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ABSTRACT

The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant
challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random
missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the
RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional
autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this
paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common
missing patterns in RTT-AT is proposed. Our model consists of two probabilistic sparse diagonal masking self-
attention (PSDMSA) units and a weight fusion unit. It learns missing values by combining the representations
outputted by the two units, aiming to minimize the difference between the missing values and their actual
values. The PSDMSA units effectively capture temporal dependencies and attribute correlations between time
steps, improving imputation quality. The weight fusion unit automatically updates the weights of the output
representations from the two units to obtain a more accurate final representation. The experimental results
indicate that, despite varying missing rates in the two missing patterns, our model consistently outperforms other
methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing
entries. Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent
Imputation for Time Series (BRITS), our proposed model reduces mean absolute error (MAE) by 31%∼50%.
Additionally, the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a
standard Transformer model when trained on the same dataset. Finally, the findings from the ablation experiments
demonstrate that the PSDMSA, the weight fusion unit, cascade network design, and imputation loss enhance
imputation performance and confirm the efficacy of our design.
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1 Introduction

In combat situational awareness and understanding, the air battlefield has been the focal point of
attention. The aerial target is a crucial element in the air battlefield situation. The radar early warning
system detects and tracks targets, generating and storing abundant time-series track data in the
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information processing center encompassing a wealth of general information and latent knowledge.
Currently, data mining on radar-derived time-series tracks of aerial targets (RTT-AT) has provided
favorable support in target behavior pattern analysis [1–3], maneuver identification [4–6], activity and
intention discrimination [7–9], abnormal behavior detection [10–13], and threat estimation [14–17].

However, missing values are pervasive in RTT-AT due to radar terminal malfunction, packet loss
during data transmission, and storage loss [18]. These missing values undermine the completeness and
balance, leading to degradation in the performance of data-driven learning tasks. Therefore, imputing
sensible values for missing data points in RTT-AT is a crucial fundamental task.

Intuitively, the imputation of missing values RTT-AT can be formulated as a problem of multi-
variate time series imputation (MTSI), which involves estimating missing values in a time series with
multiple attributes. In the domain of MTSI, utilizing the statistical properties of either a single sample
or the entire dataset to impute missing values is a highly classical approach, including techniques
such as mean imputation, median imputation, and more. Extensive research has demonstrated that
this method can lead to considerable bias [19]. Moreover, various in-sample methods are commonly
employed for missing value imputation, including nearest-neighbor-based methods [20,21] and matrix-
decomposition-based methods [22,23]. These methods rely solely on the information available within
the given sample, but ignoring information from other instances within the set may result in per-
formance limitations. Cross-sample methods, such as expectation-maximization-based [24,25] and
constraint-based methods [26,27], aim to address this limitation by leveraging information from
multiple samples within the dataset. Expectation-maximization-based methods can be sensitive to
initial parameter values, model assumptions, and outliers. Additionally, the computational complexity
is high due to the need for multiple iterations. Constraint-based methods are challenging to define, have
a high risk of failure, and are computationally expensive. Overall, the majority of traditional methods
outlined above necessitate assumptions concerning missing mechanisms and distribution, and these
assumptions can lead to bias.

In recent years, data-driven deep learning techniques have garnered significant attention and
have extensively been applied in various domains, showcasing their robust capabilities and vast
potential. Specifically, these techniques have demonstrated remarkable achievements in computer
vision, natural language processing, bioinformatics, and beyond [28–31]. Drawing inspiration from
these groundbreaking works, numerous scholars within the realm of MTSI have embraced deep
learning techniques to learn and harness the plenary sample information comprehensively and aimed
at achieving superior imputation performance. Notably, a preponderance of these pioneering efforts
is rooted in the utilization of gated recurrent neural networks (GRNNs). Recurrent Neural Networks
(RNNs) occupy a pivotal position when it comes to the processing of sequence data. Their unique
structure endows them with the remarkable capability to capture dependencies within sequences.
However, vanilla RNNs are susceptible to the pernicious problems of gradient vanishing and long-term
memory failure, which can severely undermine their performance. The GRNNs represent an enhance-
ment over the vanilla RNN architecture. It introduces a gating unit integrated within the network’s
structure, which endows the model with greater control over the influence of past information on the
current output. This added level of control facilitates the capture of time dependencies, spanning both
short-term and long-term durations. Furthermore, the GRNN can also capture interdependencies
among different attributes within a multivariate series [32].

