
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.046890

ARTICLE

Covalent Bond Based Android Malware Detection Using Permission
and System Call Pairs

Rahul Gupta1, Kapil Sharma1,* and R. K. Garg2

1Department of Information Technology, Delhi Technological University, New Delhi, 110042, India
2Department of Mechanical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India

*Corresponding Author: Kapil Sharma. Email: kapil@ieee.org

Received: 18 October 2023 Accepted: 14 February 2024 Published: 26 March 2024

ABSTRACT

The prevalence of smartphones is deeply embedded in modern society, impacting various aspects of our lives. Their
versatility and functionalities have fundamentally changed how we communicate, work, seek entertainment, and
access information. Among the many smartphones available, those operating on the Android platform dominate,
being the most widely used type. This widespread adoption of the Android OS has significantly contributed to
increased malware attacks targeting the Android ecosystem in recent years. Therefore, there is an urgent need to
develop new methods for detecting Android malware. The literature contains numerous works related to Android
malware detection. As far as our understanding extends, we are the first ones to identify dangerous combinations
of permissions and system calls to uncover malicious behavior in Android applications. We introduce a novel
methodology that pairs permissions and system calls to distinguish between benign and malicious samples. This
approach combines the advantages of static and dynamic analysis, offering a more comprehensive understanding
of an application’s behavior. We establish covalent bonds between permissions and system calls to assess their
combined impact. We introduce a novel technique to determine these pairs’ Covalent Bond Strength Score. Each
pair is assigned two scores, one for malicious behavior and another for benign behavior. These scores serve as
the basis for classifying applications as benign or malicious. By correlating permissions with system calls, the
study enables a detailed examination of how an app utilizes its requested permissions, aiding in differentiating
legitimate and potentially harmful actions. This comprehensive analysis provides a robust framework for Android
malware detection, marking a significant contribution to the field. The results of our experiments demonstrate
a remarkable overall accuracy of 97.5%, surpassing various state-of-the-art detection techniques proposed in the
current literature.

KEYWORDS
Android; malware; android security; hybrid analysis; permission and system call pairs

1 Introduction

The Android operating system has maintained a dominant position in the smartphone industry
for the past decade. Within the Android API framework, functions grant access to sensitive system
resources. Unfortunately, this feature has allowed cyber attackers to develop and disseminate harmful

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046890
https://www.techscience.com/doi/10.32604/cmc.2024.046890
mailto:kapil@ieee.org

4284 CMC, 2024, vol.78, no.3

applications through alternative app stores or social media advertisements. Furthermore, an attacker
may introduce malicious components in the installed Android application. These malevolent appli-
cations empower attackers to perform various operations, including information theft, SMS trans-
mission, and remote device control. Consequently, safeguarding smartphones from these malicious
applications is imperative [1–3].

Malware detection methods currently fall into three primary categories: Static, dynamic, and
hybrid analysis. Static analysis is capable of discerning malicious behavior by examining an appli-
cation’s source code without executing it [4]. On the other hand, dynamic analysis identifies malicious
behavior by analyzing the runtime information generated during the application’s execution, such as
system calls [5]. The strength of static analysis lies in its ability to pinpoint malicious components
directly from the source code, resulting in high code coverage [6]. Dynamic analysis excels in uncovering
exploits within the runtime environment [7]. Therefore, by merging the strengths of static and dynamic
analysis, a hybrid analysis approach can be formulated to enhance malware detection accuracy [8,9].

Several static works have been proposed in the literature for Android malware detection. For
instance, in [10], Talha et al. extracted application permissions. They then assign a score to each
permission, determined by the ratio of malware instances containing that specific permission to the
total number of malware instances. In [11], the study utilized pairs of permissions extracted from the
manifest file, resulting in an overall accuracy of 95.44%. IPDroid, as discussed in [12], incorporated
both permissions and intents from the manifest file in their analysis. They achieved a notable accuracy
of 94.73% by employing a Random Forest classifier.

The TaintDroid model [13] employed dynamic taint analysis to monitor the movement of privacy-
sensitive data within third-party applications. Yang et al. [14] expanded upon the TaintDroid model to
not only identify data leaks from applications but also ascertain whether these leaks are a result of user
intention or not. In [15], the authors introduced a proficient and automated approach for detecting
malware by leveraging the textual semantics of network traffic. Specifically, they treated each HTTP
flow produced by mobile applications as a textual document, allowing them to apply natural language
processing techniques to extract features at the text level.

Some of the works have combined static and dynamic features to propose a hybrid Android
malware detector. MADAM [16] is a host-based malware detection system designed for Android
devices. It conducts concurrent analysis and correlation of attributes across four tiers: Kernel,
application, user, and package. This comprehensive approach aims to identify and thwart malicious
activities effectively. Monet [17] consists of a module on the user side, an application responsible
for analyzing malicious activity and signatures. Conversely, the module installed on the server side
is responsible for detecting malicious applications based on analysis on the client side. In [18], authors
developed AppAudit which employs a combination of static and dynamic analysis to deliver highly
effective real-time app auditing. It introduces an innovative dynamic analysis approach that leverages
this combination to reduce false positives generated by an efficient yet conservative static analysis.

1.1 Motivation

Identifying dangerous combinations of permissions and system calls is instrumental in spotting
malicious behavior. Hence, this study endeavors to scrutinize permissions and system calls in pairs
and introduces a novel methodology to identify such pairs that can differentiate between benign
and malicious samples. To the best of our knowledge, we are the first to use permissions and
system call pairs to detect Android malware. Pairing permissions and system calls has several key
benefits. Firstly, permissions are static features, and system calls are dynamic features; pairing both of

CMC, 2024, vol.78, no.3 4285

them will combine the advantages of static analysis and dynamic analysis to form a hybrid analysis
technique. Second, this combination allows for a more detailed examination of an application’s
behavior. Permissions provide a high-level overview of what resources an app may access, while system
calls offer a finer-grained view of actual interactions with the system. By correlating permissions
with system calls, we can better understand how an application uses the permissions it requests. This
context is crucial in distinguishing legitimate behavior from potentially malicious actions. It enables the
detection of anomalies or suspicious activities. For example, if an app with camera access permission
unexpectedly starts making network-related system calls, it may raise a red flag. The app requests
access to the camera (Android.permission.CAMERA). Additionally, it asks permission to access the
internet (Android.permission.INTERNET). Based on permissions alone, the app seems legitimate.
Camera apps naturally require camera access and internet access could be justified for features like
cloud storage of images. During runtime, if the app makes system calls such as open(), read(), write(),
and connect(). This observation may establish suspicious behavior as the app is accessing files unrelated
to image storage and making network connections to unusual domains. Hence, this study endeavors to
scrutinize permissions and system calls in pairs and introduces a novel methodology to identify such
pairs that can differentiate between benign and malicious samples.

