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ABSTRACT

The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.
The radiation cost and quality factor of the antenna are influenced by the size of the antenna. Metamaterial antennas
allow for the circumvention of the bandwidth restriction for small antennas. Antenna parameters have recently
been predicted using machine learning algorithms in existing literature. Machine learning can take the place of the
manual process of experimenting to find the ideal simulated antenna parameters. The accuracy of the prediction
will be primarily dependent on the model that is used. In this paper, a novel method for forecasting the bandwidth
of the metamaterial antenna is proposed, based on using the Pearson Kernel as a standard kernel. Along with these
new approaches, this paper suggests a unique hypersphere-based normalization to normalize the values of the
dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension. A
novel algorithm for optimizing the parameters of Convolutional Neural Network (CNN) based on improved Bat
Algorithm-based Optimization with Pearson Mutation (BAO-PM) is also presented in this work. The prediction
results of the proposed work are better when compared to the existing models in the literature.
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1 Introduction

Numerous studies in several disciplines have focused on metamaterials. Metamaterial antennas are
another example of how metamaterials are used to enhance their performance. The loss of radiation
and factor of quality of an electromagnetic antenna is influenced by its size. Compact antennas with
increased gain and bandwidth can be produced using the metamaterial. Their electrical dimension
should be as small as possible, and their directivity should be improved. The bandwidth constraints
of small antennas can be overcome via metamaterial antennas. The influence of metamaterial on
the antenna’s parameters, such as its bandwidth and gain, is estimated using simulation software.
With a supplement to simulation software, Machine Learning (ML) techniques might be employed
to predict antenna properties. Using the best ML models, the models in [1,2] attempt to forecast the
bandwidth and gain of the metamaterial antenna. Since metamaterial antenna has peculiar features,
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it is being widely researched in the literature. These characteristics improve the capabilities of the
source element and its industrial participation [3]. Computational electromagnetics is a branch of
science and engineering that gives rise to metamaterial antennas. The foundation of computational
electromagnetics is computation and technique optimization for antenna design. The purpose of this
integration is to improve the metaheuristics that aid their search process, which eventually enhances
the resilience, convergence rate, and solution quality. Additionally, there are several methods created to
address the various optimization difficulties [4]. The capacity to establish an underlying link between
the system input parameters and the envisioned results is the most significant advantage of ML-
aided electromagnetics and as a result, the amount of computation required in experimental [5]. To
address its significant complexity and computational cost, the use of ML in metamaterial antenna
construction is a viable strategy [6]. A collaborative design for antenna selection was presented in [7].
Two deep learning models were also suggested, which will forecast the chosen antennas and predict
hybrid beamformers. K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) were used in
a multiclass categorization of the Multiple-Input, Multiple-Output (MIMO) system-based antenna
selection [8].

In [6], Artificial Neural Network (ANN) was used to identify the antennas having the lowest
Signal-to-Noise Ratio (SNR) between users. For predicting a secure-based antenna on the wiretap
medium, the authors of [9] combined naive Bayes and SVM into a hybrid machine learning algorithm.
SVM was used in multiuser communication networks with multiple antennas. The SVM-based
antenna scheduling system was proposed by the authors. The authors created a support vector
regression model in [10] that was trained using information gathered to create the feed for a rectangular
patch antenna, employing a microwave simulator. The foundation of ensemble ML is the combination
of many ML techniques such as KNN, SVM, and ANN [11]. Using the average of the output
readings to estimate an output is the fundamental idea behind ensemble learning which is used in
certain approaches. Even though several approaches exist in the literature, there is a need for better
normalization techniques, dimension reduction techniques, and optimization techniques for choosing
the parameters of the neural networks used in the classification. This research will result in the
following goals:

• Founding a novel approach based on applying Pearson Kernel as the universal kernel for finding
the bandwidth of the metamaterial antenna.

• Founding a novel hypersphere-based normalization to normalize the values of the dataset
attributes.

