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ABSTRACT

Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous)
or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter.
Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed
methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique
is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal
threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval
shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify
nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule
classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image
Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm.
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1 Introduction

The National Center for Health and Science claims that 150,000 human deaths are due to lung
cancer [1]. In 2020, the US had 228,820 new cases of lung cancer were 135,270 lung cancer-related
fatalities [2]. They described the current advancement and assessment of computer-aided diagnosis
(CAD) for detecting lung nodules in CT [3]. A CT scan, however, provides a high number of images.
To determine the nodule’s diameter, the doctor visualizes it with his naked eye. In some cases, the
results could be incorrect and even lead to death. A CAD system can assist in diagnosing pulmonary
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nodules. In modern medicine, CAD technology has become a major research topic. To assist doctors
in the early detection of cancer [4]. Lung cancer requires automatic lung nodule detection, which
can provide classification and 3D information [5]. In CAD systems, image segmentation plays a very
important role in the detection of nodules. It extracts the area of interest and location of the nodule.
This increases the accuracy of medical data and faster the result to detect nodule detection based
on multiscale feature fusion [6]. The significance of chest CT scans in the process of diagnosing lung
cancer and correcting anomalies discovered in chest radiography [7]. The procedure of identifying
lung nodules can be broken down into three primary stages: first enhancing and processing the images
second extracting features, and third carrying out the actual detection. During the first stage of the
process, operators are used on CT scans to emphasize particular elements that are contained within the
area of interest (ROI), with the primary goal of determining the curvature of the lung while avoiding
any unnecessary regions. Because of this, the search area is effectively reduced, which speeds up the
nodule detection process. After that, the lungs are cut up into a series of tiny rectangular pieces so
that the features may be extracted from each specific portion. After the traits have been retrieved, they
are entered into a decision-making system so that it can determine whether or not there is a tumor
present in that particular unit [8]. Some research has been conducted to investigate a wide variety of
nodule detection methods. Some people looked at how successful hierarchical bit plane histograms
and cumulative distribution functions were, but they ran into difficulties when trying to determine
the ideal number of bins for the different kinds of images. Others have presented methods for image
segmentation that apply morphological operators and make use of histograms and wavelet coefficients
as effective descriptors. In addition, some individuals utilized local kernel regression models, often
known as LKRMs, for the purpose of classifying lung nodule [9]. In one study, an active counter
modeling strategy was presented for the purpose of segmenting and detecting lung nodules. This
method utilized a support vector machine (SVM) for the purpose of classifying the nodules found
in each lung. This article provides a detailed review of contemporary nodule detection approaches,
with the goal of summing up current trends and forecasting upcoming issues in this domain [10]. The
contribution of our proposed research work is:

• A new pulmonary nodule detection method was developed by combining a histogram of surface
normal vectors with a scale-dependent textural description and improved local binary pattern
features.

• An optimal thresholding method is used to segment lung volume, followed by Ant Colony
optimization, label masking, background removal, and contour correction. 2D and 3D ROIs
are used to detect candidate nodules.

• A classifier based on eXtreme Gradient Boosting (XGBoost) has been used to classify proposed
features Novel Ensemble Shape Gradient Features (NESGF).

• Using a sampling of extracted nodules from the Lung Image Database Consortium (LIDC)
dataset, we tested classifiers, extracted features, and extracted nodules for segmentation, nodule
extraction, and feature extraction.

The manuscript is organized into five chapters, the second of which presents a detailed Literature
Review. Suitable research and theories are discussed in detail. The third chapter offers a discussion
of the Methodology, prefacing research approaches, and techniques; Chapter four enters into an
examination of results with concise data analysis. The final fifth chapter draws together the main
points, leaving readers with four key conclusions of this research and further areas for future
exploration.
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2 Literature Review