1.2 Contributions

We present a covalent bond-based Android malware detection model using permissions and
system call pair. We use the analogy of covalent bonds between two atoms in chemistry to form
covalent bonds between every permission and system call. We also calculate bond strengths between
permission and system call pairs to denote the strength of the bond they create between them.
The estimated bond strength helps detect an Android application as malicious or benign. Our
detection results demonstrate an overall accuracy of 97.5%, better than many state-of-the-art detection
techniques proposed in the literature. The main contributions of the paper are summarized below:

• We build the permission and system call covalent bond pairs to identify and analyze the impact
of these pairs.

• We proposed a novel approach to calculate the Covalent bond strength score for the permissions
and system calls bond pair. Two scores, i.e., malicious and benign, are computed for each
bond pair.

• We designed a technique for identifying Android applications as malicious or benign based on
the malicious and benign scores of permission and system call pairs.

• We conducted a comparative analysis between our proposed model and other state-of-the-art
detection techniques. Our findings demonstrate that the proposed model surpasses similar state-
of-the-art models in terms of performance.

1.3 Organization

The subsequent sections of this paper are structured as follows: In Section 2, we delve into the
related work. Section 3 provides an in-depth exploration of our methodology. Section 4 is devoted to
presenting results and engaging in discussions. Finally, in Section 5, we conclude and outline potential
future directions for this research.

2 Related Work

This section presents a literature review on detecting Android malware using machine-learning
methods. Android malware analysis methods enable gathering various feature types, which are

4286 CMC, 2024, vol.78, no.3

essential for characterizing and constructing machine-learning systems. Three primary approaches
are employed, depending on the type of features gathered: Static analysis, dynamic analysis, or a
combination of both, known as hybrid analysis [19]. This section offers a concise overview of these
approaches and the typical features of machine learning-based Android malware detection.

2.1 Static Analysis

Shahriar et al. [20] introduced a method to identify Android malware by examining requested
permissions. Their initial approach involved utilizing Latent Semantic Indexing (LSI) to pinpoint
frequently requested permissions within known instances of malicious applications. In a separate
development, Arp et al. [21] introduced Drebin, a method for static malware detection. This technique
relies on unchanging attributes from manifest file components such as permissions, hardware and
application components, and intent filters. Cen et al. [22] proposed a strategy to identify malicious
Android applications by scrutinizing permissions and API calls. They employ a trained probabilistic
classifier to predict an application’s potential maliciousness. Qui et al. [23] proposed Android malware
detection model based on reverse engineering to detect zero day malware families. Ibrahim et al. [24]
proposed an approach for predicting malicious applications through API deep learning model based
on two new features, i.e., application size and fuzzy hash.

2.2 Dynamic Analysis

Yu et al. [25] presented a method for classifying an Android application as malicious by system call
analysis with ML techniques such as SVM or naive Bayes learners. Dmjsevac et al. introduced Maline
[26], a framework to detect Android malware applications. Maline utilizes binary machine learning
classifiers to deduce an application’s malicious behavior by examining the frequencies of individual
system calls and their interdependencies. Crowdroid [27] adopts a behavior-centric approach for
Android malware detection, utilizing a cloud-based infrastructure. The K-means clustering technique
on the server side processes the data gathered regarding system call events on the client side to identify
malicious Android applications.

In [28], authors presented an Android malware detection model for detecting malware applications
based on traces of their behavioral system calls. Lu et al. [29] introduced a new encoding scheme
F2D, which uses raw payload of network traffic along with neural networks to propose an Android
malware detection model. Hussian et al. [30] proposed a malware detection technique using particle
swam optimization, which selects traffic characteristics from network traffic data which in turn is fed
to ML algorithms to build the prediction models.

2.3 Hybrid Analysis

Arora et al. [31] introduced a methodology for Android malware prediction that relies on
permissions and internet traffic features. This approach leverages the FP-growth algorithm, using
permissions and network traffic features to discern potentially malicious behavior. In [32] authors
proposed a hybrid detector technique for identifying malicious Android applications. This method
combines a sequence of API calls represented as a Markov chain from static and dynamic analyses to
detect malicious behaviour effectively. AASandbox [33] employs a hybrid analyzer for the detection
of malware. In their static model, they uncovered patterns that help identify malicious applications.
Further, they captured system calls for dynamic analysis in an emulator. The authors in [34] used
permissions, API calls, and intents as features to propose a hybrid Android malware detector.

CMC, 2024, vol.78, no.3 4287

3 The Proposed Covalent Bond Pair Detection

In this section, we present our novel Covalent Bond Pair-based model for detecting malicious
Android applications. The proposed model is depicted in Fig. 1.

Figure 1: Proposed covalent bond pair detection model

3.1 Data Set Description

KronoDroid [35], a meticulously structured Android dataset, holds the distinction of being the
largest in its category. It is distinguished by its amalgamation of static and dynamic features and the
notable inclusion of timestamps. This dataset meticulously accounts for the unique characteristics
of dynamic data sources, encompassing samples from over 209 distinct Android malware families.
Its creation involved the fusion of diverse sources of benign and malware data, resulting in a
comprehensive collection spanning a significant period. The dataset comprises 41,382 instances of
malware belonging to 240 distinct malware families, along with 36,755 benign applications.

The dataset predominantly comprises permissions as static features, represented as binary indi-
cators of whether the app requested the standard Android permissions (1) or not (0). There are a
total of 166 distinct permissions in the dataset. In contrast, the dynamic feature set mainly consists of
system calls, represented by the absolute frequency of each system call issued by the app at runtime.
The system call set comprises 288 features. Hence, the total number of features under consideration
amounts to 454.