• Developing a novel dimensionality reduction technique based on Pearson kernel for reducing
the dimensions of the attributes.

• Developing a Pearson-kernel-based bat optimization algorithm for the optimization of the
parameters of Convolutional Neural Network (CNN).

• Evaluating how well the suggested model predicts the metamaterial antenna’s bandwidth in
comparison to the most recent ML models.

Small antenna bandwidth restrictions can be overcome with metamaterial antennas. Recently, ML
algorithms have been used in the literature to predict antenna parameters. To determine the optimal
simulated antenna parameters, manual experimentation can be replaced by machine learning. The
model that is employed will have the biggest impact on the accuracy of the predictions. This paper
presents a novel approach based on the Pearson kernel as a standard kernel for forecasting the band-
width of the metamaterial antenna. This paper proposes a novel hypersphere-based normalization
technique to normalize the values of the dataset attributes along with a dimensionality reduction
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method based on the Pearson kernel. This work also presents an algorithm for CNN parameter
optimization based on improved Bat Algorithm-based Optimization with Pearson Mutation (BAO-
PM). The remainder of the paper is divided into the following sections. The associated work is defined
in Section 2. The proposed work is defined in Section 3. The results are reported in Section 4, and the
conclusion is covered in Section 5.

2 Related Work

It was suggested in [12] to optimize the Frequency Selective Surface (FSS)-based filtering antenna
with a lesser computational complexity. Signals at a certain frequency are enhanced and filtered by the
Filtenna. The complex relationships and large number of factors that impact scattering reactions make
it difficult to construct Filtenna FSS components. The authors develop a precise representation of unit
cell activity using customized multilayered perceptron (M2LP), a deep learning technique that results
in enhanced optimization. To speed up antenna tuning, Pietrenko-Dabrowska et al. [13,14] proposed
a technique that restricts antenna response intensity upgrades. The predicted antenna properties
change when traveling across the one-dimensional linear sub-space represented by these axes. Local
optimization is used to reduce the computational expenses for full-wave Expectation-Maximization
(EM) computations employed in the optimization of antenna. The outcomes demonstrate a 70%
acceleration over benchmark methods without compromising quality. Many antenna layouts and
faster variants of trusted sector procedures are used to test the strategy.

Reflectarray (RA) problems with design have been discussed in [15]. RAs have benefits over
conventional antenna arrays but have limited losses and bandwidth. For precise transistor dispersion
and noise factor simulation using ANN, a Fully Adaptable Regression Method (FARM) was put into
practice [16]. To correlate inputs and network design, a tree Parzen predictor recognizes all elements
of the network and handles tasks of processing in the FARM approach. When the original design
is close to the optimum, gradient-based EM-driven circuit closure procedures perform effectively. A
subpar local optimum may be reached by the method of search if the original layout is not ideal.
The computational expense of simulation-based refinement is high. A novel approach to parameter
tweaking via variable-resolution EM systems was suggested by some studies [17]. Table 1 gives a short
survey of the existing optimization techniques.

Table 1: Comparison of different optimization techniques

Existing
approaches

Techniques Potency Inadequacy Applications

Grey wolf
optimizer (GWO)
algorithm [18]

It imitates the
social structure
and authority of
grey wolves in their
hunting activity.
Individuals in the
pack follow the
three leaders when
they hunt.

The distinction
between mining
and investigating is
appealing and the
search accuracy is
great.

Performance
degrades due to an
excessive amount
of variables in the
optimization
process.

Clustering
process,
designing of
antenna,
robotics and
pathfinding.

(Continued)
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Table 1 (continued)

Existing
approaches

Techniques Potency Inadequacy Applications

Sine cosine
algorithm (SCA)
[19]

The direction of
movement and
length are tracked,
the impact of the
end point is either
over- or
under-emphasized,
or the sine and
cosine elements are
alternated between
a series of random
variables.

It uses memory
effectively, has a
significant rate of
exploitation, and
converges quickly.

