedure
that was lacking from their routine as support work [5]. The automatic generation of stories from video
frames is not science fiction. The use of the deep neural network in natural language processing and
computer vision has increased the large dataset in the field. The video description generated by NLP
that explains the video content has two essential factors: The first step is understanding the content
of the video in the second phase is the construction of grammatically correct language sentences. This
type of work has originated from the robotics community and can be classified as language-grounded,
meaning from vision to robotic perception [6]. The recent field in natural language processing involves
establishing words in an image, illustrating the picture in natural language sentences, and enabling
the robots to understand the natural language instructions [7]. One more exciting field of NLP is
Visual Information Retrieval (VIR), which performs content-related search by using mixed content,
including visuals (drawings, images, sketches) and text (tags, sentences, keywords). The MS COCO
[8] and Flickr30k datasets [9] helped the researchers with image captioning using effective image
questioning.

Additionally, video description methods should describe the pace, direction of different objects co-
occurring, and interconnection of events and things. Lastly, events of videos could be of unpredictable
intervals and may even result in a possible intersection of events. The visual description can be sub-
divided into image and video content. The video content is then divided into four subcategories. The
video captioning, dense video captioning, video description graph generation, and video questioning
and answering as shown in Fig. 1.

Although video captioning and dense Video captioning look similar, they are far more different
from each other. The dense video captioning is far more complex than the simple video translation. A
simple video caption is just a sentence explaining the events and objects in a video frame, while dense
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Video captioning is a series of multiple events and objects co-occurring. In dense Video captioning,
one should have produced a unique text description for individual events, as shown in Fig. 2.

Video Captioning

Dense Video Captioning

Visual Description

Video Scene Graph Generation

Video Questioning

Figure 1: Shows the classification of visual content description

Dense Video
Captioning

An elderly man is
playing the piano in
front of a crowd
A women walks to
the piano and
briefly talks to the
elderly man.
The women starts
singing along with
the pianist.
Another man starts
dancing to the
music, gathering
attention from the
crowd.
Eventually the
elderly man
finishes playing
and hugs the
women, and crowd
applause.

Video Captioning

C T

=T

An old man is
playing piano in a
hall room in front of
many people

Figure 2: The difference between a simple video translation and dense video captioning [1]

Another problem with the dense video caption is the event overlapping during the frames.
Therefore, these properties make a dense video more challenging than a simple Video. Therefore in
this review, the main idea aims to discuss several video captioning methods related to video processing
and acquire dense events by identifying key scenes of particular video segments.

1.1 Structure of This Survey

The current research lacks a complete and methodical review covering all aspects of video
description research, models, datasets, evaluation processes, results, related contests, and video Q&A
challenges. This paper deals with this gap and comprehensively reviews further advanced research
done in dense video description generation using advanced NLP and CV models. The process of
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creating descriptive captions that are pertinent to the surrounding context and the actions shown in
a particular video sequence is the main idea behind this approach. To ensure that the automatically
generated captions accurately reflect the spirit of the developing events in the video, this necessitates a
detailed knowledge of the temporal and spatial links between the visual content and the accompanying
narrative. The key scene extraction and particular object detection can leverage the meaning of the
event by adding extra information.

In Section 1, this review features the critical applications and developments of video description
and then categorizes automatic video description techniques into two different clusters, providing the
details of the methods for each class in Section 2. Section 3 explains the existing datasets used in the
video description. Additionally, this review evaluates the evaluation metrics used for comparative
analysis of the video descriptions in Section 4. Section 5 discusses the future directions that can
improve the field. In Section 6, conclude our review paper and consider several insights and findings.

To comprehend events in videos and generate meaningful captions, this work currently presents a
comprehensive analysis of the existing literature. It places a particular focus on models within the deep-
learning methodology, signifying an advancement beyond conventional deep-learning approaches.
The primary objective of this study is to deliver a thorough examination of publicly available datasets
used for comprehensive event understanding via video analysis. It highlights the performance of
popular techniques on each dataset, enabling readers to identify the most state-of-the-art approaches
that yield optimal results. Additionally, the paper presently explores commonly employed evaluation
metrics and engages in discussions concerning the inherent limitations of dataset structures. The main
contributions of this research are as follows:

e A detailed explanation of video description methods for caption generation and visual con-
tent recognition. And discussing vital challenges and new approaches related to the event
understanding

e The paper discusses in detail the popular publicly available datasets and their utility for
comprehending events-related activities. It also explains video-related datasets.

e In addition to video captioning, our focus in this context centers on in-depth event comprehen-
sion within video sequences. This paper introduces innovative methodologies, provides detailed
insights into the framework, and explains the process for localizing various events within the
same video. Notably, our work introduces novel aspects, including scene content analysis and
shot boundary detection through color space analysis.

e Sentence reconstruction and context improvement through key frame object detection currently
elucidate a novel approach for refining final results. This approach also involves the fusion of
large language models.

This review delves into the intricate realm of dense caption generation and event comprehension
within videos, employing a range of advanced deep-learning models and techniques. The primary
focus lies in the domains of dense captioning for videos and a comprehensive understanding of
events, with a particular emphasis on identifying crucial scenes. The review prioritizes the integration
of low-computation encoder models for sentence generation, strategically addressing the intricate
complexities associated with video processing.