GRNN-based imputation methods can be categorized into two distinct classes: unidirectional
GRNN-based models and bidirectional GRNN-based imputation models [33–36]. The former
employs a strategy that predicts the next value in the sequence based on the preceding observations.
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This approach heavily relies on the contextual relevance of the missing value’s past moments to predict
the missing value. On the other hand, bidirectional GRNNs exhibit superior performance by utilizing
both forward and backward hidden layers. This architecture enables the extraction of the long-range
context dependencies from both past and future time steps of missing values. By leveraging temporal
dependencies in both directions, bidirectional GRNNs outperform their unidirectional counterparts.
Multi-directional Recurrent Neural Networks (M-RNN) and Bidirectional Recurrent Imputation
for Time Series (BRITS) are the most representative bidirectional GRNN methods [35,36]. The
former treats missing values as constants, while the latter treats missing values as variables with
the RNN graph. Additionally, M-RNN does not consider correlations among attributes, whereas
BRITS does. All the aforementioned GRNN-based imputation methods are subject to the limitations
of recursive networks, which involve sequential operations on time steps that can be time-consuming
and memory-intensive. Moreover, their capacity to capture long-term dependencies decreases as the
length of the sequence increases. Additionally, most of these models are autoregressive, which makes
them susceptible to the compound error problem.

The typical missing patterns that occurred in RTT-AT are referred as random missing at altitude
attribute (RM-ALT) and random missing at all attributes (RM-ALL). Due to the difference in the
generation mechanism, the two differ significantly in the distribution of missing values from the
random missing (RM) mode which is the concern of general time series imputation works. Specifically,
with the RM pattern, missing values occur randomly at any time in any attribute; in RM_ALT, missing
values occur randomly at any time, specific to the altitude attribute; and in RM-ALL, missing values
appear randomly at any time, resulting in all attributes being unobserved at that moment.

Hence, when the traditional imputation methods designed for addressing RM are directly applied
to tackle the two missing patterns in RTT-AT, their underlying assumptions become inapplicable,
potentially leading to increased data bias. In addition, conventional deep learning imputation methods
based on GRNN are vulnerable to cumulative errors and long-term dependency loss problems
due to the network structure, leading to performance bottlenecks. The self-attention mechanism,
being data-driven and autoregressive, can address the aforementioned issues. This paper proposes a
model to impute missing values of RTT-AT based on an improved self-attention-based network. The
contributions include:

(1) This paper posits RTT-AT data imputation as a problem of imputing multivariate time
series. A novel non-autoregressive imputation model to minimize imputation loss is proposed to
tackle the typical missing patterns. The imputation loss enables the training of the non-autoregressive
model, facilitating its focus on learning the missing properties rather than entirely reconstructing the
observations. Non-autoregressive models with minimizing imputation loss as the learning objective
perform significantly better than models (whether autoregressive or non-autoregressive) with mini-
mizing reconstruction loss as the learning objective.

(2) The designed non-autoregressive imputation model comprises two cascades of probabilistic
sparse diagonally masking self-attention (PSDMSA) units and a weight fusion unit. In PSDMSA, the
probabilistic sparsity is introduced to emphasize the importance of prominent dot-product pairs and
simultaneously decrease computational complexity. Moreover, the diagonal masking ensures more
significant attention to the temporal dependencies and attribute correlations between time steps.
The fusion unit can automatically learn the weights of two units’ outputs by considering temporal
and attribute correlations and missing information to obtain a better representation. The design
enables enhanced capability to capture missing patterns and improved imputation quality with fewer
parameters and reduced training time costs.
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(3) A series of comparison and ablation experiments are conducted to evaluate the effectiveness
of our proposed model. The experimental findings indicate that the method outperforms other
approaches in imputing missing values of RTT-AT regardless of variations of missing rate. Addition-
ally, while the method’s performance decreases as the missing rate increases, this decrease is relatively
limited. The ablation experiments demonstrate the efficiency and effectiveness. The structure of the
following sections is as follows: Section 2 presents an overview of the preliminary, Section 3 introduces
the detail of the model proposed, whereas Sections 4 and 5, respectively, present the experiments and
conclusion.

2 Preliminary

In this section, the definitions and formal descriptions of multivariate time series, time series
missing value imputation, related works on time series missing value imputation and typical missing
patterns in RTT-AT are presented in Sections 2.1, 2.2, 2.3, and 2.4, respectively.