One common intensity-based detection method is the use of a threshold to define a nodule region
of interest. The threshold is typically selected manually or automatically using a training set of images
[11]. To further segment the nodule region from the surrounding lung parenchyma, region-growing or
watershed segmentation methods are used. The study found that the 3D Automatic Lung Parenchyma
Extraction and Border Repair (ALPEBR) method, which includes an Automatic Single Seeded Region
Growing (ASSRG) and a 3D Spherical region-growing method (SPRG) [12]. There have been several
traditional approaches to lung tumor segmentation before deep learning techniques were developed,
such as thresholding, region-growing, and machine learning-based techniques [13] Nodule identifica-
tion has been presented by [14] using single feed-forward approaches. Convolutional neural networks
(CNNs) with dense connections were designed as one end-to-end 3D network. Neither post-processing
nor user guidance is required to refine detection results using S4ND. Using 3D Deep Convolutional
Neural Network (DCNNs) in computer vision and lung nodule detection, they show how the network
compares with the current state-of-the-art object detection networks using U-Net and LSTM networks
[15]. A decision-level technique was used to improve the classification of nodules using support
vector machine (SVM) and Random Forest CNN architectures were used for the classification of
nodules [16]. They presented a multi-task deep learning framework in which segmentation and physical
location were identified using image bands [17]. Furthermore, they used the baseline approach and
deep learning methods like Region-based Convolutional Network (RCNN) and U-net for the analysis
of solar images and hole identification [18]. To solve many computational problems a probabilistic
technique is required. ANT colony optimization algorithm solves problems like multitargeting and
vehicle targeting [19]: The proposed method involves three steps: converting images into 3D, applying
a blocking technique for informative block detection, segmenting the image for candidate selection of
nodules, and performing classification [20]. They proposed the rolling ball algorithm to minimize the
loss of juxtapleural nodules by applying the gray-level thresholding technique. Segmentation has been
used to classify the nodule by removing the background which is separate from the thorax and lungs
from the thorax to identify the candidate nodule detection [21]. They proposed the use of deep learning
models, such as DeepLabV3+ and U-shaped networks, for lung segmentation and vessel segmentation
in CT images [22]. They presented an ensemble method, which involves many classifiers to create
and evaluate the predictive model. By employing the dataset on coronary artery disease, the present
investigation showcases that the ensemble technique exhibits superior performance compared to other
established methods for predicting the disease [23]. According to the evaluation of deep learning-based
methods for multi-modal medical picture segmentation, the later fusion strategy has the potential to
yield more accurate results than the early fusion strategy, provided that the fusion method is efficient
enough [24]. They proposed an efficient approach for the categorization of gastrointestinal diseases by
utilizing a pre-trained deep convolutional neural network [25]. This study presents a novel approach
for the classification of gastrointestinal disorders by leveraging deep transfer learning and optimizing
characteristics. The proposed technique demonstrates a notable enhancement in accuracy, obtaining a
commendable rate of 96.43%. The utilization of Mask R-CNN for disease localization involves the
implementation of fine-tuned ResNet-50 and ResNet-152 models to extract relevant features [26].
Firstly, classic techniques like thresholding and region-growing may face limitations in effectively
delineating complex nodule boundaries or distinguishing them from surrounding tissues. Moreover,
some strategies discussed might necessitate manual intervention or parameter adjustments, potentially
yielding varied outcomes. The effectiveness of specific methods, particularly those predating deep
learning advancements, may be influenced by factors like image quality and variations in nodule
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properties. Considering these limitations is imperative in real-world clinical applications, prompting a
need to explore new directions for further refinement and improvement.

The number of pulmonary nodules in the right and left lungs are shown in Fig. 1. The proposed
method is described below in a step-by-step manner:

1. To segment the volume of the lungs, two-dimensional histograms are applied.
2. The ANT colony optimization algorithm is used to determine the optimal threshold.
3. To detect nodule candidates, the geometrical feature is used. For this purpose, a 2D images

are used.
4. The histogram of oriented surface normal vectors (HOSNV) histogram is used to improve the

feature for local binary patterns.
5. Nodules and non-nodules are distinguished using the XGBoost classifier.