Moreover, the review explores a proposed methodology for sentence reconstruction, which
involves a detailed analysis of object detection within pivotal scenes. This strategic approach aims to
enhance the overall quality and coherence of the generated sentences. By concentrating on identifying
key scenes and employing sophisticated yet computationally efficient models for sentence generation,
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this review endeavors to offer insights and methodologies for improving the quality and accuracy of
dense captions associated with video content and event comprehension.

2 Video Description Methods

The video description methods are divided into two main groups: the classical methods and
the deep learning methods. The visual description worked in classical methods based on traditional
computer vision (CV) and natural language processing (NLP) methods. These methods used the
(object, action, and scene) entities in the videos and combined them into sentences. However, some
researchers categorize them into classical methods. The statistical group enforced the statistical
methods for the large data set. At last, the deep learning group consists of machine learning, deep
learning, and artificial intelligence methods. These state-of-the-art methods have successfully solved
CV and NPL problems [10]. In the next section, this paper will describe these two groups in detail.

2.1 Classical Models

In classical description methods, the SVO (subject, verb, object) methods were used to detect
subject, verb, objects, and events. During this era, many efforts were made to translate the video scenes
into the caption. The work of Koller et al. [1 1] developed a model that was successful in explaining the
motion of vehicles from a crowded traffic scene. The researchers successfully used natural language
words to identify and explain the automobile’s motion. In the late 90s, Brand et al. [12] used the
Hollywood scene and converted it into a description. This method was called “Inverse Hollywood
Problems”. In this method, a movie scene is transformed into a series of actions to create a storyboard
from video instructions. This system was called a “video gister” that analyzes the video scene into
sequences of events to generate a written script that explains the action and events listed in a video
scene. This method also developed key frame drawing to detect the event and represent these events
in a semantic representation like entering, exiting, adding, removing, and motion. This video gister
worked only on human-arm cooperation and explained only five actions, including touch, remove, add,
get, and put. The recent work of Zhu et al. [13] introduced several sentence description classification
tasks into seven different phases. In that explanation, SVO additionally involved complements (C) and
adverbials (A) for sentence constructions. Considering the video description generation, actions and
object combinations are described as SV, SVA, SVC, SVO, SVOO, SVOA, and SVOC, respectively. The
detailed sentence construction templates are shown in Table 1.

Table 1: The several templates for sentence generation

Templates

SV subject + verb

SVA subject + verb + adverbial

SvC subject + verb + complement

SVO subject + verb + object

SVOO subject + verb + object + object
SVOA subject + verb + object + adverbial

SVOC subject + verb + object + complement
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2.2 Deep Learning Models

Deep learning technologies have achieved great accomplishments in various fields of computer
vision. The Convolution Neural Network is the state-of-art model used for data visualization and
object recognition. Long Short-Term Memory (LSTM) [14] models are Deep Recurrent Networks
used for sequence modeling, speech recognition, and machine translations. The problem with the
traditional model is the data handling and complex nature of datasets. Therefore, it allows deep
learning models to solve diverse problem-solving models. The detailed function of deep learning
models given in Fig. 3 indicates that different deep learning models can be used in two main stages
of video description, event understanding(content extraction) and caption generation.

Deep Learning
Approaches

/N

Caption Generation Event Under;tanu:nq (Dense
captioning)
CNN,3DCNN,LSTM etc Altention Models, Deep RNN models

Figure 3: Deep learning-based models for visual descriptions

The Convolution Neural Network (CNN), Recurrent Nueral Network (RNN), and LSTM are to
learn the visual features from the user to be used for the sentence generation phase. The LSTM, deep
RNN, and Gated Recurrent Unit are used for text generation. This paper divides this stage into two
different architecture models used for the encoding (feature extraction) and decoding stage.

2.2.1 CNN-RNN-Based Description Models

This encoding and decoding process is precise and can be used for a significant scale level.
This method allows the variable size of the Video for description and text generation. The work of
Olivastri et al. [15] used the encoder-decoder strategy to solve the problem of end-to-end description
in a dense environment. They used the CNN model for encoding the network while the RNN model
for decoding the model. The CNN model was trained to learn the object and action recognition-
related tasks to understand videos’ features for visual content learning from Video. At the same time,
the decoder is designed to retain the static features to generate the description for the videos. The
Microsoft Research Video Description (MSVD) [16] and Microsoft Research Video to Text (MSR-
VTT)[17] datasets were used for the experiment. The proposed model was compared with state-of-art
models for evaluation. While Li et al. [1 8] proposed a dense video captioning method by localizing each
event’s temporal events and sentence generation. The proposed model also consists of two parts: The
Temporal Events Proposal (TEP) and Sentence Generation (SG). The model used the 3D Convolution
(3DCNN) for descriptive-based temporal attention TEP generation, while LSTM used the model for
sentence generation (SG). The model achieved the 12.96% METEOR on the ActivityNet Caption test
dataset. To understand human actions and activities in a video, Wang et al. [19] used the incorporation
of statistical spatial, short-term motion, and long-term video temporal structure information. They
proposed a Hierarchical Attention Network (HAN) to capture complex human action. The HAN can
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capture the video structure for an extended period and reveal the information for different time slots.
The attention process of HAN is illustrated in Fig. 4.

xy 4
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Motion Attention Appearance

Figure 4: The Attention Process of HAN [19] model

Video captioning is not only about understanding the objects, but it is also very important to
understand the relationship among the objects. Most of the existing models fail to understand the
interaction among the objects. To address the issue, Zheng et al. [20] proposed a syntax-aware action
targeting (SAAT) model to understand the actions of video dynamics. The proposed model used
the 2D and 3D CNN models to understand the global dependency between objects. The semantic
information also plays a crucial role in understanding the frame information. For this purpose, a
Semantic Attended Video Summarization Network (SASUM) [21]. The SASUM model consisted of
a frame selector phase and a video descriptor phase. The model used CNN for the extraction of high-
level semantic feature information. These extracted features were fed to a network of LSTM models to
attain the video description. The video descriptor used the encoder-decoder that translated the visual
content into text description.