2.1 Multivariate Time Series

A time series is a collection of values obtained from a period of continuous time measurements.
Formally, a collection of timestamps T = (t0, t1, . . . , tn) and a time series X = {

xt0
, xt1

, . . . , xtn

}T

are first defined, X consists of n observations; Xti =
{

x0
ti
, x1

ti
, . . . , xd

ti

}
, the observation of X at the

timestamp ti, contains d attributes; when d > 1, X is a multivariate time series (MTS). In this paper,
the elements of the MTS are real numbers.

2.2 Time Series Missing Value Imputation

The binary missing mask matrix M = {
mt0

, mt1
, . . . , mtn

}
is defined to represent the locations of

missing values in MTS X. It contains n timestamps and d attributes, and mti = (m1
ti
, m2

ti ,...,
md

ti
) denotes

the mask vector corresponding to xti , and

mj
ti

=
{
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1,

xj
ti

is missing value
xj

ti
is observed value (1)

The aim of time series missing value imputation is to employ the imputation model to substitute
every missing component of X with a justifiable value, ultimately achieving a complete time series X̂.

2.3 Related Works on Time Series Missing Value Imputation

In general, based on the difference in the number of samples used, time series missing value
imputation methods can be divided into two types: in-sample methods and cross-sample methods.
The former uses information from the current sample only, while the latter uses information from the
current sample and other samples during the training or testing phase.

2.3.1 In-Sample Methods
Statistical-Characteristic-Based Methods

Imputation methods based on statistical characteristics are simple and easy to apply. The most
commonly used statistical characteristics are the mean value [37,38] and median value [39]. In the mean
imputation approach, missing values are filled in by average of all the observed values of the attribute
they are in. On the other hand, the median imputation utilizes the median value of observations. One
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salient issue with statistical-characteristic-based methods is that when the missing values are large in
number, all those missing values are replaced by the same value. This can result in significant changes
to the distribution’s shape. Simulation studies have demonstrated that mean imputation and median
imputation yield highly biased parameter estimates [40].

Matrix-Decomposition-Based Methods

The matrix-decomposition-based imputation methods use a matrix/tensor approach to imputing
missing values in multivariate time series. Literature [23] proposes a multivariate time series imputation
method based on autoregressive matrix decomposition to solve the problem of temporal and spatial
series data reconstruction in structural health monitoring of civil engineering applications. Literature
[22] proposes an imputation model for missing values in traffic congestion time series based on joint
matrix decomposition. The model estimates the missing values using temporal and spatial information
while jointly modeling the characteristics of traffic congestion patterns. Literature [41] proposes a low-
rank autoregressive tensor decomposition framework for solving the problem of missing values in
spatial-temporal traffic time series. Experimental results demonstrate its effectiveness on several real-
world traffic datasets and multiple missing scenarios. The approaches based on matrix decomposition
have low computational complexity and can handle large datasets. However, they are typically only
suitable for static data and rely on a limited amount of information, necessitating strong assumptions
such as low rank [36].

Nearest-Neighbor-Based Methods

Nearest-neighbor-based methods estimate missing values by finding the nearest neighbors (deter-
mined by a set distance criterion). The method involves finding the nearest neighbors of the missing
value through other attributes and then updating the missing value with the average of these nearest
neighbors. Among the available methods, considering local similarity, some use the last observed
value instead of the missing value [42]. Literature [21] analyses the use of k-nearest neighbor as
the imputation method. Results indicate that missing data imputation based on k-nearest neighbor
outperforms the embedding methods used in C4.5 and CN2. Literature [20] proposes an imputation
algorithm that considers a fixed set of nearest neighbors. Experiments on datasets with real world
missing attribute values demonstrate its effectiveness [20]. Since the missing values are estimated
from actual observations, the nearest-neighbor-based imputation methods avoid distortion of the
distribution. However, applying these methods to large datasets can be time-consuming. Additionally,
the choice of K value can significantly impact the results.

2.3.2 Cross-Sample Methods
Expectation-Maximization-Based Methods

The expectation maximization (EM) algorithm consists of two steps. In the E-step, the expectation
of the complete data sufficient statistics is calculated based on the observations and current parameter
estimates. In the M-step, the parameter estimates are updated using the maximum likelihood method.
The algorithm iterates until the convergence criteria are met. Based on the final parameter estimates
and observations, the imputation of each missing value can be calculated. Literature [25] investigated
and compared the imputation performance of the combination of expectation maximization and
genetic algorithms under several different types of datasets. The study showed that the EM algorithm
performs well when there is little correlation between the attributes. Literature [24] proposes a method
for imputing missing values in multivariate time series using the EM algorithm under the assumption
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of a normal distribution. Experimental results show good imputation performance when the missing
rate is less than 5%. However, when the missing rate is greater than 10%, the performance declines
significantly. The EM imputation algorithm estimates the missing values based on actual observations,
which can avoid distortion in the distribution. However, EM also has the following problems: First,
the choice of initial values, model assumptions, and outliers can have a large impact on the results.
Meanwhile, the EM algorithm is computationally intensive due to the need for multiple iterations.
Additionally, the model run may encounter problems if any other sample is not closely related to the
entire dataset’s manner [43].