3.2 Feature Space Transformation

As previously stated, the KronoDroid dataset is well-organized and accessible in CSV file format.
These files contain information on both malware and benign applications. The feature vectors within
these CSV files are represented as combinations of 0’s and 1’s. A 0 in the feature vector signifies the
absence of a particular feature in an application, while a 1 indicates its presence. Tables 1 and 2 provide
a visual representation of the feature spaces for benign and malicious applications, respectively.

Within both the instances of benign and malicious CSV files as represented in Tables 1 and 2,
respectively, the labels P1, P2, P3,..., and Pn represent the n permissions, while S1, S2, S3,..., and Sm denote
the m system calls. In our specific dataset, n is set at 166 and m at 288. The benign applications are
denoted as A1B, A2B,..., and AxB, where x represents the total number of benign applications. Similarly,

4288 CMC, 2024, vol.78, no.3

the malicious applications are labeled A1M, A2M,..., and AyM, with y indicating the total number of
malicious applications.

Table 1: Instance of benign CSV

Benign CSV P1 P2 P3 Pn S1 S2 S3 Sm

A1B 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1
A2B 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1
. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1
. 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0
AxB 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0

Table 2: Instance of malicious CSV

Malicious CSV P1 P2 P3 Pn S1 S2 S3 Sm

A1M 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1
A2M 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0
. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1
. 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
AyM 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0

3.3 Covalent Bond Pair Formation Phase

The concept of feature pair covalent bond formation is based on the concepts of the covalent
bond theory of chemistry [36]. A covalent bond arises from the mutual sharing of electrons between
the involved atoms. This pair of electrons engaged in this form of bonding is referred to as a shared
pair or bonding pair. Additionally known as molecular bonds, covalent bonds facilitate the attainment
of outer shell stability, resembling the configuration of noble gases, by enabling the sharing of these
bonding pairs. Covalent bonds are normally categorized into three types: Single covalent bonds,
double covalent bonds, and triple covalent bonds. We will restrict our proposed methodology to single
covalent bonds and double covalent bonds only.

A single bond is established through the sharing of only one pair of electrons between the two
involved atoms, symbolized by a single dash (-). Despite having lower density and strength than double
and triple bonds, this type of covalent bond is the most stable.

A double bond is created when two pairs of electrons are shared between the participating atoms,
denoted by two dashes (=). Double covalent bonds exhibit significantly greater strength than single
bonds, although comparatively less stable.

In the case of our proposed methodology, we calculated single covalent bond strengths and double
covalent bond strengths between two arbitrary features fi and fj, and formed feature pair fij. We
separately calculated these bond strengths from two perspectives: w.r.t benign applications and w.r.t
malicious applications. Hence, the concept of covalent bond strengths helps to calculate benign and
malicious feature pair scores between every possible feature pair in the dataset. This notion of covalent
bond strengths gives us a perspective of separately viewing any arbitrary feature pair regarding the role
played for benign and malicious applications. Algorithm 1 depicts the whole phase of Feature Pair
Covalent Bond Formation.

CMC, 2024, vol.78, no.3 4289

Algorithm 1: Feature pair covalent bond formation
1. Input: benign feature matrix ben [AxB] [fn] where x is the number of benign applications and n is

the number of features, malicious feature matrix mal
[
AyB

]
[fn] where y is the number of malicious

applications and n is the number of features.
2. Output: benign feature pair matrix having double covalent bond strengths ben� [fn] [fn] and

malicious feature pair matrix having double covalent bond strengths mal� [fn] [fn].
3. for each i : 1 → n
4. for each j : i + 1 → n
5. n

(
fij

) = 0
6. n (fi) = 0
7. n

(
fj

) = 0
8. for each k : 1 → x
9. If

(
ben [AkB] [fi] == 1 &&ben [AkB]

[
fj

] == 1
)

10. n
(
fij

) = n
(
fij

) + 1
11. end if
12. If (ben [AkB] [fi] == 1)

13. n (fi) = n (fi) + 1
14. end if
15. If

(
ben [AkB]

[
fj

] == 1
)

16. n
(
fj

) = n
(
fj

) + 1
17. end if
18. end for
19. ben⇀ [fi]

[
fj

] = n(fij)/n(fj)

20. ben↽ [fi]
[
fj

] = n(fij)/n(fi)

21. end for
22. end for
23. for each i : 1 → n
24. for each j : i + 1 → n
25. n

(
fij

) = 0
26. n (fi) = 0
27. n

(
fj

) = 0
28. for each k : 1 → y
29. If

(
mal [AkB] [fi] == 1 &&mal [AkB]

[
fj

] == 1
)

30. n
(
fij

) = n
(
fij

) + 1
31. end if
32. If (mal [AkB] [fi] == 1)

33. n (fi) = n (fi) + 1
34. end if
35. If

(
mal [AkB]

[
fj

] == 1
)

36. n
(
fj

) = n
(
fj

) + 1
37. end if
38. end for
39. mal⇀ [fi]

[
fj

] = n(fij)/n(fj)

40. mal↽ [fi]
[
fj

] = n(fij)/n(fi)

41. end for
(Continued)

4290 CMC, 2024, vol.78, no.3

Algorithm 1 (continued)
42. end for
43. for each i : 1 → n
44. for each j : i + 1 → n
45. ben� [fi]

[
fj

] = (ben⇀ [fi]
[
fj

] + ben↽ [fi] [fj])/2

46. mal� [fi]
[
fj

] = (mal⇀ [fi]
[
fj

] + mal↽ [fi] [fj])/2
47. end for
48. end for

The data set is assumed to have benign and malicious feature matrices in which each of the
application feature vectors in the form of 0’s and 1’s is represented, respectively. Then, the feature
vs. the feature matrix is calculated from these feature matrices, holding single covalent bond strengths.
If fi and fj, are two arbitrary features, then we calculate two single covalent bond strengths for the
feature pair fij, one w.r.t fi and other w.r.t fj., Calculating single bond strength is done from benign and
malicious perspectives. The single covalent bond strength of feature vs. feature matrices is combined
to form new feature vs. feature matrices holding double covalent bond strengths for both benign and
malicious perspectives.

Let us suppose an instance of benign and malicious information systems, as shown in Tables 3
and 4. P1, P2, and P3 denote permissions as features in both instances. Similarly, S1, S2, and S3 denote
system calls as features. A1B, A2B, A3B, A4B, and A5B denote the benign applications in the supposed
instance of benign information systems. Similarly, A1M, A2M, A3M, A4M, and A5M denote the malicious
applications in the supposed instance of a malicious information system.