Most of the deep neural network lacks adequate visual representation. This problem occurs due to
a lack of interaction between objects. Insufficient training and improper word selection raise the long-
tailed concern. To solve this problem, Zhang et al. [22] proposed an object-relational graph (ORG)
using the GNC and attention-based LSTM as the encoder. For decoding, it used a series of the 2DCNN
and 3DCNN networks. The encoder captured the detailed interaction features from the video to
attain a more realistic visual representation. The decoder, also called teacher recommendation learning
(TRL), establishes a relationship with natural language to make full use of effective and grammatically
correct sentences. Sequence-to-sequence model cooperation with attention mechanisms has achieved
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promising video captioning results because there is rich information between a frame that can be used
for an excellent result. For this purpose, Chen and Jiang [23] proposed motion-guided spatial attention
(MGSA) that captured the motion from the frames and learned the spatial attention using the custom
CNN. Furthermore, the researcher designed a gated recurrent attention unit (GRAU) to cooperate
with the CNN network. The model achieved promising results on MSVD and Microsoft Research
Video to Text (MSR-VTT) datasets.

2.2.2 RNN-Based Description Models

Although these models are new and not popular enough, these RNN-based Video captioning
schemes still provide good results when applied in sequence [24]. Zhao et al. [25] proposed a co-
attention-based recurrent neural network (CAM-RNN) for Video text captioning. The model used the
most correlated text and visual attributes for caption generation. The CAM was used as an encoder to
extract the visual and text features, while RNN acted as a decoder to generate the most related caption.
Similarly, Li et al. [26] used the multi-level-attention model-based recurrent neural network (MAM-
RNN) for most related text caption generation for dense videos. Most of the video caption methods
follow an encoder-decoder approach for video captioning. The problem with this method is that it
only concentrates on the source video and cannot obtain the perspective information of a word that
appeared multiple times during the video. For this purpose, Pei et al. [27] proposed a memory structure
named memory attention recurrent network (MARN) for video text generation. The MARN explored
the full spectrum of a word that appeared in a video during model training. This process allowed the
model to understand the context of a word from a different perspective. Generating a caption for a
dense video is another high-level task as multiple events coincide. Most of the existing models use visual
features for text generation. They cannot understand the relationship among the objects that deduces
the model efficiency, especially in dense videos. For this purpose, Chang et al. [28] proposed an RNN-
based model that used visual and audio features to understand the relationship among the objects in
a dense video. On the other hand, Niu et al. [29] proposed a multi-layer memory-sharing network for
the text generation of a video which uses a soft attention feature to ignore irrelevant information from
the video.

2.2.3 LSTM Based Models

A fundamental model used in computer vision to handle language-related problems is the LSTM
model. Its widespread use in language translation emphasizes its importance in this area [30]. In recent
years, the LSTM has been a critical model used for video captioning and text generation. The work
of Li et al. [31] used the fast-forward LSTM for the YouTube-8 challenge and achieved third place.
The model consisted of seven hidden layers that attained an accuracy of 82.75% on the Kaggle Public
dataset. The problem with the LSTM model is that although the model is perfect for handling the
temporal information for the videos. However, when the scene’s length increases, it is complicated for
the model to address the temporal dependencies. So, the previously generated sequences do not work
for the word prediction. To overcome the problem Zhu et al. [32] used a densely connected LSTM
model to handle the prior sequences for word prediction. The dense LSTM allows updating the current
information using all the previous information, as shown in Fig. 5.
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Figure 5: An overview of the Dense LSTM model proposed in [32]

When the LSTM with a large number of layers starts converging the degradation problem arises.
This problem reduces the accuracy of the LSTM model during the video caption process. To overcome
this problem, Li et al. [14] proposed a Residual Attention-based LSTM (Res-ATT) that uses the
sentence internal information lost in the transmission process. The model integrates the residual
mapping process into the LSTM network that solves the degradation problem. Ahmed et al. [33
proposed the attention-based LSTM as an encoder and decoder to obtain the textual format. The
model consisted of two layers, i.e., bi-LSTM and sequential LSTM for the video caption. The proposed
model extracted the temporal features from videos for text generation. The model successfully handled
high-level features that helped address flawless sentence generation while adapting the different video
modeling approaches. As described above, most models used visual information for caption generation
but ignored the semantics information equally beneficial as the visual information. In this regard,
Chen et al. [34] proposed an encoder-decoder-based Bi-LSTM conversion gate (BILSTM-CGQG) for
semantic information extraction and integration. The model used multiple instance learning (MIL)
for semantic attribute extraction from a scene frame. The encoder consisted of a 2D and 3D CNN
model that encoded the frame and passed these features to the decoder. The Bi-LSTM-CG maps
these attributes with textural information for video captioning. Non-visual word prediction is another
issue that comprehensively decreases the model’s overall accuracy. The case does not end here another
problem arises as these non-visual words do not have a visual representation in a video. The words like
(a, an the,) are kinds of words that need to be predicated on improving the system’s performance. For
this purpose, Gao et al. [35] proposed an LSTM to accurately predict the non-visual word from a video.
The proposed hierarchical-based LSTM model was designed in such a way that it can understand low-
level visual information. This information is combined with high-level context language information
to generate a video caption.