Minimal
exploratory level,
performance
deteriorates when
there are several
optimal local
remedies available,
and the search
procedure is based
on just the best
solution.

Signal
processing, filter
architecture,
predicting solar
radiation, and
designing
antenna.

Particle swarm
optimization
(PSO) [20]

It draws inspiration
from the
conversations and
dynamics of flocks
of birds and fish.

Excellent
cooperative model
with stable
convergence and
ease of application.

There is a slow
convergence, a
large computing
cost, and difficulty
in determining the
initial parameters.

Gene clustering,
vehicle routing,
reducing
dimensionality
and antenna
design.

Whale
optimization
algorithm (WOA)
[21]

This method is
inspired by the
bubble-net aging
pattern of
humpback whales.

The search space
has a vast
exploration scope
and is easy to
apply.

There is a large
computational
cost, a chance of
stalling in local
optimal values, and
a slow rate of
convergence.

Design of
antenna, precise
laser sensor
control systems,
planning tasks,
optimization of
routes, and drift
voltage
minimization.

Genetic algorithm
(GA) [22]

The biological
evolution theory
which holds the
survival of the
fittest is the
foundation for this
algorithm.
Initializing, parent
choice, crossover
over, and
mutagenesis are the
stages of GA.

Noisy effects are
simply handled
which are devoid of
gradients, and
straightforward to
implement.

The lack of
appropriate
complexity scaling
makes it difficult to
adjust the
parameters, the
convergence
happens
prematurely, and
the rate of
convergence is
slow.

Engineering
applications,
robot route
establishing and
design of filter
and antenna.
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The dimensional problem, which affects conventional metamodeling techniques, prevents them
from functioning while dealing with nonlinear antenna features over an extensive spectrum of network
parameters. This problem can be solved by performance-driven design systems, which creates models
based on performance of antenna data instead of geometric parameters [23,24]. The antenna structure
in the work by the author in [25] has twelve unit Meta Surface cells. To maximize performance, the
antenna structure is simulated using the Computer Simulation Technology Microwave Studio (CST
MWS) package, which includes all design methodologies. The High-Frequency Structure Simulator
(HFSS) software package is utilized to validate the ideal antenna design through numerical testing.
This gain bandwidth product of the system was excellent. Through metasurface (MTS), the antenna
bandwidth is enhanced. CNN is used to study the design process parametrically. As a result, the
CNN is an effective tool for parameter prediction. The proposed work can also be applied to such
antenna structures for improved performance. In the proposed work, a unique method for predicting
the metamaterial antenna’s bandwidth is developed using the Pearson Kernel (PK) as the global kernel.
To normalize the values of the properties of the dataset, a unique hypersphere-based normalization
is also developed. It normalizes and eliminates data overlapping by mapping the characteristics onto
the surface of a hypersphere. The Pearson kernel is proposed as a novel kernel that achieves good
performance over all the existing kernels in literature. It is used in kernel-based Principal Component
Analysis (PCA) as Pearson Kernel-based Supervised PCA (PKSPCA) in the proposed technique.
Then a Pearson mutation-based Bat optimization algorithm is also proposed for optimizing the
weights of CNN that helps in achieving good accuracy compared to existing techniques. The proposed
optimization algorithm uses Pearson mutation which helps in faster convergence. The results signify
the improved act of the proposed technique.