Table 3: Supposed instance of benign information system

Benign P1 P2 P3 S1 S2 S3

A1B 0 1 1 1 0 0
A2B 0 0 1 1 1 0
A3B 1 0 1 0 1 1
A4B 0 0 1 0 1 0
A5B 1 0 1 0 1 0

Table 4: Supposed instance of malicious information system

Malicious P1 P2 P3 S1 S2 S3

A1M 1 0 0 1 1 1
A2M 1 1 0 1 0 1
A3M 1 1 0 0 1 1
A4M 0 1 0 0 1 0
A5M 0 0 1 1 0 0

After assuming the benign and malicious instances of the information systems, now we show how
to calculate the single bond strengths of every feature pair. As discussed earlier, single bond strengths

CMC, 2024, vol.78, no.3 4291

of two arbitrary features are calculated from two perspectives, i.e., benign and malicious. For each
perspective, the single bond strengths are calculated again from two aspects, i.e., w.r.t fi and w.r.t fj.
The formulas for this are evident from Eqs. (1)–(4).

Eq. (1) denotes the single benign bond strength of the feature pair fij w.r.t feature fj. As discussed
earlier, the single bond is established by sharing only one pair of electrons between the two involved
atoms, symbolized by a single dash (-). The same phenomenon is established in our concept represented
by Eq. (1) as ben⇀ [fi]

[
fj

]
.Here, the (⇀) represents a single covalent bond w.r.t. to the feature at the

right side of the arrow, simulating the sharing of only one electron pair. It gives us the benign score of
the single covalent bond between fi and fj w.r.t. fj, where n(fij) is the number of applications for which
both features were present simultaneously in the benign feature matrix. In addition, n(fj) is defined as
the number of applications for which the feature fj is present. The value for Eq. (1) will be lying in the
set [0,1]. A value of 1 indicates a strong single covalent bond while a value of 0 indicates a weak bond.
The ratio of n(fij) w.r.t n(fj) denotes the the probability that the association between two features fi and
fj in the is strong or weak w.r.t to the feature fj, i.e., higher the ratio greater the association.

ben⇀ [fi]
[
fj

] = n(fij)/n(fj) (1)

ben↽ [fi]
[
fj

] = n(fij)/n(fi) (2)

mal⇀ [fi]
[
fj

] = n(fij)/n(fj) (3)

mal↽ [fi]
[
fj

] = n(fij)/n(fi) (4)

Eq. (2) denotes the single benign bond strength of the feature pair fij w.r.t feature fi. Here (↽)
represents a single covalent bond w.r.t. to the feature at the left side of the arrow, simulating the sharing
of only one electron pair. It gives us the benign score of the single covalent bond between fi and fj w.r.t.
fi, where n(fij) is the number of applications for which both features were present simultaneously in the
benign feature matrix. In addition, n(fi) is defined as the number of applications for which the feature
fi is present. The value for Eq. (2) will be lying in the set [0,1]. A value of 1 indicates a strong single
covalent bond while a value of 0 indicates a weak bond.

Similarly, with the help of Eqs. (3) and (4), we can calculate mal⇀ [fi]
[
fj

]
and mal↽ [fi]

[
fj

]
where

the former is the single malicious bond strength of the feature pair fij w.r.t feature fj while later is the
single malicious bond strength of the feature pair fij w.r.t feature fi. They are both calculated from the
malicious feature pair matrix. The value for Eqs. (5) and (6) will be lying in the set [0,1]. A value of
1 indicates a strong double covalent bond while a value of 0 indicates a weak bond. Since the single
covalent bonds are calculated from two perspectives, i.e., w.r.t fi and fj separately, taking their average
will give the strength of association between the two features w.r.t both the perspectives. Higher the
average value greater the association between both the features w.r.t both the perspectives.

ben� [fi]
[
fj

] = (ben⇀ [fi]
[
fj

] + ben↽ [fi] [fj])/2 (5)

mal� [fi]
[
fj

] = (mal⇀ [fi]
[
fj

] + mal↽ [fi] [fj])/2 (6)

Eqs. (5) and (6) calculate double covalent bond strength for the feature pair fij. ben� [fi]
[
fj

]
denotes

the double covalent benign bond strength, and mal� [fi]
[
fj

]
denotes the double covalent malicious

bond strength. As discussed, the double covalent bond is created when two pairs of electrons are shared
between the participating atoms, denoted by two dashes (=). We used (�) to denote a double covalent
bond for the feature pair fij. The benign single covalent bond strengths calculated in Eqs. (1) and (2)
are used to calculate double covalent bond strength in Eq. (5), simulating the sharing of two pairs of

4292 CMC, 2024, vol.78, no.3

electrons between the participating atoms. Similarly, the malicious covalent bond strengths calculated
in Eqs. (3) and (4) are used to calculate double covalent bond strengths in Eq. (6).

Tables 5 and 6 depict benign and malicious feature pair matrices representing benign and
malicious double feature pair covalent bond strengths, respectively. Tables 5 and 6 are calculated from
Tables 2 and 3 using Eqs. (1)–(6).

Table 5: Instance of benign feature pair matrix

Benign P1 P2 P3 S1 S2 S3

P1 0 0.7 0 0.7 0.75
P2 0.6 0.75 0 0
P3 0.7 0.6 0.6
S1 0.37 0
S2 0.33
S3

Table 6: Instance of malicious feature pair matrix

Benign P1 P2 P3 S1 S2 S3

P1 0.66 0 0.66 0.66 0.5
P2 0 0.33 0.66 0.66
P3 0.6 0 0
S1 0.33 0.66
S2 0.66
S3

3.4 Detection Phase

The double covalent benign and malicious bond strength calculated in the previous phase is used
to detect an arbitrary application as malicious or benign. The whole process of the detection phase is
depicted in Algorithm 2.

The testing application is first analyzed to form all possible distinct feature pairs. After this, the net
benign and malicious scores are calculated based on the feature pairs formed for the test application.
The net benign and malicious scores are calculated from the double covalent benign and malicious
strengths stored in benign and malicious feature pair matrices, respectively.