Constraint-Based Methods

Constraint-based methods are used to discover rules in the dataset and estimate missing values.
In time series imputation, similarity rules, such as differential dependence or comparable dependence,
are commonly used to study the distance and similarity between timestamps as well as values [44,45].
Literature [27] proposes to extensively enrich the similarity neighbors through the tolerance of
similarity rules to small variations, which leads to higher imputation accuracy than the conventional
nearest-neighbor-based method. Literature [26] proposes a missing value imputation algorithm for
streaming data based on data speed change constraints. Experiments on real data show its effectiveness.
More high-level constraints can be set through a graph structure [46]. These constraints are commonly
used to impute the qualitative values of events in a time series. Constraint-based methods are effective
in cases where the data within the sample is highly continuous or when certain patterns are satisfied.
However, multivariate time series typically do not conform to these simple rules, and more intricate
rules tend to apply only to data in a specific domain [47].

Machine-Learning-Based Methods

Many researchers have applied machine learning methods to time series missing value imputation,
inspired by their outstanding performance in time series identification and prediction. Literature
[48] utilizes decision trees to identify horizontal segments of the dataset and then imputes missing
values using similarity and attribute correlations. The experimental results show that the technique
has significant advantages based on statistical analyses such as confidence intervals. Literature [49]
proposes two imputation methods: a single method based on a multilayer perceptron (MLP) trained
using different learning rules, and a multiple method based on a combination of a MLP and the k-
nearest neighbors technique. The results, considering different performance metrics, show that both
methods improve the level of automation and data quality compared to the traditional one. Literature
[50] assessed the imputation performance of different random forest (RF) algorithms using numerous
datasets under various missing data regimes. The results indicate that RF is generally robust, and its
performance improves with increasing attribute relevance. Moreover, the performance remains good
even at medium-to-high level of missingness. Most machine-learning-based imputation methods have
good generality and scalability, but they may not be able to extract deeper features during computation
due to algorithmic limitations.

Deep-Learning-Based Methods

Recently, deep learning techniques that can mine deep hidden features have been utilized for time
series missing value imputation. Recurrent neural networks are commonly used for these methods due
to their ability to handle sequential information. Currently, the two most representative methods are
M-RNN and BRITS. M-RNN is a multinomial recurrent neural network that imputes within data
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streams and estimates between data streams. Experimental results on five real world medical datasets
show that M-RNN significantly improves the estimate quality of missing values and performs robustly
[35]. BRITS learns the missing values of the bidirectional recursive dynamical system without making
any assumptions. The estimates are treated as variables of the RNN graph and can be efficiently
updated in backpropagation. Experimental results on three real-world datasets from different domains
show that the method effectively improves the performance of imputation, as well as downstream
classification and regression [36]. The structure of RNNs makes them time-consuming and memory-
intensive. Additionally, the autoregressive nature of the model negatively affects the imputation results
due to compound errors. Some researchers have proposed the use of generative adversarial networks
(GANs) for time series imputation. However, it is important to note that the majority of GAN-based
methods still rely on RNNs [51–53]. These methods cannot eliminate certain drawbacks of RNN-
based methods. Additionally, GAN-based models are challenging to train, and GANs suffer from
non-convergence and pattern collapse due to their learning objective [54].

2.4 Typical Missing Patterns in RTT-AT

According to Little and Rubin’s definition, there are three types of missing generation mechanisms
in MTS [35]:

1. Missing Completely at Random (MCAR), where the probability of a target attribute being
missing is not influenced by any observed and unobserved attributes, in simpler terms; the missingness
occurs randomly.

2. Missing at Random (MAR), where the probability of missing the target attribute is related to
the observed attributes but not the unobserved variables.

3. Missing not at Random (MNAR) refers to scenarios where the likelihood of a target attribute
being missing is connected to unobserved attributes, indicating a non-random characteristic in the
missingness.

Moreover, attributes refer to the characteristics or features of a MTS. When all the missing values
pertain to the same attribute, the missing is called single-valued missing (SM). Furthermore, if the
missing values belong to different attributes, it is called arbitrary missing (AM).