3 Proposed Methodology

Low-profile microstrip antennas are used in high-performance aircraft, spacecraft, satellite, and
missile applications where aerodynamic profile, size, weight, performance, and ease of installation are
constraints. Wireless connections and mobile communication are examples of civilian applications.
Particular arrangements of unit cells with unusual electrical characteristics are known as metamate-
rials. These materials have characteristics not found in the natural world. The magnetic permeability
and electrical permissivity are negatives as a result of these dispositions. As a result, there is negative
refraction, which alters the expected behavior of electromagnetic radiation. A dataset having results
of electromagnetic simulations of metamaterial antennas is used in the proposed work. Fig. 1 displays
the general layout of the proposed technique. The method begins by putting together a dataset for
the metamaterial antenna and using simulation tools to capture the design parameters, as seen in the
image. Before training the recommended deep network, preprocessing is an essential step that must
be carried out because the dataset may contain some records of the design parameters with incorrect
or null values. After preprocessing is complete, the dataset is divided into the train, validation, and
test sets to be used to train the deep network. The CNN can be used to predict the ideal values
of antenna parameters once it has been trained; in our case, it is utilized to forecast the bandwidth
of the metamaterial antenna. The unique properties of the metamaterial allow antenna designers to
create antennas with unique features, in contrast to the conventional material used in antenna design.
In addition to applying one or more metamaterial layers to the antenna substrate, specific design
parameters can be set to enhance the performance of antennas that use metamaterial. A Split Ring
Resonator (SRR) unit cell for a metamaterial antenna is shown in Fig. 2 and is defined by the dataset
used in this study. SRR is represented by two rings with a space in between. SRR is significant because
it allows the bandwidth of the metamaterial antenna and mutual coupling to be reduced. The y-axis
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represents the Perfect Magnetic Conductor (PMC) of the metamaterial antenna on the radiation box’s
surface.

Figure 1: Overall architecture for prediction of bandwidth

Figure 2: Shape of the split ring resonator. The parameters of the lattice in-plane are aθ = az = 10/3
mm. The ring has a square shape, with a trace width w of 0.2 mm and an edge length l of 3 mm. The
substrate is Duroid 5870, which has a thickness of 381 μm and a loss tangent of td = 0.0012 at 10 GHz
(ε = 2.33). The thickness of the Cu film used to pattern the SRRs is 17 μm. The length of the split s
and the radius of the corners r are the two geometric parameters that are adjusted to adjust the split
ring resonator. The imaginary parts of εz and μr, respectively, yielded values of 0.002 and 0.006. The
inner cylinder is 1 and the outer cylinder is 10

3.1 Dataset

The dataset used in this study contains 10 attributes that are used to define the design parameters
of metamaterial antenna. On Kaggle [26] (Metamaterial Antennas | Kaggle), this dataset is accessible in
tabular form with predefined rows and columns. This dataset contains 572 rows (records), 10 columns
(parameters), and the following values: antenna gain, voltage standing wave ratio, return loss, gap amid
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rings, width of rings, distance amid rings, bandwidth, antenna patch, and distance among split-ring
resonator cells in the array. Table 2 displays these parameters along with the accompanying symbols.
In this study, nine of these factors are used to forecast the bandwidth of a metamaterial antenna. The
correlation matrix, which determines the correlation between the attributes of the dataset for study, is
displayed in Fig. 3. Fig. 3 clearly shows the substantial correlation between bandwidth and both Ya
and Xa. Less strongly correlated are the bandwidth, Wm, and Tm.

Table 2: The parameters in the dataset

Sl. No. Attributes Dataset

1 Wm Dimensions of the resonator with split-ring
2 W0m The gaps in the ring
3 Dm Distance of ring
4 Gain Antenna gain
5 Xa Antenna patch and array distance
6 Tm Ring width
7 Ya Cell distance in the split ring resonator
8 VSWR Voltage wave ratio
9 Bandwidth Bandwidth of antenna
10 S11 Loss

Figure 3: Correlation measure of the design parameters

3.2 Data Preprocessing

A set of preparation chores must be completed before using machine learning techniques on the
provided dataset. Additionally, the efficacy of machine learning algorithms is typically impacted by
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the range of the features of the dataset. Scaling and normalizing all of the characteristics of the dataset
is the second step in the preparation phase. Because these features fall within the same range of values,
machine learning may treat them similarly. This study uses hypersphere-based normalization to scale
the features and bring them within the range of the hypersphere.