Figure 1: The number of nodules in the right and left lungs

3 Methodology

In many applications, good threshold values have been selected to achieve high accuracy. Pul-
monary nodules are classified into four components which are proposed in the methodology as shown
in Fig. 2.

In the initial stage of the process, differential evolution optimization techniques are employed to
obtain automatic threshold values for nodules, walls, and arteries within the lung volume. The method
uses two-dimensional histogram technology, combining the steps of geometric feature extraction and
arc delineation, along with extended arc extraction and ellipse detection to find all kinds of shapes in
nodules from 3 mm up until about 20 mm. In addition, texture descriptions such as the histogram-
oriented surface normal vectors (HOSNV) are introduced to differentiate between them. This makes
use of intensity deviations in histograms from labeled CT scan images and plays into proposed
intelligence-based statistical features.

3.1 Lungs Volume Segmentation

Lung volume segmentation, crucial in medical imaging like CT and MRI, identifies and isolates
lung regions for various purposes, such as detecting abnormalities and aiding in surgical planning. This
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process, emphasizing lung anatomy, involves extracting the candidate nodule and filtering extraneous
areas for efficient nodule detection in CT examinations. The automated lung area segmentation
involves the following steps:

1. The ANT optimization algorithm is utilized to obtain the initial mask with an optimal
threshold value, referring to the refined version of the initial mask. This process enhances the
original mask for improved results.

2. A 2D dimensional histogram method, based on thresholding, is employed to extract the lung
region.

3. The full lung mask is acquired through lung outline enhancement.

The lung CT scan is divided into two main regions—low density (representing air) and high density
(encompassing lung cavity) based on voxel density. Lung volume separation in the low-density area,
essential for candidate nodule detection, necessitates adjusting the optimal threshold value due to
variations in capturing machine images, with CT scans exhibiting −1000 Hounsfield Units (HU) for
air attenuation. The dense region has a chest wall, bones, and blood with HU values of more than
−500, and lung tissues range from −910 HU to −500 HU [27]. Initialize the threshold value T(0)
and the optimal threshold value determined by initializing the threshold value of −500 HU which is
changed recursively [28].

Figure 2: Proposed methodology
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3.2 Two-Dimensional Histogram Based Thresh Holding Method

Pixels above the threshold are considered to be part of the foreground, while pixels below the
threshold are considered to be part of the background. There is only one line and one dimension to
this method. By maximizing the square difference between the mean projections, x1 is the mean of
two classes, while x2 is the projections along w. x1 and x2 are the two classes’ means, while n1 and n2

are the projections along w. Match this w to m1 and m2. A 2D histogram is optimally projected using
Fisher Linear Discriminant. The best projection is found to be that of the local average histogram.
As a result of an analysis and practical findings, one can segment an image more effectively if the
thresholding is based on the local average histogram rather than using criteria based solely on 2D
histograms, although the calculation time is the same as the calculation time for 1D histograms [29].

J (w) = |m1 − m2|2

s2
1 + s2

2

(1)

In Fisher Linear Discriminant analysis, the difference between two classes and maximizing the
square differences between the projected means did not work. Therefore, it simultaneously minimizes
the project scatter within each class s1 and s2 as shown in Eq. (1). It maximizes the difference between
projections and minimizes the scatter. Threshold holding can be determined by the Fisher linear
optimal discriminant analysis function. To further utilize image part space information, threshold
holding based on Fisher Criteria is proposed. This method is summarized in the following manner
[30]. Since a 2D histogram will always have two apparent peaks, no matter what the signal-to-noise
ratio is, it is easy to select the threshold that separates the object from the background to improve
2D histogram-based thresholding, a binary-coded ant colony algorithm is used. We will explain them
briefly in the following section.

3.3 Ant Colony Optimization Algorithm

Computational problems are solved probabilistically using ant colony optimization (ACO). There
is a comparison of the performance of ACO for both continuous and discrete optimization problems
in [31]. According to the authors, the 2D Fisher criterion function is used as the thresholding criterion
in an algorithm for thresholding images based on ant colony optimization. Parallel computing
performance allows Ant Colony Optimization (ACO) to achieve optimal results. Some applications
use Binary-coded Ant Colony Optimization (BACO) to solve continuous optimization problems in
the continuous domain [32]. We have the following movement probability as a function of the ant “k”,
which determines the direction and concentration of the pheromone in different routes [32].