Let us take an instance of the test Android application as At, then the net benign score and net
malicious score of the application are calculated with the help of Eqs. (7) and (8), respectively.

netben (At) = netben (At) + ben� [fi]
[
fj

]
(7)

netmal (At) = netmal (At) + mal� [fi]
[
fj

]
(8)

In Eq. (7), the netben (At) represents the net benign score of application At whereas in Eq. (8) the
netmal (At) represents the net malicious score. Both equations sum up the benign and malicious feature

CMC, 2024, vol.78, no.3 4293

pair scores of all the distinct feature pairs, respectively. If netmal (At) score is greater than netben (At) then
we can deduce that the test application At is detected as malicious otherwise benign.

Algorithm 2: Feature pair covalent bond formation
1. Input: benign feature pair matrix having double covalent bond strengths ben� [fn] [fn] and malicious

feature pair matrix having double covalent bond strengths mal� [fn] [fn].
Set of Applications (A1, A2,, An) to be Tested

2. Output: Each of the applications is Malicious or Benign.
3. for each application (At) t : 1 → n
4. netben (At) = 0
5. netmal (At) = 0
6. for each i : 1 → n
7. for each j : i + 1 → n
8. if (f i ∈ At && f j ∈ At)

9. netben (At) = netben (At) + ben� [fi]
[
fj

]

10. netmal (At) = netmal (At) + mal� [fi]
[
fj

]

11. end if
12. end for
13. end for
14. If (netmal (At) > netben (At))

15. Return At as Malicious
16. else
17. Return At as Benign
18. end if
19. end for

4 Results and Discussions

This section reports results obtained from each of the covalent bond pair models. Three types of
detection models are formed with the help of covalent bonds pair: Permissions-permissions, system
calls-system calls, and permissions-system calls.

4.1 Feature Pair Analysis

Table 7 shows the top ten highest-scoring permission pairs based on both malicious and benign
covalent bond strengths between them. The maximum malicious permissions pair is INTERNET
and READ_PHONE_STATE, with the malicious colavent bond strength score of 0.96. This behavior
seems evident because pairing INTERNET and READ_PHONE_STATE permissions in an Android
app may pose privacy and security risks. The INTERNET permission allows access to online
resources, while READ_PHONE_STATE grants access to device details like phone numbers and
network information. These permissions could enable an app to collect and transmit sensitive user data
without consent, potentially indicating malicious intent. Similarly, the reason for other pairs could also
be inferred.

4294 CMC, 2024, vol.78, no.3

Table 7: Top ten highest scoring permissions pair from both malicious and benign perspectives

Malicious Benign

Permissions-Permissions pair Malicious
score

Permissions-Permissions pair Benign
score

INTERNET-
READ_PHONE_STATE

0.96 READ_SYNC_SETTINGS-
WRITE_SETTINGS

0.98

ACCESS_NETWORK_STATE-
INTERNET

0.93 BROADCAST_PACKAGE_
REMOVED-BROADCAST_STICKY

0.96

ACCESS_COARSE_LOCATION-
ACCESS_FINE_LOCATION

0.92 BROADCAST_PACKAGE_
REMOVED-RESTART_PACKAGES

0.84

ACCESS_NETWORK_STATE-
READ_PHONE_STATE

0.92 BIND_WALLPAPERS-BLUETOOTH 0.79

INTERNET-
WRITE_EXTERNAL_STORAGE

0.91 QUERY_ALL_PACKAGES-
WRITE_APN_SETTINGS

0.75

READ_PHONE_STATE-
WRITE_EXTERNAL_STORAGE

0.89 ACCESS_MEDIA_LOCATION-
INTERACT_ACCROSS_PROFILES

0.72

ACCESS_NETWORK_STATE-
WRITE_EXTERNAL_STORAGE

0.88 ACCESS_NETWORK_STATE-
WRITE_EXTERNAL_STORAGE

0.72

ACCESS_NETWORK_STATE-
ACCESS_WIFI_STATE

0.87 INTERNET-READ_PHONE_STATE 0.71

ACCESS_WIFI_STATE-
READ_PHONE_STATE

0.84 INTERNET-
WRITE_EXTERNAL_STORAGE

0.70

ACCESS_WIFI_STATE
–INTERNET

0.82 ACCESS_NETWORK_STATE-
INTERNET

0.70

Table 8 shows system call-system call covalent bond pairs with their malicious and benign score
arranged in descending order of covalent bond strengths. The top pair in this table with the highest
malicious score is “getuid32-ioctl”. The getuid32 system call retrieves the effective user ID of a
process in Linux-based operating systems. On the other hand, the ioctl system call, which stands for
“Input/Output Control,” is employed in Unix-like systems to control devices beyond standard read and
write operations. When used together, these system calls could be leveraged in a potentially malicious
manner. For instance, a malicious program might use getuid32 to ascertain if the current user possesses
administrative privileges. If affirmative, it could then utilize ioctl to manipulate a system device or
resource, potentially resulting in a security breach or compromise.

Table 9 shows system call and permission pair covalent bonds arranged in descending order of
their malicious and benign bond strength score, respectively. One of the top system call and permission
pairs in malicious and benign pairs is clock_gettime and INTERNET. An application may use the
precise timing obtained from clock_gettime with the internet access granted by the INTERNET
permission to perform covert communication. The combination of precise timing and internet access
could allow an application to engage in stealthy activities, making it harder to detect malicious
behavior. The malicious score of this pair is 0.98, while the benign score is 0.90. Hence, its malicious
intent is more in our case than normal intent. Still, one could not rule out that many legitimate

CMC, 2024, vol.78, no.3 4295

applications use these functionalities for legitimate purposes, such as measuring performance or
synchronizing with online services.