2.2.4 Deep Reinforcement Learning Models

Deep Reinforcement Learning (DRL) is a type of learning that works on trial-and-error policy.
The agent learns from the environment and acts accordingly. If the decision is good, then it gets
rewards. If the decision is wrong, it will be punished [36]. The proposed work of Wang et al. [37] explains
hierarchical reinforcement learning (HRL) for video captioning. The proposed model aims to solve the
issues faced by reinforcement learning for video captioning. The HR L framework learned the semantic
features of a frame. The model also adopts the novel training and deterministic policy. The attention-
based model captures the redundant visual feature noise information in video caption, increasing
computation cost. Therefore, Chen et al. [38] proposed a reinforcement learning-based model PickNet
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for the information frame selection. The PickNet works on the standard encoder-decoder framework.
It is less likely that DR L models will suffer from training data, overfitting problems, and many others
due to their unconventional learning process. Therefore, these models are expected to gain more
popularity in video caption generation in the future. The summary of evaluation criteria and models

1s shown in Table 2.

Table 2: Overview of the caption generation models

Approach Method Dataset Evaluation
Kim et al. [1] Differentiable neural Activitynet BLEU, METEOR,
computer (DNC) Consensus-based

Image Description
Evaluation (CIDEr)

Nabati and Behrad [2] Multi-sentence MSVD n-gram diversity
(DIV), BLEU,
METEOR,

Chen et al. [3]

Chen et al. [4]

Chen et al. [0]

Kang and Han [7]
Young et al. [9]
Aafaqetal. [10]
Lietal. [14]
Olivastri et al. [15]
Lietal. [18]

Wang et al. [19]
Zheng et al. [20]

Wei et al. [21]
Zheng et al. [22]

Multi-modality feature
fusion

Temporal Deformable
Convolutional Encoder-
Decoder(TD-ConvED)
Dynamic Concept
Learner (DCL)

Generate descriptions

Denotational
similarity metrics
Short Fourier
Transform
Res-ATT

Soft-Attention (SA)
Dense video captioning

HAN
SAAT

SASUM
ORG

MSR-VTT, Video And
TEX(VATEX)
MSVD, MSR-VTT

ColLlision Events for
Video REpresentation
and Reasoning
(CLEVRER)

Global Action and
Interaction(GAI)
Semantic Textual
Similarity(STS)
MSR-VTT

MSVD, MSR-VTT
MSR-VTT
ActivityNet

UCF-101, HMDB-51
MSVD, MSR-VTT

SumMe, TVSum
MSVD, MSR-VTT,
VATEX

CIDEr, ROUGE
BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr

Mean Average
Precision (mAP)

BLEU

Pointwise Mutual
Information (nPMI)
METEOR, ROUGE

BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr, ROUGE
BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr

F-Score

BLEU, METEOR,
CIDEr, ROUGE

(Continued)
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Table 2 (continued)

Approach Method Dataset Evaluation

Chen and Jiang [23] MGSA MSVD, MSR-VTT BLEU, METEOR,
CIDEr

Zhao et al. [25] CAM-RNN MSVD, MSR-VTT, BLEU, METEOR,

MPII-MD CIDEr, ROUGE

Liet al. [26] MAM-RNN MSVD, Charades BLEU, METEOR,
CIDEr, ROUGE

Pei et al. [27] MARN MSVD,MSR-VTT BLEU, METEOR,

Chang et al. [28]

Niu et al. [29]

Lietal. [31]

Zhu and Jiang [32]

Ahmed et al. [33]

Chen et al. [34]
Gao et al. [35]
Wang et al. [37]

Chen et al. [38]

Event-centric
multi-modal fusion
approach for dense
video captioning
(EMVCO)
Enhanced Gated
Recurrent Unit
(EN-GRU)
frame-level
features

Densely Connected
Long Short-Term

Memory (DenseLSTM)

Attention-based
Bi-LSTM and
sequential LSTM
(Att-BiL-SL)
BiLSTM

LSTM adaptive
attention
reinforcement
learning

frame picking in video
captioning (PickNet)

ActivityNet, YouCook2

MSVD, MSR-VTT

Youtube- 8M

MSVD, MSR-VTT

MSVD, MSR-VTT

MSVD, MSR-VTT
MSVD, MSR-VTT
MSR-VTT

MSVD, MSR-VTT

CIDEr, ROUGE
BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr, ROUGE

Global Average
Precision (GAP@20)
BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr, ROUGE

BLEU, METEOR,
CIDEr, ROUGE
BLEU, METEOR,
CIDEr

BLEU, METEOR,
CIDEr, ROUGE
BLEU, METEOR,
CIDEr, ROUGE

3 Datasets

The dataset plays a critical role in the model training therefore, they are essential for the video
analysis. In this section, the paper introduced several datasets used for video analysis. These datasets
can be categorized into several classes such as surveillance videos, human activity and actions, social
media contributions, movies, and video demonstrations, an overview of each is provided.
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3.1 Performance Evaluation of Tracking and Surveillance (PETS2009)