The following are the steps of the ACO algorithm:

1. The starting model is produced randomly.
2. Input the optimal solution if the ending criteria are satisfied.
3. ANT search.
4. To calculate the optimal solution based on the result of the ant colony algorithm.
5. Update that phenomenon using the optimal solution or proceed to step 2.

The “Vs” represents the starting vertex of the “V 0
J ” and “V 1

J ” represent the binary coding of “0”
and “1”. Two directed graphs in the entire vertices. For j = 2, 3, · · · , N, which are the “V 0

J−1” and
“V 1

J−1”. An ant’s next state can be shown as either a “0” or a “1” by these two directed arcs. Our answer
is obtained by incorporating all the routes traversed by each ant. Ant Colony Algorithm-like steps
are followed by the binary ACO. Pheromone concentrations are equal on routes “0” and “1”. Let
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V is a constant (I, j = 1, 2, · · · , n). “K” determines the direction by analyzing the concentration of
pheromone in each pathway are the probabilities of movement [32].

3.4 Nodules Detection

A 3D model is created for extracting nodule images, and the model is searched for objects similar
to prismatic nodules. The 2D lung region dataset is stacked and transformed into a 3D lung volume
dataset using the two-dimensional lung regions. To calculate the volume of each connected group, we
count the pixels and convert their dimensions to cubic millimeters. Each lung has a pulmonary vessel
tree composed of the longest connected structures. As part of this vessel group, juxtavascular nodules
are also included. Nodules that are isolated or juxtapleural are categorized as non-vessels and stored.
There are two types of nodules: vessel nodules and non-vessel nodules. There are three groups of tissue
in the segmented lungs. The first is the vessel group, which includes nodules, juxtavascular nodules,
and soft tissue structures. Nodules attached to vessels are known as juxtavascular nodules. Secondly,
some nodules were isolated or juxtapleural that did not belong to the vessel group. A nodule has a
maximum dimension of 2.43 cm3 and a minimum dimension of 8.17 cm3 based on Eqs. (2) and (3)
since nodules have a diameter that ranges from 2.5 to 3.5 cm3.

radius = r = diameter
2

(2)

V = 4
3
πr3 (3)

Due to the discussed ranges of diameter and volume, nodules outside those specifications are
relatively easy to exclude or separate. Depending on their location, isolated nodules, and juxtapleural
nodules are described. Similarly, non-vessel groups perceive isolated and juxtapleural nodule candi-
dates. Nodule-size, geometric, and shape constraints are satisfied when excluding non-nodule soft-
tissue structures.

3.5 Feature Extraction

Feature values classify candidate nodules. An accurate, useable feature set is even more critical
in this scenario. We provide a hybrid feature descriptor based on scale and rotation-invariant texture
descriptions and a Histogram of Oriented Surface Normal Vectors. Fig. 3 illustrates the segmentation
technique’s improvement. It allows direct comparison between the original and segmented lung parts,
proving the approach accurately delineates lung components from the surrounding context.

Figure 3: Results of the proposed method for lung segmentation
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3.5.1 Histogram of Oriented Surface Normal Vectors (HOSNV) Feature Descriptor

A histogram of orientation angles is combined into one HOSNV by concatenating the histograms.
Tangent planes that correspond to objects encode surface information using normal vectors. An
object’s surface corresponds to the tangent plane. The point (x, y) in the domain of z = d (x, y)
with some value since it is situated within the domain of z = d (x, y). A sphere, cylinder, and curve
surface, which represent nodules, vessels, and walls, are extracted, respectively, from HOSNV features.
According to each target object model, specific orientation distributions reveal specific features. It was
successful in determining the target object’s shape using the HOSNV feature in this case. The HOSNV
feature can be used to classify different types of pulmonary objects. Since walls have a larger surface
area than the rest of the objects, the surface area is used to separate them. A wall prevents the process
from repeating. By eliminating walls, we obtain HOSNV features for all nodule candidates.