Table 8: Top ten highest-scoring system call pair from both malicious and benign perspectives

Malicious Benign

System calls-system calls pair Malicious score System calls-system calls pair Benign score

getuid32-ioctl 0.998 prctl-madvise 0.998
prctl– madvise 0.998 close-SYS_305 0.994
fstat64-SYS_305 0.998 fstat64-SYS_305 0.993
prctl-fstat64 0.997 getuid32-ioctl 0.993
close-SYS_305 0.997 close-fstat64 0.992
prctl-SYS_305 0.996 ioctl-writev 0.992
mmap2-SYS_305 0.996 madvise-mmap2 0.992
mprotect-fstat64 0.996 mprotect-SYS_305 0.991
prctl-mprotect 0.996 prctl-mmap2 0.991
close-mmap2 0.996 read-ioctl 0.991

Table 9: Top ten highest-scoring system call and permission pairs from both malicious and benign
perspectives

Malicious Benign

System call-Permissions pair Malicious score System call-Permissions pair Benign score

clock_gettime-INTERNET 0.98 clock_gettime-INTERNET 0.90
getuid32-INTERNET 0.97 ioctl-INTERNET 0.895
ioctl-INTERNET 0.97 getuid32-INTERNET 0.894
close-INTERNET 0.968 read-INTERNET 0.892
futex-INTERNET 0.968 writev-INTERNET 0.892
fadvise64_64 - INTERNET 0.968 write-INTERNET 0.889
SYS_305-INTERNET 0.967 close-INTERNET 0.877
fstat64-INTERNET 0.967 fadvise64_64-INTERNET 0.877
mprotect-INTERNET 0.966 fstat64-INTERNET 0.876
prctl -INTERNET 0.965 SYS_305-INTERNET 0.875

4.2 Detection Results

Table 10 shows the performance of various detection models. The proposed models are evaluated
on five parameters, i.e., True Positive Rate (TPR), False Positive Rate (FPR), Precision, Accuracy,
and F1-Score. The permissions-permissions model is static as it considers only permission-permission
covalent bond score for detecting Android Malware applications. The system call-system call covalent
bond pair model is dynamic and has better results in the evaluation parameters, which is evident from

4296 CMC, 2024, vol.78, no.3

the fact that dynamic features consider the run time behavior of the application while static feature
does not. Hence, those malicious behavior that are activated at run time uncovers hidden insights that
are helpful in the identification of malicious application. The next model is the permissions–system
call model, a hybrid model in which a covalent bond pair is formed among permissions and system
calls, and their bond strengths are used to detect malicious applications. This model, which is a hybrid,
has even better evaluation parameters than the system call-system call detection model. The apparent
reason seems to be the uncovering of system calls and permissions bonding. The permission requested
by the application is not alone responsible for malicious behavior because benign applications may
also use the same permission. The combination of permission with system calls allows a more detailed
examination of an application’s behavior. Permissions provide a high-level overview of what resources
an app may access, while system calls offer a finer-grained view of actual interactions with the system.
The Permissions-System calls model shown is the best of all. This model is a hybrid model and achieves
an overall accuracy of 97.50%, which is better than both static and dynamic models. The confusion
matrix for the permissions-system call model is given in Table 11.

Table 10: Performance of proposed detection models

Detection model TPR FPR Precision Accuracy F1-Score

Permissions-permissions 92.27% 5.80% 94.98% 93.39% 93.84%
System calls-system calls 95.97% 4.43% 96.06% 95.78% 96.01%
Permissions-system calls 97.77% 2.81% 97.49% 97.50% 97.63%

Table 11: Confusion matrix of proposed detection model

Predicted

Malicious Benign

Actual Malicious True positive False positive
12415 12104 311
Benign False negative True negative
11027 275 10752

4.3 Detection Results on Unknown Samples

We comprehensively evaluate our proposed model on unknown samples. The sample is taken from
the CICAndMal2017 [37] data set. A total of 1800 samples were taken, of which 1000 were malicious,
and 800 were benign. These are the unseen samples as they are in the form of apks. We first installed
these applications in a virtual environment, and then random clicks were done on installed applications
for nearly a minute. The generated system calls are captured with the help of a strace script. The
permissions were extracted from the Android manifest file of each application after unpacking each
application using the apk tool. The observed result shows an accuracy of 96.20%. The details of the
results are represented in Tables 12 and 13.

CMC, 2024, vol.78, no.3 4297

Table 12: Performance of proposed detection models on unknown samples

Detection model TPR FPR Precision Accuracy F1-Score

Permissions-permissions 93.32% 7.57% 94.% 92.88% 93.62%
System calls-system calls 94.30% 5.11% 96% 94.55% 95.14%
Permissions-system calls 95.33% 2.5% 98.% 96.20% 96.64%

Table 13: Confusion matrix of proposed detection model on unknown samples

Predicted

Malicious Benign

Actual Malicious True positive False positive
1000 980 20
Benign False negative True negative
800 48 752

4.4 Comparison with Other Related Works

We comprehensively evaluate the detection results obtained from our proposed method, compar-
ing them with findings from previous studies in the literature focusing on Android malware detection.
We implemented several state-of-the-art techniques on our data set and to facilitate this comparison,
we provide a concise summary in Table 14. Upon examination of these results, it becomes apparent
that our proposed methodology outperforms all the aforementioned related works regarding detection
accuracy, demonstrating its superior performance compared to existing approaches. Moreover, the
data set used by all the approaches was old and outdated. The data set used by us is the latest, and it
chronicles the entire history of Android, covering the years from 2008 to 2020 while also accounting
for the distinct dynamic data sources.

Table 14: Comparison of proposed model with related works

Methodology Approach Features set
used

No. of applications TPR Accuracy

Talha et al. [10] Static Permissions 1853 Benign and 6909
Malicious

86.23% 86.44%

PermPair [11] Static Permissions 5993 benign and 7533
malicious

94.11% 94.54%

Li et al. [38] Static Permissions 5494 malicious & 310,926
benign

91.50% 91.80%

Xiao et al. [39] Dynamic System call 1227 Malicious & 1189
benign

96.55% 97%

(Continued)

4298 CMC, 2024, vol.78, no.3

Table 14 (continued)

Methodology Approach Features set
used

No. of applications TPR Accuracy

Xiao et al. [40] Dynamic System call 3567 Malicious and 3536
Benign

92% 92.60%

Surendran et al. [41] Dynamic System call 1150 Malicious and 1600
Benign

93.20% 93.50%

Guerra-Manzanares
et al. [42]

Dynamic System call 28,343 Malicious and
34,981 Benign

93.60% 94.40%

Guerra-Manzanares
et al. [43]

Static Permissions 4174 Malicious and 37,020
Benign

92.80% 93.50%

Guerra-Manzanares
et al. [44]

Dynamic System call 41,382 Malicious and
36,755 Benign

95.50% 95.90%

Proposed approach Hybrid Permissions and
system call

41,382 Malicious and
36,755 Benign

97.77% 97.50%

4.5 Limitations

In this subsection, we address certain ambiguities in our proposed approach. Specifically, our
model relies on feature pairs to assess applications. Some malware samples with a limited number of
features may go undetected. To bypass detection, attackers may incorporate commonly used features
into the malware, thereby generating a more significant number of ordinary feature pairs. Additionally,
we have observed that when a feature pair appears only once in the malicious samples, and both
individual features have a frequency of one for a specific application, it results in a malicious covalent
bond strength of one. This misrepresents the actual strength of the bond, potentially elevating the
significance of an otherwise insignificant feature pair and leading to misclassification. We plan to
address these limitations by exploring the potential of incorporating additional components like intent
filters, hardware specifications, and API call logs for more efficient detection alongside the existing
focus on permissions and system calls.