This paper centered on RTT-AT acquired and stored by early warning detection radar terminals.
Detection radar can be divided into height finder radar, two-dimensional radar, and three-dimensional
radar based on the number of dimensions in which targets’ position information can be detected.
The two-dimensional radar can determine aerial targets’ bearing and distance while collaborating
with the height finder radar to identify aerial targets and attain their bearing, distance, and altitude.
The three-dimensional radar can simultaneously acquire aerial targets’ bearing, distance, and altitude
information. While the three-dimensional radar offers remarkable functional integration and high-
performance capabilities, it comes at a significant cost. Conversely, the cheap and easy-to-operate two-
dimensional radar and the height finder radar remain the most extensively employed in early warning
and detection. Therefore, the scenario of coordinated detection by the two-dimensional radar and
the height finder radar is considered, where the two-dimensional radar typically acquires the target’s
azimuth and distance information initially, while the height finder radar obtains the altitude data.
After undergoing pre-processing operations such as coordinate transformation, the radar-derived
trajectory data has three attributes: longitude, latitude, and altitude. In this cooperative working mode,
the following two typical missing patterns are considered, as shown in Fig. 1: (1) random missing at
altitude attribute (RM-ALT) caused by malfunction of the height finder radar, operator setting errors,
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etc.; (2) random missing at all attributes (RM-ALL) caused by malfunction of the two-dimensional
radar, communication loss, etc.

Random Missing

RM_ALT

RM_ALL

Time

Attribute Missing value

Observed value

Figure 1: The distribution of three missing patterns

The missing pattern typically addressed by general time series imputation methods is random
missing (RM), in which the missing values occur randomly and are uncorrelated among all attributes.
Nevertheless, the two missing patterns in RTT-AT exhibit distinct characteristics from RM. In
RM_ALT, the missing values occur randomly only at any moment in the altitude attribute and not
in the other attributes. Additionally, in RM_ALL, the missing values occur randomly at any moment,
and missingness with missingness in the altitude dimension is correlated with missingness in both
the other dimensions. Furthermore, when there are missing values, the values of all attributes at that
moment in time are unobserved. A summary of the above three modes is shown in Table 1, and Fig. 1
shows the differences in the distribution of the three missing patterns. In Fig. 1, each row denotes an
attribute of the track, and each column denotes the values at a time step. The orange squares denote
observed values in the track data, while the light blue ones represent missing values.

Table 1: Missing patterns

Missing pattern Missing mechanism Missing distribution

RM MCAR AM
RM-ALT MCAR SM
RM-ALL MNAR AM

3 Methodology

The methodology consists of two parts: (1) the missing value imputation workflows presented in
Section 3.1 and (2) the network based on PSDMSA presented in Section 3.2.
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3.1 Missing Value Imputation Workflows

The missing value imputation workflows for RTT-AT are shown in Fig. 2, which contains two
stages, data processing and imputation model learning.

Raw Data

Train Dataset

Model Bulider

Vali Dataset Imputation Model Imputation Results

Test Dataset
Trained Imputation 

Model
Final Imputation 

Results

Data Processing

Evaluate

Imputation Model Learning

Train Dataset
(Raw)

Vali Dataset
(Raw)

Test Dataset
(Raw)

Standardization Standardization Standardization

Slicing Slicing Slicing

Artificially 
Masking

Artificially 
Masking

Artificially 
Masking

Train Dataset Vali Dataset Test Dataset

Xtrain Xvali Xtest

Figure 2: Missing value imputation workflows

During the data processing phase, the initial step involves partitioning the raw multivariate time-
series radar track data into dedicated training, validation, and testing sets according to a predefined
split ratio. Subsequently, a standardization operation is executed on the data within the training,
validation, and testing subsets. This step is crucial as it eliminates disparities in measurement units
and scales across different attributes, ultimately improving the model’s accuracy in filling missing
values. Moreover, standardizing the data also improves the model’s convergence properties, reducing
potential oscillations caused by disparities in data scales during the optimization process. The process
of standardization can be represented as follows:

xSt
i,j,k = xi,j,k − xmin

j

xmax
j − xmin

j

(2)

In Eq. (2), xi,j,k represents raw values for the k-th sample under the j-th class of attributes, at the
i-th sampling point, xmin

j and xmax
j represent smallest and largest values, respectively, observed in the

j-th attribute dimensions across all samples within the training set, xSt
i,j,k represents standardized data.