3.3 Novel Hypersphere-Based Normalization Method

The proposed study uses the hypersphere-based normalization technique, which, unlike other
normalization techniques, achieves effective normalization without overlapping. It also enhances the
numerical characteristics of the kernel matrix by reducing the effect of other transformation variables
on the features. Since the distances among the features projected onto the Hypersphere are relative
to their original distances, these points are mapped to be scattered over the hypersphere without any
overlaps. As a result, the proposed study uses the hypersphere-based normalization technique, which,
unlike other normalization techniques, achieves effective normalization without overlapping.

The inner products between the data points have to be smooth to be mapped onto the Hyper-
sphere. According to Boumal et al. [27], the smooth inner product is computed using the Conjugate
Gradient solver of the Matlab Toolbox for Optimization on Manifolds (MANOPT) tool. By making
the feature space a Riemannian manifold, the optimization problem is solved. Fig. 4 explains the
algorithm used for hypersphere-based normalization of the features in the dataset. The algorithm is
said to be complete when the inner product variable is smooth or when the specified tolerance criterion
is satisfied. After initially traveling in the direction of d0 = Δa0, the algorithm moves in the direction of
tm. The globally convergent Conjugate Gradient technique is used to design the algorithm for changing
the feature space to build a smooth inner product. When the inner product variable is nearly uniform
or the stated tolerance condition is met, the algorithm is considered to have finished. The smoothing
of the inner products scatters the properties of the new dataset over the closed hypersphere surface.
The properties of the normalized attributes in the dataset are contained within a predetermined range.
The normalized attributes are then made available for CNN classification. The next section explains
the novel dimensionality reduction technique used for reducing the dimensions of the features.

Figure 4: Correlation measure of the design parameters
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3.4 The Proposed Pearson Kernel-Based Dimensionality Reduction Technique

The properties of the compact dataset are represented using Pearson Kernel-Based Supervised
Principal Component Analysis (PKSPCA), which eliminates both redundant features including noise,
and yields the greatest performance. The proposed innovative PKSPCA assists in cutting down on
calculation time significantly [28]. A new Pearson kernel, which aids in achieving a superior act
compared to the other kernels such as linear, polynomial, and Gaussian, is projected in the proposed
approach. Here, M is the space for the answer variable and N is the attribute space:

M = [m1, m2 . . . mN]T (1)

N = [n1, n2 . . . nN]T (2)

D = {(m1, n1), (m2, n2), (m3, n3) . . . (m4, n4)} (3)

If F and G are discrete Reproducing Kernel Hilbert Spaces (RKHS), which comprise all endlessly
limited real-valued functions of M and N, the empirical Hilbert Schmidt independence criterion
(HSIC) can be determined as follows:

HSICem(D, F , G) = (A − 1)2Tr(KSLS) (4)

Tr (•) stands for the trace of a square matrix, while K and L are the kernel matrices of F and G
based on the kernel functions k() and l(), respectively.

Kij = k(xi, xj) and Lij = l(yi, yj) (5)

S is referred to as the mean subtraction matrix and has the formula S = I − eeT

A
, where I is the

identity matrix with order A and e denotes a column vector of order A. The dependency between UTX
and Y are being maximized in the subspace UTX . The HSIC measures the interdependence between
X and Y and is used to maximize Tr(KSLS) to solve the optimization problem. Here,

K = (
UTX

)T
(UTX) (6)

UTU = I (7)

The optimization problem now becomes as max
U Tr(UTXSLSX TU) and UTU = I . In the PKSPCA

X is substituted by �(X) and U = �(X)α. Therefore, the objective function is given as follows:
max
U Tr(αTK∗SLSK∗α) (8)

where K∗ and L are the proposed Pearson general kernel-generated kernel matrices of order N. The
proposed Pearson function is employed as the universal Pearson kernel [11]. As a result, the Pearson
kernel can be used across all datasets rather than alternative state-of-the-art kernels being tested. The
time required for choosing the kernels and performing the computations is decreased by the proposed
PKSPCA.