3.5.2 Scale and Rotation-Invariant Texture Description with Improved Local Binary Pattern Feature

The radius R defines the distance between central pixels. LBP has three additional parameters
radius, the central pixel value, and the neighbor (X, Y). As a result, the original LBP features are
not scale-invariant when rescaled. It is possible to measure local maxima using the Laplacian of
Gaussian by measuring the pixels around the center pixel, which provide different LPB codes and those
surrounding are invariant. The function L (x, y, σ ) represents the various scale levels within an image.
Which provides the convolution image I (x, y) as shown in the Eq. (4), where G (x, y, σ ) represents the
variable scale Gaussian. In Eq. (4), for every pixel (x, y) the maximum response of |LoG(x, y, σ)| over
scale σ = 1,2, . . . , N is selected as the characteristic scale [33].

L(x, y, σ) = G (x, y, σ) I (x, y)

G(x, y, σ) = 1
2πσ 2

e((x2+y2)/2σ2)
(4)

In the LBP Eq. (4) circular neighboring r(x, y) = σ assigned on a set image pixel (x, y). A rotation-
adaptive coding of LBP features, inspired by the scale-adaptive definition of LBP descriptor, can
greatly enhance rotational invariance, as they demonstrate in a very intuitive manner. An LBP code
is always initiated with a fixed point as explained in Eq. (5). The maximum response of all scales is
selected as the characteristic scale for each pixel, as shown in Eq. (4).

|LoG(x, y, σ)| = σ 2
∣∣Lxx(x, y, σ) + Lyy(x, y, σ)

∣∣ , σ = 1, 2, . . . , N

Lxx = ∂2L
∂x2

, Lyy = ∂2L
∂y2

(5)

Circular neighbors of the image pixel in the LBP Eq. (5). LBP updated Eq. (6) is defined as follows:

gp = I
(
xp, yp

)
, p = 0, . . . , P − 1

xp = xc + r (xc, yc) cos(2πp/P)

yp = yc − r (xc, yc) sin
(

2πp
P

)

LBPP,r(xcyc) (xc, yc) = ∑P−1

p=0 s
(
gp − gc

)
2p

(6)

The rotational invariance of LBP features can be demonstrated with a scale-adaptive descriptor.
Codes derived from fixed points are common in traditional LBP [30] Fig. 5 shows that LBP codes are
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used in adjacent blocks. Scale-invariant computation is performed by creating Gaussian smoothed
images with the characteristic scales of each central pixel, L(x, y, σ). Using pixel differences, we derive
the gradient magnitude and orientation, (x, y) for each image sample in the region around the central
pixel as shown in Eq. (7).

m(x, y) = √
(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

θ(x, y) = tan−1

(
L (x, y + 1) − L (x, y − 1)

L (x + 1, y) − L (x − 1, y)

)
(7)

3.6 Classification Using the XGBoost Method

There are some similarities between Gradient Boost and XGBoost, but there are also a few tricks
up its sleeve that set it apart from the others. As far as performance and speed are concerned, it has
proven itself to be an excellent choice. As one of the most effective and scalable machine learning
systems for tree boosting.

Õ(q) = −1
2

∑T

j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γ T (8)

To find the optimal tree structure for classification, Eq. (8) is used as a scoring function. It is not
practicable, however, to search through every possible tree structure q. The following function can
determine whether a split should be added to the existing tree structure:

Osplit = 1
2

⎡
⎢⎣

(∑
i∈IL

gi

)2

∑
i∈IL

hi + λ
+

(∑
i∈IR

gi

)2

∑
i∈IR

hi + λ
−

(∑
i∈I gi

)2

∑
i∈I hi + λ

⎤
⎥⎦ − γ (9)

where IL and IR are the instance sets of left and right nodes after the split in Eq. (9). XGBoost is a fast
implementation of the GB algorithm, which has the advantages of fast speed and high accuracy.