Due to their vast and variable nature in length, radar-derived track time series present a challenge
for effective processing using deep learning models. A methodological approach is adopted to address
this issue. Specifically, a non-interlaced sliding window of identical length is utilized to segment the
track data. This segmentation ensures that the resulting sliced dataset exhibits uniformity in sample
length, enhancing its amenability to deep learning-based processing. For visual clarification, the
precise operational procedure of this slicing method is graphically elucidated in Fig. 3.
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…

Time

Attribute

Figure 3: Fixed-length sliding window slicing process

Subsequently, observations are randomly masked to generate incomplete samples with missing
values in conformance with the predetermined proportion of missingness. Additionally, a correspond-
ing mask matrix is produced for these missing values according to Eq. (1). Together, the complete
samples, incomplete samples, and the mask matrix compose a comprehensive dataset that serves as
the foundation for imputation model learning and performance evaluation.

During the imputation model learning phase, the work addresses the challenge of imputing
missing values in RTT-AT. This is achieved by treating it as a supervised learning problem, where
we aim to learn relationships between observed data points to minimize the loss between missing
values and corresponding predicted values and capture missing patterns. The training set plays a
crucial role in developing the imputation model, calculating loss, and updating parameters through
an optimization process guided by a specific loss function. Meanwhile, the validation set serves a dual
purpose: fine-tuning the hyper-parameters of the model and evaluating its initial performance and
effectiveness. This provides valuable insights into the model’s potential performance. Following the
completion of training and learning, the test set samples are utilized to comprehensively evaluate the
trained model’s imputation capabilities and generalizability, employing relevant evaluation metrics to
quantify its performance.

To delve into more specific details, let us examine the notation and learning objective used in our
imputation model. The unaltered complete sample before artificial masking as X and the resulting
incomplete sample after the introduction of artificial masking as X input. In Xinput, missing values are
filled with zeroes due to computational requirements and ease of model handling. Correspondingly,
M input represents the mask matrix indicating the locations of missing values about X input. The input
matrix for the imputation model is derived by concatenating X input with M input, and the model’s output
is the predicted completed sample, denoted as X final, where the missing values have been aptly filled.
The learning objective of the model is to minimize the Mean Absolute Error (MAE) between the actual
missing values and their predicted counterparts, which can consciously direct the imputation model
to “predict” the missing values precisely and to learn the missingness pattern better. It is named as
imputation loss (IL). Eqs. (3) and (4) give the expression for the IL:

LOSSMAE (output, target, mask) =
∑D

d=1

∑T

t=1 |(output − target) � mask|d
t∑D

d=1

∑T

t=1 maskd
t

(3)

IL = LOSSMAE

(
X final, X,

(
1 − M input

))
(4)

where D represents the number of attributes and T represents the number of time steps. � represents
element-wise product.
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3.2 The PSDMSA-Based Imputation Network

The network designed comprises two cascaded PSDMSA units and a weight fusion unit, as
depicted in Fig. 4. This section will detail the functions and structures of each of these units.
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Figure 4: The PSDMSA-based network

3.2.1 PSDMSA

The vanilla self-attention mechanism was initially proposed by Vaswani and has subsequently
found extensive application in natural language processing, computer vision, and sequence modeling
[55]. Precisely, for a given sequence x ∈ R

T×dmodel , it is mapped into three matrices: Q, K , and V:

Q = xWQ, K = xWK , V = xWV (5)

where WQ ∈ R
dmodel×dk , WK ∈ R

dmodel×dk , WV ∈ R
dmodel×dv represent parameter matrices for linear

transformations. Q, K , and V dimensions are dk, dk and dv. Then, the attention map is acquired through
the computation of the scaled dot-product between Q and K , and a nonlinear function Softmax is
utilized to obtain the attention weight A. At final, A and V are multiplied directly to get output.
Eq. (6) shows the process:

A (Q, K , V) = Softmax
(

QKT

√
dk

)
V (6)

Softmax(zi) = ezi∑C

c=1 ezc
(7)
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Due to vanilla self-attention’s long-tailed distribution structure, dot-product operations on queries
and keys show that most dot-product pairs have a limited contribution, and only a few pairs
have a dominant role. Therefore, to emphasize the importance of prominent dot-product pairs and
simultaneously decrease computational complexity, the probabilistic sparsity is introduced into the
vanilla self-attention mechanism of the imputation model [56]. Furthermore, the negative infinity
values are assigned to the diagonal position of the probabilistic-sparse attention map to ensure greater
attention to the temporal dependencies and feature correlations between time steps. This improved self-
attention mechanism is referred to as probabilistic sparse diagonal masking self-attention (PSDMSA),
as shown in Fig. 5:
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Figure 5: The PSDMSA