1[
1 +

(
2
√∥∥xki − xlj

∥∥2
√

2( 1
ω ) − 1/σ

)2
]ω (9)

The solution to the optimization issue is the B eigenvectors of (K∗SLSK∗, K∗) based on the first B
eigenvalues. The kernel matrices K∗ and L concerning X and Y are computed using a Pearson kernel,
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where k is the function of the kernel. Analytically expressing the response to the objective function
results in F of order BA, the newly created low-dimensional space. As a result, the following may be
said about the low dimensional features (DF), that the PKSPCA gathered from the samples:

DF = α̂TK∗ (10)

The CNN then predicts the bandwidth using a lower dimensional attribute space.

3.5 Classification Using Optimized CNN with Pearson Mutation-Based Bat Optimization

CNN employs a non-linear function called the Fully Connected layer [29]. The model uses the
Softmax approach to predict the bandwidth over numerous epochs. The Rectified Linear Activation
Unit (ReLU) compares the input with the value 0 as part of its operation. The dimension of the feature
maps is decreased by pooling layers. The streamlined features in the feature map are produced by the
pooling layer. The accuracy discovered via CNN is employed as the fitness function when employing
the Bat algorithm-based optimization [30] for tuning the CNN parameters. Fig. 5 depicts the algorithm
used to identify the optimized values for parameters. The best value, in contrast to other values,
necessitates the mutation operator moving forward. The various parameters used in CNN are given
in Tables 3 and 4.

Table 3: The parameters used for training in CNN

Parameters Value

Number of epochs for optimum CNN 20
Number of epochs for training 60
Rate of dropout 0.6
Size of Minibatch 256
Learning rate in initial stages 0.002

Table 4: Parameter values of CNN

Parameters Value

Least count of layers 3
Highest count of layers 12
Least count of filters 16
Highest count of filters 256
Least size of convolution kernel 2
Highest size of convolution kernel 12
Least size of kernel in layer for pooling 2
Highest size of kernel in layer for pooling 8
Least size of stride in pooling layer 2
Highest size of stride in pooling layer 8
Least size of neurons 12
Highest size of neurons 1024
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Figure 5: The algorithm for BAO_PM

4 Results and Discussion

To illustrate the performance of the suggested methodology, the dataset is divided into three
subsets: the train, validation, and test sets. The training subset has a ratio of 80% to 20%, while
the testing subset is 20% smaller. The training subset is 25% smaller than the validation subset. The
proposed deep network is trained by setting the network parameters to random values at the beginning.
After that, using the guided BAO-PM, some iterations are performed to find the best values for these
parameters. During training, the network seeks to develop its antenna bandwidth prediction skills.
The performance of the trained network is assessed using the Mean Square Error (MSE) metric. Here
is the formula for this measure.

MSE = 1
n

∑n

i=1
(Yi − Y ∗

i )
2 (11)

where n is the total number of samples in the evaluation set, and Yi and Y∗
i stand for the antenna’s

expected bandwidth and actual values, respectively.

Table 5 only displays the best results from testing different kernels in the suggested work for
dimension reduction. The collection of values

{
210, 29, . . . , 2−9, 2−10

}
is used to select the Radial Basis

Function(RBF) kernel parameter σ. The grid search method is coupled with cross-validation on the
samples used as the training set. Then, for the Pearson kernel in the proposed study, σ is selected
from the set