The PETS2009 [39] dataset is crucial for evaluating crowd analysis and surveillance systems,
featuring real-world scenarios like urban streets, shopping centers, and train stations in Bristol, UK.
It comprises video and sensor data, including infrared, along with manually annotated bounding
boxes for individuals in the scenes. PETS2009 contains seven sequences, each around 10 min long,
captured from multiple cameras with diverse lighting conditions, crowd densities, and camera motions,
challenging the robustness of surveillance systems. This dataset is widely utilized in the research
community to assess various algorithms for object detection, tracking, and crowd behavior analysis in
computer vision, machine learning, and surveillance research.

3.2 University of California, San Diego (UCSD Dataset)

The UCSD [40] dataset is a widely used dataset for evaluating crowd anomaly detection algo-
rithms. It was collected by the University of California, San Diego, and contains several hours of
surveillance video footage of crowded scenes. The dataset includes a variety of crowd scenarios,
including normal and anomalous crowd scenes such as fights, accidents, and thefts. The dataset is
divided into two parts: Ped]l and Ped2. The Pedl segment contains 34 video sequences with a total
of approximately 2000 frames, while the Ped2 segment contains 16 video sequences with a total of
approximately 1000 frames. Each video is labeled with the location and type of anomalous event,
as well as the start and end frames of the anomalous event. The dataset also includes ground truth
information for the location and number of people in each frame. The UCSD dataset is commonly used
in research for evaluating the performance of crowd anomaly detection algorithms and is considered
one of the most challenging datasets in this field.

3.3 University of Minnesota (UMN Dataset)

The UMN [41] dataset is a dataset for crowd anomaly detection developed by researchers at the
University of Minnesota. The dataset contains a large number of videos of crowded scenes, including
both normal and anomalous events [42]. The videos were collected from a variety of sources, including
surveillance cameras and YouTube videos. The dataset is designed to be challenging, as it contains
a wide variety of crowd scenes, including different types of anomalies, camera angles, and lighting
conditions. The UMN dataset is composed of several subsets, each containing a specific type of crowd
scene. The subsets include:

UMN-Crowd: This subset contains videos of crowded scenes, including normal and abnormal
events such as people congregating, fighting, and falling.

UMN-Mall: This subset contains videos of crowded scenes in a shopping mall, including normal
and abnormal events such as people walking, shopping, and loitering.

UMN-Street: This subset contains videos of crowded street scenes, including normal and abnor-
mal events such as people walking, congregating, and loitering. The UMN dataset has been widely
used in the research community for evaluating the performance of crowd anomaly detection methods.
It is a challenging dataset that can be used to test the robustness and generalization of different
algorithms.

3.4 Cooking Datasets

Cooking datasets are collections of videos, images, and textual data that are used to train and
evaluate computer vision and natural language processing models for various tasks such as recipe
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generation, ingredient recognition, and cooking activity recognition. The MAX Plank Institute for
Informatics (MP-II) offers a cooking dataset [43] that consists of 65 cooking videos. The dataset con-
tains 888,775 frames for all videos. Textually Annotated Cooking Scenes (TACoS), TacosMultilevel
[44,45], and YouCook-II [46] are also popular cooking datasets. These datasets include a variety of
cooking activities and recipes, captured from different sources, such as YouTube, and are annotated
with detailed information about the ingredients, actions, and other attributes. They are commonly
used for training and evaluating models for tasks such as action recognition, recipe generation, and
ingredient detection in cooking videos.

3.5 Social Media Datasets

Social media datasets for video captioning refer to collections of videos and their corresponding
captions that have been gathered from various social media platforms. These datasets are typically
used to train machine learning models for the task of video captioning, which involves automatically
generating a written description of the events happening in a video. Social media datasets for video
captioning often include a diverse range of videos, from user-generated content to professionally
produced videos, and can cover a wide range of topics and genres. These datasets can include videos
from platforms such as YouTube, Instagram, TikTok, and Facebook. The captions for the videos
in these datasets can be in the form of user-generated subtitles, closed captions, or automatically
generated. These datasets are useful for training models for video captioning, video understanding,
and natural language processing. The VideoStory dataset [47] is a dataset of 20K social media videos.
The dataset aims to target the description generation of long videos. ActivityNet [48] Entities is also a
dataset with social media (YouTube) scenes with video descriptions.

3.6 Movie Datasets

The movie dataset contains a collection of video footage from the movies. The goal of this
dataset is to provide a resource for training and evaluating video captioning models, which are a
type of machine learning model that generates natural language descriptions of the actions and events
happening in a video. The dataset typically includes a wide variety of movies with different genres,
lengths, and styles, and the videos are accompanied by captions or subtitles that describe the actions
and events taking place in the video. The captions are used as the training and testing data for the
video captioning models, which are trained to generate captions that accurately describe the content
of the video. This dataset can be useful for a wide range of applications, such as video retrieval, video
summarization, and video understanding. MPII-MD: MPII-Movie Description Corpus [49] is a 94
Hollywood movie dataset with audio descriptions of these movies. There are 68,337 clips of these
moves, along with 68,375 paired sentences. Montreal Video Annotation Dataset (M-VAD) [50] is
another movie clips dataset with 48980 videos from 92 different movies and 55,900 sentences.