In Fig. 5, the rectangle in the top right corner illustrates the vanilla attention map. The green circle
denotes a notable correlation between the query and the key at this location. In contrast, the blue circle
signifies no significant correlation. PSDMSA takes Q, K , and V as inputs consistent with the vanilla
self-attention mechanism. The distinction lies in the fact that:

(1) PSDMSA evaluates the importance of queries based on the Kullback-Leibler divergence before
performing the dot-product operation and selects only the top-u essential queries for the subsequent
operation. The remaining queries are directly assigned to the mean value, thus effectively reducing the
number of dot-product calculations.
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(2) The elements at the diagonal of the attention map are set to negative infinity (set to −1 × 109

in practice).

The specific process is shown in Table 2. The dimension of the PSDMSA output is equal to the
output of the vanilla self-attention mechanism. However, PSDMSA samples only u queries to compute
the attention score. In addition, the diagonal masking operation causes the output of PSDMSA to have
a value of 0 for the elements on the diagonal position.

Table 2: The PSDMSA mechanism

Algorithm PSDMSA

Input: Tensor Q ∈ R
T×dk , K ∈ R

T×dk , V ∈ R
T×dv , dk = dv

Output: PSDMSA feature map S ∈ R
T×T

1: print set importance factor c, get u = c ln (T), U = c ln (T)

2: set the sample scores S = QK
T

3: compute sparsity score E = max
(

S
)

− mean
(

S
)

by row

4: set top-u queries under E as Q, record the row indices of the selected queries in Q, denote it
as {ind1, ind2, . . . , indu}

5: compute F = QKT
/
√

T
6: for i in 1 to u; do
7: update F i,indi = −∞
8: end for u
9: set S1 = softmax(F)V
10: set S0 = mean (V)

11: set PSDMSA feature map S = {S1, S0} by their original order of rows accordingly

Subsequently, to enhance information extraction efficiency, PSDMSA is expanded to multi-head
PSDMSA:

Multi − head PSDMSA (x) = Concat (head1, head2, . . . , headi, . . . , headh) (8)

where headi = PSDMSA (Q, K , V), h denotes the number of heads, and Concat represents a
concatenating operation.

3.2.2 Positional Embedding

In the initial Transformer design, temporal order was not considered. Vaswani implemented
positional embedding to provide positional information to the input vector to the Transformer [55].
Positional embedding is expressed as:

pe(pos,2i) = sin
(
pos/

(
100002i/dmodel

))
(9)

pe(pos,2i+1) = cos
(
pos/

(
100002i/dmodel

))
(10)

where pos denotes location information for each moment, dmodel denotes the dimension of the output
of the first linear layer, and i is the dimension.
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3.2.3 Feed-Forward Network

The feed-forward network consists of two cascaded fully connected layers and a ReLu function
as shown in Eq. (11):

FeedForward (x) = W 2 max (0, W 1x + b1) + b2 (11)

where W 1 ∈ R
dmodel×dhidden , b1 ∈ R

dhidden , W 2 ∈ R
dhidden×dmodel and b2 ∈ R

dmodel .

3.2.4 The First Multi-Head PSDMSA Unit

e = [
Concat

(
X input, M input

)
W e + be] + pe, W e ∈ R

2D×dmodel , be ∈ R
dmodel (12)

z = {Feed Forward (Multi − head PSDMSA (e))}N (13)

X1
output = zW z + bz, W z ∈ R

dmodel×D, bz ∈ R
D (14)

X1
imputed = M input � X input +

(
1 − M input

) � X1
output (15)

In the first unit, as shown in Eq. (12), the input feature vector X input and missing value mask vector
M input are concatenated as the actual input. Subsequently, the actual input is mapped into a vector
of dimension dmodel by a linear layer. This resulting vector is summed with the positional embedding
pe, which has the same dimension, to obtain the embedding vector e. e is then fed into N stacked
layers of the multi-head PSDMSA blocks and feed-forward network to obtain z, as shown in Eq. (13).
Subsequently, in Eq. (14), a linear layer transfers z into X1

output of dimension D, note that X1
output and

X input are of equal dimensions. Finally, in Eq. (15), the missing values in X input are replaced with values
in X1

output at corresponding positions to obtain the completed vector X1
imputed, � represents element-wise

multiplication.