5 Conclusion and Future Work

This study established covalent bonds between permissions and system calls to evaluate their
combined impact. We introduced a novel methodology for calculating these pairs’ Covalent Bond
Strength Score, resulting in both malicious and benign scores. These scores were then utilized in our
Android malware detection technique.

We thoroughly compared our proposed model and other advanced detection methods. Our results
indicate that our model outperforms similar state-of-the-art models in performance. In the future, our
research will analyze additional components of the manifest file, such as intent filters and hardware
specifications, to further enhance detection accuracy.

Acknowledgement: Not applicable.

Funding Statement: The authors received no specific funding for this study.

CMC, 2024, vol.78, no.3 4299

Author Contributions: All authors contributed to the study’s conception and design. Material prepa-
ration, data collection and analysis were performed by Rahul Gupta. The first draft of the manuscript
was written by Rahul Gupta and all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Availability of Data and Materials: Data sharing is not applicable to this article as no datasets were
generated.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Faruki et al., “Android security: A survey of issues, malware penetration, and defenses,” IEEE Commun.

Surv. Tutor., vol. 17, no. 2, pp. 998–1022, 2015. doi: 10.1109/COMST.2014.2386139.
[2] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the wild,” in

Proc. 1st ACM Workshop Secur. Privacy Smartphones Mobile Devic. (SPSM’11), New York, NY, USA,
Association for Computing Machinery, 2011, pp. 3–14.

[3] R. Surendran, T. Thomas, and S. Emmanuel, “Detection of malware applications in android smartphones,”
World Scient. Ref. Innov., vol. 1, pp. 211–234, 2018. doi: 10.1142/10209.

[4] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proc. 2001 IEEE Symp. Secur. Privacy,
Oakland, CA, USA, 2001, pp. 156–168.

[5] B. B. H. Kang and A. Srivastava, “Dynamic malware analysis,” in Encycl. Cryptography Security, Cham:
Springer, 2011, pp. 367–368.

[6] G. Fraser and A. Arcuri, “Automated test generation for java generics,” in Int. Conf. Soft. Quality, Springer,
2014, pp. 185–198.

[7] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software,” Network and Distributed System Security Symposium, vol.
5, 2005, pp. 3–4.

[8] R. Zhang, S. Huang, Z. Qi, and H. Guan, “Combining static and dynamic analysis to discover software
vulnerabilities,” in Fifth Int. Conf. Innov. Mobile Internet Serv. Ubiq. Comput. (IMIS), IEEE, 2011, pp.
175–181.

[9] R. Zhang, S. Huang, Z. Qi, and H. Guan, “Static program analysis assisted dynamic taint tracking
for software vulnerability discovery,” Comput. Math. Appl., vol. 63, no. 2, pp. 469–480, 2012. doi:
10.1016/j.camwa.2011.08.001.

[10] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-based Android malware detection
system,” Digital Invest., vol. 13, pp. 1–14, Jun. 2015. doi: 10.1016/j.diin.2015.01.001.

[11] A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android malware detection using permission pairs,”
IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 1968–1982, 2020.

[12] K. Khariwal, J. Singh, and A. Arora, “Ipdroid: Android malware detection using intents and permissions,”
in 2020 Fourth World Conf. Smart Trends in Syst., Security Sustain. (WorldS4), IEEE, 2020, pp. 197–202.

[13] W. Enck et al., “TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones,” ACM Trans. Comput. Syst., vol. 32, no. 2, 2014. doi: 10.1145/2619091.

[14] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning and X. S. Wang, “AppIntent: Analyzing sensitive data
transmission in Android for privacy leakage detection,” in Proc. ACM SIGSAC Conf. on Comput.
Communicati. Secur., 2013, pp. 1043–1054.

[15] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao and M. Conti, “Detecting android malware leveraging text
semantics of network flows,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1096–1109, May 2018.
doi: 10.1109/TIFS.2017.2771228.

https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1142/10209
https://doi.org/10.1016/j.camwa.2011.08.001
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1145/2619091
https://doi.org/10.1109/TIFS.2017.2771228

4300 CMC, 2024, vol.78, no.3

[16] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and efficient behavior-based
Android malware detection and prevention,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 1, pp.
83–97, 2018. doi: 10.1109/TDSC.2016.2536605.

[17] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: A user-oriented behavior-based malware
variants detection system for Android,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 5, pp. 1103–1112,
May 2017. doi: 10.1109/TIFS.2016.2646641.

[18] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time Android application auditing,” in Proc.
IEEE Symp. Security and Privacy, May 2015, pp. 899–914.

[19] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in mobile malware
detection,” Digital Invest., vol. 13, no. 6, pp. 22–37, 2015. doi: 10.1016/j.diin.2015.02.001.

[20] H. Shahriar, M. Islam, and V. Clincy, “Android malware detection using permission analysis,” in Southeast
Conf. 2017, IEEE, 2017, pp. 1–6.

[21] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and explainable
detection of android malware in your pocket,” in Proc. 2014 Netw. Distributed Syst. Secur. Symp., 2014.

[22] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discriminative model for android malware detection
with decompiled source code,” IEEE Trans. Dependable Secure Comput., vol. 12, no. 4, pp. 400–412, 2015.
doi: 10.1109/TDSC.2014.2355839.

[23] J. Qiu et al., “Cyber code intelligence for android malware detection,” IEEE Trans. Cybern., vol. 53, no. 1,
pp. 617–627, Jan. 2023. doi: 10.1109/TCYB.2022.3164625.