3.7 Video to Text and Videos in the Wild

MSVD: A Microsoft Video Description (MSVD) [51] is a dataset that contains 1,970 video clips
taken from YouTube, along with their associated captions. The dataset was created to support the
development of algorithms for video captioning, a task that involves generating a natural language
description of the content of a video. The captions in the MSVD dataset were generated by human
annotators, and they cover a wide range of topics and styles.

MSR-VTT [16] (Microsoft Research Video to Text) is another dataset that contains 10,000 video
clips and 200,000 associated captions. It is also a video captioning dataset, but it contains more
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diverse and challenging video content than MSVD, such as diverse languages and more complex
visual content. The MSR-VTT dataset is designed to help researchers improve the performance of
video captioning models by providing more challenging and diverse training data. Both MSVD and
MSR-VTT datasets are used for training and evaluating video captioning models and are widely used
in the research community. The dataset is created by AMT (Amazon Mechanical Turk) workers. Two
other well-known datasets for training models for video caption generation are Charades [43] and
Video Titles in the Wild (VTW) [52,53].

3.8 Performance Evaluations

The Mean Absolute Error (MAE) [54] is a metric that is used to measure the accuracy of crowd
density estimation methods. It is calculated by taking the average of the absolute differences between
the estimated density blob count and the actual density count in the ground truth data across all frames.
This is done by first taking the absolute difference between each count in the estimated blob and its
corresponding people count in the ground truth data, then averaging the result across all frames, and
then calculating the density. The MAE is a widely used metric in evaluating crowd density estimation
techniques, as it provides a simple and intuitive measure of the average error in the predicted count. It is
an easy-to-understand metric, and it gives an idea of how the estimated count deviates from the actual
count on average. It is a measure of the average absolute difference between the estimated density
blob count and the actual density count, which is a useful metric for assessing the performance of
crowd density estimation methods. The Mean Relative Error (MRE) [54] metric is used to evaluate the
performance of different techniques for estimating crowd density. It compares the estimated density
maps with the ground truth data by expressing the difference as a percentage of the ground truth
density. By doing so, it provides an understanding of how much the predicted density deviates from the
true density. This metric is useful in comparing the effectiveness of different crowd density estimation
techniques, as it gives a sense of the relative inaccuracy of the predictions concerning the ground
truth data. The Root Mean Square Error (RMSE) [54] is a commonly used metric for measuring
the accuracy of crowd count estimation methods. It is calculated by taking the square of the difference
between the estimated count in a video frame and the ground truth count for that frame, averaging the
result across all frames, and then taking the square root of the average. The RMSE provides a measure
of the average deviation of the estimated count from the ground truth count and gives an insight into
the overall performance of the crowd count estimation technique. It is a commonly used metric for
evaluating the effectiveness of different crowd count estimation methods, as it offers a comprehensive
measure of the average deviation of the predicted count on a video frame from the actual ground truth
data. The performance of video descriptors can be separated into automatic and human evaluations.
Automatic evaluations are accomplished using evaluation metrics like BLEU [55], METEOR [56], and
WMD [57] are some of the most commonly used evaluation metrics. On the other hand, the human
evaluation method is also used to judge the quality of model-generated video captions. But for this
purpose, humans should be experts in the relevant field. The summary of all the evaluation metrics is
given in Table 3.

Table 3: The details of video evaluation metrics

Metrics name Used for Evaluation technique
MAE Accuracy Absolute error
MRE Accuracy Relative error

(Continued)
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Table 3 (continued)

Metrics name Used for Evaluation technique

RMSE Accuracy Mean square error

BLEU [55] Machine translation n-gram precision method
METEOR [56] Machine translation n-gram synonyms comparing
WMD [57] Documents similarity Word2vec

ROUGE [58] Documents summarization n-gram recall

Semantic propositional image Image captioning n-gram similarity

caption evaluation (SPICE) [59]

4 Latest Approaches in the Video Description

Automatic video description (AVD) has gained massive success after using deep learning methods.
Still, the performance of these models is deficient compared to human-generated captions. Here is the
list of directions that can improve the performance of video descriptors.

4.1 Visual Reasoning and Question Answering

Although the Video Visual Question Answering (VQA) is early, it is a future direction to explore.
The Video Q&A is another visual problem. In this methodology, the model gave the answer and the
reason for its answer. Consider a scenario where a video displays a parking sign. One potential inquiry
directed at the model could be, “Is parking allowed in this area?” The expected response might be
“Yes.” Subsequently, a follow-up question could be posed: “What is the reason for the permission to
park?” To which the model is expected to reply, “Because a parking sign is present in this location.” In
this approach object detection and model reaction with context is more crucial compared with dense
video understanding. In addition, video chat-related models combined with large language models
also deal with visual questioning and improve the quality of chat information [60].

Visual reasoning [61] also deals with the logical context of the detection and understanding of is
next level of sentence generation. The main visual reasoning datasets and relevant best-approached
models are summarized in Table 4.