{
210, 29, . . . , 2−9, 2−10

}
and ω is selected from the set {20, 21 . . . , 210}. The set of parameters

that maximizes classification accuracy is the ideal set for the test set. Once the deep network has been
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trained, the test set is utilized to evaluate the robustness of the trained model [24,25]. The results signify
that the Pearson kernel achieves higher accuracy when used for dimension reduction compared to the
other kernels. The quantile-quantile (QQ) plot are displayed in Fig. 6. The diagonal line connecting
the expected and actual residuals is fit by the distribution of the QQ plot’s points, as seen in the image.
The predicted and actual values of the parameters are mapped out in a QQ plot. The mapping in this
figure roughly fits a straight line, highlighting the efficiency of the suggested algorithm. This fitting
verifies how well the proposed model predicts the bandwidth. The residuals and homoscedasticity of
the prediction outcomes using the suggested Pearson kernel-based model are shown in the plots in
Figs. 7 and 8. The residual error values are near zero, as shown in the figure, confirming the efficacy of
the suggested technique. A homoscedasticity plot can also help determine whether the independent
variables have the same error term, which can be determined from the plot values. The Receiver
Operating Characteristics (ROC) of the suggested approach are also displayed in the plots of Fig. 9.
These principles highlight how efficient the suggested strategy is.

Table 5: Comparison of categorization accuracy found in the literature using different kernels

Datasets Proposed approach using various kernels

Linear Polynomial RBF Pearson kernel

Metamaterial antenna 96.9 93.9 95.5 99.7

Figure 6: QQ plot

Figure 7: Residual plot
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Figure 8: Homoscedasticity plot

Figure 9: ROC curve

The evaluation of the model using different classifiers based on the metamaterial antenna test
set is shown in Table 6. The findings obtained by the suggested model are represented in Table 6.
These results are superior to those of the three rival methodologies Multilayer Perceptron (MLP),
K-Nearest Neighbor (KNN), and Long Short Term Memory (LSTM) [30–38]. The table includes a
list of additional evaluation criteria, the measured values of which are significantly higher than what
the other models achieve. These measurements include the Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), Mean Bias Error (MBE), Coefficient of Determination (R2), Determine
Agreement (WI), Nash Sutcliffe Efficiency (NSE), the Relative Root Mean Square Error (RRMSE),
Pearson’s correlation coefficient (R), and the Root Mean Square Error (RMSE). Table 7 also contains
the descriptive statistics of the recommended strategy over 20 runs.

Table 6: Comparison of proposed model with other classifiers

MLP KNN LSTM CNN

R 1.00 1.00 1.00 1.00
MAE 0.06 0.03 0.03 0.01
RMSE 0.06 0.04 0.03 0.01
MBE −0.03 0.01 0.01 0.01
RRMSE 8.73 4.71 11.59 0.53

(Continued)
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Table 6 (continued)

MLP KNN LSTM CNN

R2 0.99 1.00 1.00 1.00
WI 0.88 0.95 0.97 1.00
NSE 0.95 0.99 1.00 1.00

Table 7: The descriptive statistics of the proposed model and existing models

Descriptive statistics MLP KNN LSTM Proposed model

Count of values 15 15 15 15
Least 0.04 0.03 0.03 0.01
25% percentile 0.06 0.04 0.03 0.01
Median 0.06 0.04 0.03 0.01
75% percentile 0.06 0.04 0.03 0.01
Highest 0.09 0.05 0.04 0.01
Series 0.06 0.03 0.02 0.01
10% percentile 0.05 0.03 0.03 0.01
90% percentile 0.08 0.04 0.03 0.01
95% confidence interval of median 0.01 0.01 0.01 0.01
Definite confidence level 1.00 1.00 1.00 1.00
Minor confidence limit 0.06 0.04 0.03 0.01
Higher confidence limit 0.06 0.04 0.03 0.01
Mean 0.06 0.04 0.03 0.01
Std. deviation 0.02 0.01 0.01 0.01
Std. error of mean 0.01 0.01 0.01 0.01
Lesser 95% confidence interval of mean 0.06 0.04 0.03 0.01
Higher 95% confidence interval of mean 0.07 0.04 0.03 0.01
Coefficient of variation 0.20% 0.13% 0.12% 0.01%
Geometric mean 0.06 0.04 0.03 0.01
Geometric standard deviation factor 1.21 1.13 1.11 1.02