[24] M. İbrahim, B. Issa, and M. B. Jasser, “A method for automatic android malware detection based on static
analysis and deep learning,” IEEE Access, vol. 10, pp. 117334–117352, 2022.

[25] W. Yu, H. Zhang, L. Ge, and R. Hardy, “On behavior-based detection of malware on android platform,”
in 2013 IEEE Global Commun. Conf., IEEE, 2013, pp. 814–819.

[26] M. Dimjaševic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of android malware detection based
on system calls,” in Proc. 2016 ACM Int. Workshop Secur. Priv. Anal., New York, NY, USA, ACM, 2016,
pp. 1–8.

[27] I. Burguera, U. Zurutuza, and S. N. Tehrani, “Crowdroid: Behavior-based malware detection system for
android,” in Proc. 1st ACM Workshop on Secur. Priv. Smartphones and Mobile Devices, ACM, 2011, pp.
15–26.

[28] A. Amamra, J. M. Robert, A. Abraham, and C. Talhi, “Generative versus discriminative classifiers for
android anomaly-based detection system using system calls filtering and abstraction process,” Secur.
Commun. Netw., vol. 9, no. 16, pp. 3483–3495, 2016. doi: 10.1002/sec.1555.

[29] T. Lu and J. Wang, “F2DC: Android malware classification based on raw traffic and neural networks,”
Comput. Netw., vol. 217, no. 4, pp. 109320, 2022. doi: 10.1016/j.comnet.2022.109320.

[30] M. S. Hossain et al., “Android ransomware detection from traffic analysis using metaheuristic feature
selection,” IEEE Access, vol. 10, pp. 128754–128763, 2022.

[31] A. Arora, and S. K. Peddoju, “Ntpdroid: A hybrid android malware detector using network traffic and
system permissions,” in 2018 17th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun./12th IEEE Int.
Conf.Big Data Sci. Eng. (Trust-Com/BigDataSE), IEEE, 2018, pp. 808–813.

[32] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini, and E. de Cristo-faro, “A family
of droids-android malware detection via behavioral modeling: Static vs dynamic analysis,” in 2018 16th
Annual Conf. Privacy, Secur. and Trust (PST), IEEE, 2018, pp. 1–10.

[33] T. Blasing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak, “An android application sandbox
system for suspicious software detection,” in 2010 5th Int. Conf. Malicious and Unwanted Soft. (MAL-
WARE 2010), IEEE, 2010, pp. 55–62.

[34] A. I. Ali-Gombe, B. Saltaformaggio, J. Ramanujam, D. Xu, and G. G. Richard III, “Toward a more
dependable hybrid analysis of android malware using aspect-oriented programming,” Comput. Secur., vol.
73, no. 1, pp. 235–248, 2018. doi: 10.1016/j.cose.2017.11.006.

https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/TIFS.2016.2646641
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1109/TDSC.2014.2355839
https://doi.org/10.1109/TCYB.2022.3164625
https://doi.org/10.1002/sec.1555
https://doi.org/10.1016/j.comnet.2022.109320
https://doi.org/10.1016/j.cose.2017.11.006

CMC, 2024, vol.78, no.3 4301

[35] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “KronoDroid: Time-based hybrid-featured dataset for
effective android malware detection and characterization,” Comput. Secur., vol. 110, pp. 102399, 2021. doi:
10.1016/j.cose.2021.102399.

[36] J. E. House and K. A. House, Descriptive Inorganic Chemistry, 3rd ed. Academic Press, 2016. doi:
10.1016/C2014-0-02460-4

[37] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward developing a systematic approach
to generate benchmark android malware datasets and classification,” in Proc. 52nd IEEE Int. Carnahan
Conf. Secur. Technol. (ICCST), Montreal, Quebec, Canada, 2018.

[38] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye, “Significant permission identification for machine-
learning-based android malware detection,” IEEE Trans. Industr. Inform., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018. doi: 10.1109/TII.2017.2789219.

[39] X. Xiao, Z. Wang, Q. Li, S. Xia, and Y. Jiang, “Back-propagation neural network on Markov chains from
system call sequences: A new approach for detecting Android malware with system call sequences,” IET
Inf. Secur., vol. 11, no. 1, pp. 8–15, 2017. doi: 10.1049/iet-ifs.2015.0211.

[40] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android malware detection based on
system call sequences and LSTM,” Multimed. Tools Appl., vol. 78, no. 4, pp. 3979–3999, 2019. doi:
10.1007/s11042-017-5104-0.

[41] R. Surendran, T. Thomas, and S. Emmanuel, “On existence of common malicious system call codes
in android malware families,” IEEE Trans. Reliab., vol. 70, no. 1, pp. 248–260, Mar. 2021. doi:
10.1109/TR.2020.2982537.

[42] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Concept drift and cross-device behavior: Challenges
and implications for effective android malware detection,” Comput. Secur., vol. 120, no. 10, pp. 102757,
2022. doi: 10.1016/j.cose.2022.102757.

[43] A. Guerra-Manzanares, H. Bahsi, and M. Luckner, “Leveraging the first line of defense: A study on the
evolution and usage of android security permissions for enhanced android malware detection,” J. Comput.
Virol. Hacking Tech., vol. 19, no. 1, pp. 65–96, 2023. doi: 10.1007/s11416-022-00432-3.

[44] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware concept drift using system
calls: Detection, characterization and challenges,” Expert Syst. Appl., vol. 206, pp. 117–200, 2022. doi:
10.1016/j.eswa.2022.117200.

https://doi.org/10.1016/j.cose.2021.102399
https://doi.org/10.1016/C2014-0-02460-4
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1049/iet-ifs.2015.0211
https://doi.org/10.1007/s11042-017-5104-0
https://doi.org/10.1109/TR.2020.2982537
https://doi.org/10.1016/j.cose.2022.102757
https://doi.org/10.1007/s11416-022-00432-3
https://doi.org/10.1016/j.eswa.2022.117200

	Covalent Bond Based Android Malware Detection Using Permission and System Call Pairs
	1 Introduction
	2 Related Work
	3 The Proposed Covalent Bond Pair Detection
	4 Results and Discussions
	5 Conclusion and Future Work
	References