Table 4: The details of video evaluation metrics

Dataset Best model Limitation
Natural language visual Multiway transformer (BEiT-3) Limited diversity
reasoning (NLVR) [62] [63],

Visual bidirectional encoder
representations from
transformers (VisualBERT) [64]
Winoground [65] Visual question (VQ2) [66] Limited context

(Continued)
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Table 4 (continued)

Dataset Best model Limitation
Gamified association Vision-and-language Limited image variety
benchmark to transformer (ViLT) [68]
challenge vision-and-language
(WinoGAViL) [67]
Bongard-openworld [69] Simple neural attentlve Limited size
Learner (SNAIL) [70]
Visual spartial reasoning (VSR) Learning cross-modality Annotation difficulty
[71] Encoder representations from potential ambiguity
Visual analogies of situation transformers (LXMERT) [73]
recognition (VASR) [72] Shifted window (Swin) [74]

4.2 Visual Dialogue

Similar to the audio dialogue found in Siri, Alexa, and Hello Google [75], video dialogue is
also a flourishing field. With the interaction with machines and robots, the visual dialogue would
be constructive. Real-time video description generation and understanding of the context are more
important in this manner.

These Al assistants, in conjunction with compatible devices, had started integrating visual analysis
and understanding into their functionalities. While these systems are making strides in understanding
real-time video, their capabilities may vary depending on the device, the specific Al assistant, and
privacy considerations. They generally rely on machine learning models that analyze visual data and
derive information or actions based on that analysis.

4.3 Audio and Video

Most of the explained models focus on the video semantic feature extraction, but the audio
can be a perfect candidate to work with video to improve the video descriptor performance. The
audio can by providing the video background information [76,77]. Audio can serve as an ideal
complement to enhance the performance of video descriptors. When combined with video data, audio
can significantly enrich the overall understanding and interpretation of the content. The incorporation
of audio cues allows for a more comprehensive analysis of the visual elements in a video. For instance,
the sounds within a video, whether ambient noise, dialogue, or music, can provide critical contextual
information. Integrating audio data with video descriptors enables a more holistic and nuanced
interpretation of the content, leading to improved accuracy in recognizing and describing various
elements, scenes, or actions within the video. This fusion of audio and visual data harnesses the
synergy between the senses, providing a more robust and comprehensive foundation for video analysis
and description algorithms, ultimately advancing the capabilities of these systems. The sound of the
sea, traffic sound, rain, and fire sounds. All these sounds help to generate the video description [7§].
The audio and video feature content fusion enhances the events-related understanding in the video
sequence. The work Ibrahimi et al. [79] introduced separate audio and video attention models instead
of audiovisual attention blocks.



CMC, 2024, vol.78, no.3 2957

5 Future Direction to Improve the Context

There are many ongoing approaches available for understanding video content using methods
of deep learning and sequence models. Most of them understand video events, and inappropriate
content like specific scene understanding, text generation, content localization, etc. Content generation
through video content is widely concerning in many fields especially online content such as video
sharing and social media. Human activity detection is one of the major branches of video analysis.
Action recognition or identification is a widely used application in video surveillance. In this approach,
the model attempts to generate sentences by understanding video contents through isolating key
scene filtering. Previously explained some useful techniques to extract spatial information from
the given video sequence. Key scene localization is introduced as an extension of morphological
image processing by analyzing hue and saturation features in every frame. The methods of pre-data
processing for video analysis are explained in this chapter further. The transfer learned CNN and 3D
convolution (C3D) feature fusion technique can achieve better performance over the tested dataset.
The resultant language generation model is based on the thought vector [80] by generating block-wise
C3D convolution over the video image sequence. Finally, this paper concludes new research directions
and points out challenges in the area of human activity recognition especially the latest online language
models such as ChatGPT [81].

5.1 Proposed Model for Sentence Content Improvement

In this approach, the goal is to develop a language model that can understand the context of a
video. The model is based on a classical encoder-decoder architecture, and it uses a combination of
the C3D feature vector and the decoder LSTM network for language generation. The decoder LSTM
network incorporates key scene attention features, which are generated by detecting the key scenes
in the video. In the feature extraction process, relevant key scene frame-blocks are only processed
for generating the final feature vector. The C3D Network is fine-tuned by removing the final fully
connected network. This allows the network to learn specific features of the video that are relevant
to the task of language generation. The key scene detection is performed by estimating the hue and
saturation density transition level. To prepare the dataset for this model, the video is first sliced into
frames, and these frames and identified keyframes along 16 blocks of bunch fed block-wise into the
encoder model and saved. The generated blocks’ C3D features are summed along the vertical axes to
produce the resultant vector for the language model. Finally, the model is capable of understanding
the context of a video and generating language that accurately reflects the content of the video. The
proposed model for feature extraction is shown in Fig. 6.

The encoding model starts with the classical 3D convolution operations to perform as a feature
extractor. In this process, a fine-tuned C3D model is used with 4096 feature vector dimensions as
output. The model input block is kept as 16 frames while extracting features from pre-trained model
dimensions. The trained model is based on the Sports-1 M [82] action dataset classification task.

5.2 Key-Scene Extraction

The video sequence (n frames) is analyzed frame by frame to identify variations in hue and
saturation levels that indicate a linear transition. Distortions in the linear transition can be used to
identify scene separations in the video. The sample video of the MSR-VTT hue and saturation levels
graph plot is shown in Fig. 7.
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Key scene extraction
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Figure 6: The model flow diagram of the video captioning
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Figure 7: Hue/Saturation magnitude graph for sample video (MSR-VTT)

Hue and saturation both relate to the dominating color in a certain area of the video frame and
the degree of that color’s strength. Along the video sequence, the hue (blue) and saturation (red)
magnitudes vary similarly, and thus clearly demonstrate the dramatic scene shift in a video. The key
frame extraction relevant to the hue/saturation is shown in Fig. 8.