4 Results and Discussion

We evaluate the proposed system using the LIDC database [34]. The evaluation was based on 59
CT scans. Per scan, there are approximately 200 slices, each with 512 pixels by 512 pixels and 4096
gray levels. The database has pixels between 0.5 and 0.76 mm in size and reconstruction intervals
between 1 and 3 mm. A total of 389 nodules and 10,712 slices are included. There are nodules
with diameters ranging from 3 to 30 millimeters and 3 to 30 mm. Some ratios have been tested, as
well as different features, and then, classification has been conducted using the XGBoost classifier.
To make sure that there is no bias toward overtraining or undertraining, we divided the data into
50–50 ratios that were used as training data and testing data to demonstrate our results. XGBoost
and other classifiers were used to test the proposed features, as shown in Table 1. Compared to all
other classifiers, XGBoost performs better. The performance of classifiers is assessed using three key
measures: Accuracy, Sensitivity, and Specificity, calculated based on the counts of true positives (TP),
false positives (FP), false negatives (FN), and true negatives (TN) in the classification of nodules. This
shows that the proposed feature is best for classifying nodules as shown in Fig. 4.
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Table 1: Results of different classifiers on all features

Classifier Feature Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM HOSNV 95.25 86.26 90.46 0.9627
LBP 93.79 89.30 91.25 0.9618

KNN HOSNV 86.25 87.44 90.78 0.9655
LBP 87.16 89.21 91.77 0.9634

Decision tree HOSNV 89.55 86.44 82.32 0.9377
LBP 92.27 89.29 92.89 0.9591

ANN HOSNV 94.44 93.55 93.73 0.9622
LBP 95.25 93.97 95.88 0.9759

XGBoost HOSNV 97.91 95.32 96.98 0.9839
LBP 98.82 98.49 98.76 0.9995
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Figure 4: Results of different classifiers on all features

Using all three feature types and different classifiers, compared to earlier existing techniques, the
proposed method has a sensitivity of 98.49 for nodules sized 3–30 mm. As a result of the HOSNV and
LBP features proposed in the proposed method and random forest, the proposed method performs
better as shown in Fig. 4.

Based on proposed NESGF features, random forest-based classification is used for comparison
with other existing methods. From the results in Table 2 and Fig. 5, segmentation clearly plays a crucial
role in improving performance. This proposed method distinguishes lung nodules from walls and
vessels with fuzzy c-means (FCM) clustering by integrating 2D and 3D images. With a hybrid feature
descriptor based on shape information, combined with gradient features in an NESGF format it is
more effective than existing methods.
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Table 2: Sensitivity based performance comparison of cad systems

CAD systems Size of nodule Sensitivity

[35] 8–20 mm 80.3%
[36] > = 3 76%
[27] 3–20 mm 90%
[27] 4–27 mm 80%
[21] 3–36.4 mm 79%
[37] 3–30 mm 82.66%
[38] 3–30 mm 94.1%
[28] 3–30 mm 96.71%
[39] 3–30 mm 96.68%
Proposed method 3–30 mm 98.49%

Figure 5: Sensitivity based performance comparison of cad systems

5 Conclusions

A novel method for detecting pulmonary nodules was developed by combining a histogram of
surface normal vectors with a scale-dependent textural description and improved local binary pattern
features. The proposed paradigm facilitates easier medical and diagnostic decisions. An optimal
thresholding method is employed to segment lung volume, followed by Ant Colony optimization,
label masking, background removal, and contour correction. 2D and 3D Regions of Interest (ROIs)
are utilized for detecting candidate nodules. A classifier based on XGBoost is employed to classify
proposed features NESGF. Testing involved classifiers, extracted features, and extracted nodules
from the LIDC dataset for segmentation, nodule extraction, and feature extraction. The classifier
results indicate 98.49% accuracy in category classification, with 98.82% sensitivity. In comparison with
conventional descriptors, our proposed feature descriptor performs superiorly, as demonstrated by the
results. We plan to explore deeper learning techniques in the future and test the proposed method on
other datasets.
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