When compared to the similar values estimated from the outcomes obtained by the other ways,
as indicated in the table, the calculated values of these statistics utilizing the suggested approach are
reassuring. These numbers represent the effectiveness and superiority of the suggested model in esti-
mating the bandwidth of the metamaterial antenna. The suggested strategy and the other approaches
are statistically significant, as in the table. Here an additional test is done using the two-tailed t-test
between each of the two algorithms to unequivocally demonstrate the superiority of the suggested
method. Table 8 presents the test results for 21 samples at the 0.05 significance level. If the p-value of
less than 0.05 indicates that the algorithm is significant. The measured p-value in Table 8 satisfies the
condition and indicates their significance. Nonetheless, the suggested method was able to attain the
least amount of difference between the tested models, demonstrating the superiority of the suggested
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algorithm and bolstering its increased statistical significance. Figs. 10a–10c illustrate the RMSE
plots for different optimization algorithms, dimension reduction techniques (Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), Fisher Linear Discriminant Analysis (FLDA)),
and normalization techniques [39] used in the proposed work. The RMSE plots show improved
performance for the proposed BAO-PM, PKSPCA, and hypersphere-based normalization techniques
in the proposed work. When compared to the other approaches, the suggested strategy yields the lowest
discrepancy values over the test set, as the table illustrates. The remaining results, which are shown in
the figures and tables, demonstrate the stability of the suggested method for estimating the bandwidth.
Among the corresponding predictions made using the other feature selection algorithms, most of the
predicted values in this figure have the lowest RMSE values. The majority of the obtained RMSE
values fall between (0.002) to (0.004), surpassing the results attained by the other algorithms.

Table 8: The two tailed t-test using different optimization algorithms in the proposed method

SCA-CNN GWO-CNN WOA-CNN PSO-CNN BAO-PM-CNN

Theoretical mean 0 0 0 0 0
Actual mean 0.000002848 0.00003961 2.957E-07 6.805E-07 2.805E-100
Count of values 21 21 21 21 21
Single sample t test
t-distribution, degrees
of freedom (df)

t = 14.74,
df = 20

t = 42.89,
df = 20

t = 20.20,
df = 20

t = 41.78,
df = 20

t = 24.30,
df = 20

p-value
(two tailed)

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Substantial
(alpha = 0.05) ?

Yes Yes Yes Yes Yes

Discrepancy 0.000002456 0.00003234 2.834E-07 6.785E-07 2.785E-100
Standard deviation of
discrepancy

9.451E-07 0.000003982 6.567E-08 7.678E-08 5.56E-101

Standard error of the
Mean of discrepancy

2.067E-07 8.378E-07 1.456E-08 1.677E-08 1.188E-101

95% confidence
interval

2.5E-6 to
3.4E-6

3.3E-5 to
3.7E-5

2.6E-7 to
3.2E-7

6.6E-7 to
7.3E-7

2.7E-100 to
3.20E-100

R squared (partial eta
squared)

0.9178 0.956 0.9356 0.9789 0.9345



3464 CMC, 2024, vol.78, no.3

Figure 10: (Continued)

Figure 10: (a) RMSE plot of different optimization algorithms in the proposed model. (b) RMSE
plot of different dimension reduction techniques in the proposed model. (c) RMSE plot of different
normalization techniques in the proposed model

5 Conclusion

In this research, a unique CNN-based approach is presented for forecasting the parameters of
metamaterial antenna. Based on a set of design criteria, the suggested approach can precisely estimate
the bandwidth of metamaterial antennas. The Pearson Kernel shows superior results when compared
to the other kernels while it is used for dimension reduction in the proposed work as seen in the
results. The actual and anticipated bandwidths were examined in this investigation to emphasize and
confirm the robustness of the suggested strategy. To demonstrate the superiority of the suggested
algorithm, the results produced were also compared to those of other optimization algorithms.
Prospects for this research in the future include evaluating the suggested algorithm in different antenna
structures [25] and other optimization scenarios across various fields. The future directions include
using the suggested method on more different kinds of microstrip antennas and combining it with
ensemble models to improve predictions of antenna design parameters.
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