Figure 8: Sample key scene extracted from video MSR-VTT (200)
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The preparation of caption ground truth data is an important step in the video captioning task. In
this approach, a random sentence is selected from the MSR-VTT video captioning dataset, and four
tokens are added to the vocabulary: <pad>, <start>, <end>, and <unk>. These tokens serve specific
purposes in the decoding process.

The length of the sentence is kept at 20 for the decoder input. This length is determined based on
the maximum expected length of the captions in the dataset. Each word in the sentence starts with a
<start> token and ends with an <end> token. This is essential for the decoder section, as the model
needs to know where to stop when generating the caption. The word embedding is initiated using
word2vec [6]1] encoding and the embedding vector size is kept at 512 during both training and inference.
The use of word2vec encoding ensures that each word in the sentence is represented as a unique vector,
allowing the model to distinguish between words with different meanings. The embedding vector size
of 512 provides a sufficiently large representation of the words in the sentence, allowing the model to
learn complex relationships between words.

In this approach, the Adam optimizer is used, with a cross-entropy loss function and a learning
rate of 0.0001. The number of batches is set to 10, which determines the number of times the model
will update its parameters during training. The thought vector size is reduced to a dimension of 512
for the LSTM operations. The performance comparison over the MSR-VTT dataset with predicted
and ground truth sentences is shown in Fig. 9.

Video Prediction Ground Truth

video7910 a man is talking about a computer program

video7998 a man is talking while playing a video game a video of halo the video game

video7067 a man is singing in front of a pool in a music video lady gaga is performing

Figure 9: Performance comparison with MSR-VTT dataset
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5.3 Sentence Improvement through Object Detection

The MSR-VTT dataset annotation provides extensive information about the corpus, but there
are some gaps in the information generated. Our strategy is to enhance the generated sentences by
incorporating key scene objects. To achieve this, extract the object detection set into a separate set to
improve the content. To extract the key-scene information, the YOLO3 [83] object detection model was
employed with the COCO dataset [8]. This combination allows us to identify and extract important
objects in each scene effectively. The simplicity of YOLO3 makes it stand out, making it simpler to
integrate into the proposed model, especially for those who prefer a traditional approach to object
identification. Since it has undergone thorough testing and has been used in a variety of applications,
this version is distinguished by its stability and maturity. Additionally, YOLOV3 is appropriate for
contexts with limited hardware because it uses fewer computing resources than its later versions. The
video processing needs more computational power to train the models and YOLO3 perfectly balances
with complexity. Also, it balances efficiency and precision, making it suitable for low-latency and real-
time applications such as video surveillance.

The final sentence;
Generated text = Predicted text 4+ Scene objects

The generated sentence and the associated object list text data enable a clear performance
improvement. This comparison serves to highlight areas of missing data for improvement in the
generating process and offers useful insights into the precision and efficacy of the generated sentences.
Sample predicted and reference sentence with object list of MSR-VTT test video (7012) Predicted
Text = “a man is standing in the field” Ground Truth = “a man is sitting in the room and talking”,
“a man in glasses talks about matters of health”, “ a man in glasses talks about matters of science”,
“a man in a brown blazer discussing mental health”, “a man with a blue shirt and glasses is talking”.

99 Cegs 9% ¢

Object List = [“person”, “tie”,

99 Cegr 90 ¢

chair”], [“person”, “tie”, “sofa”]

The generated text can be used to understand dense events related to the video sequence and
sample results present relevant with random ground truth selections (with five sentences). The captured
scene segments related to the MSR-VTT (7012) are shown in Fig. 10. After language regeneration
using prompt engineering models, Generated sentence = “A person, dressed in a tie, is standing in
the field near a chair”. The generated text contains more details about surrounding objects and their
relationships.

BIOLOGICAL
INFLUENCES

oo
vlbentent prt
i
g

PSYCHOLOGICAL
DISORDER

Figure 10: Sample scene list for predicted video MSR-VTT (7012)

6 Conclusion

This paper presents a detailed review of video description research, from classical models to
advanced deep learning models. The functionality of various machine learning models employed in
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video captioning is also highlighted. CNN, RNN, and LSTM are the leading deep learning models
improving the video description domain. The paper reviewed the most popular datasets used for
training and testing video description models. These datasets have the videos and translated sentences
for model training and testing purposes. And also highlighted the most commonly used automatic
evaluation metrics to evaluate video descriptions. Lastly, this paper explained some recommendations
to guide thinking out of the box. Future trends initially cover how to identify key scenes in a
video sequence and how to choose the position of a scene using hue, saturation, and density. The
construction of feature vectors is followed by a discussion of feature extraction and language modeling
as encoder-decoder approaches. By reference to the key scene index value, needless repetition of
video segments can be eliminated while extracting block-level C3D features. Sentence reconstruction
methodology object detection is covered in the following section, and sample sentences are generated.
The 3D convolution requires greater computational power compared to 2D convolution methods.
Consequently, training the simultaneous encoder-decoder model can enhance model parameters.
Finally, this work utilizes a low-performance computational setup for training a scene-based model
to improve predictions.
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