3.2.5 The Second Multi-Head PSDMSA Unit

e′ =
[
Concat

(
X1

imputed, M input

)
W e′ + be′

]
+ pe, W e′ ∈ R

2D×dmodel , be′ ∈ R
dmodel (16)

z′ = {FeedForward (Multi − head PSDMSA (e′))}N (17)

X2
output = ReLu

(
z′W z′ + bz′

)
W f + bf , W z′ ∈ R

dmodel×D, bz′ ∈ R
D, W f ∈ R

D×D, bf ∈ R
D (18)

In the second unit, the feature vector obtained by concatenating the X1
imputed learned in the first

unit and M input is used as the input. Similar to Eq. (12), Eq. (15) projects the input from 2D dimension
to dmodel dimension, and then directly adds the result with the pe to get e′. Subsequently, e′ is fed into N
stacked layers of the multi-head PSDMSA blocks and feed-forward network to obtain z′ as shown in
Eq. (17), and Eq. (18) conducts two linear transformations and a single nonlinear transformation z′

to obtain X2
output. X1

output and X2
output are combined using a learnable weight that is acquired through the

weight fusion unit.

3.2.6 The Weight Fusion Unit

A = 1
h

∑h

i=1
Ai (19)

θ = sigmoid
(

Concat
(

A, M input

)
W θ + bθ

)
, W θ ∈ R

(T+D)×D, bθ ∈ R
D (20)

X3
output = (1 − θ) � X1

output + θ � X2
output (21)

X final = M input � X input +
(
1 − M input

) � X3
output (22)
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The fusion unit’s function is to automatically learn the weights of X1
output and X2

output by considering
temporal and attribute correlations and missing information to obtain a better representation X3

output. A
in Eq. (19) is averaged from multi-head attention weights Ai outputted by the last layer of the second
multi-head PSDMSA unit. Subsequently, Eq. (20) takes the feature vector concatenated by A and
M input as the reference to obtain the weights θ

(∈ (0, 1)
T×D

)
using one linear layer and a nonlinear

Sigmoid function. Eq. (21) fuses the X1
output and X2

output by weights θ to get X3
output. Finally, missing values

in X input are replaced with values in X3
output at corresponding positions to produce the final imputed

vector X final.

4 Experimental Results and Analysis
4.1 Experimental Data

In this study, the data come from the complete RTT-AT records in the same area obtained and kept
by a radar team in the air situation simulation system. This team comprised a two-dimensional radar
and a height finder radar. Moreover, the records cover six typical target activities: reconnaissance,
police patrol, refueling, AWAC, attack, and retreat.

The dataset consists of 12000 time-series tracks with a sampling frequency of 10 Hz. The lengths
of tracks range from 1052 to 8534. After undergoing a coordinate transformation process, each time-
series track in the dataset is represented by three attributes: longitude (in degrees), latitude (in degrees),
and altitude (in km). Fig. 6 offers visual examples of RTT-AT records, allowing readers to understand
better the nature of the data being analyzed. Each example demonstrates the temporal evolution of
longitude, latitude, and altitude for a specific target track.
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Figure 6: Examples of RTT-AT

A set of procedures designed to preprocess the data are conducted to prepare the initial data for
training the imputation model. These procedures are outlined below. First, data slicing is performed,
dividing all track data into segments of length 500 without overlapping. This slicing approach results
in a total sample size of 166000.
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Next, all data samples are standardized by attribute, ensuring each attribute has a mean of 0 and
a standard deviation of 1. This step creates the standardized sample set, essential for maintaining
consistent scales across different attributes during model training.

Lastly, the missing values of various patterns and rates are introduced into the standardized
sample set, forming two distinct datasets: DataRM−ALT and DataRM−ALL. In DataRM−ALT, the missing rate
is defined according to Eq. (23). It is set as 5%, 10%, 15% and 20%.

missing rate = Nummissing

D × T
(23)

where Nummissing denotes the number of missing values, T denotes the sliced time-series length, and D
denotes the number of attributes.

Samples in DataRM−ALL have RM-ALL, the missing rate is set as 10%, 20%, 30%, 40%, 50% and
60%.

4.2 Performance Evaluation Metrics and Experimental Setup

In this paper, three widely used metrics are utilized to assess the imputation performance of
our model: mean absolute error (MAE), root mean square error (RMSE), and mean relative error
(MRE). These metrics comprehensively evaluate imputation accuracy by calculating the differences
between actual missing values and their imputed counterparts. Specifically, Eqs. (24)–(26) define the
mathematical formulations of MAE, RMSE, and MRE, respectively. By examining these metrics, we
aim to gain insights into the strengths and weaknesses of our imputation models, ensuring a rigorous
and thorough evaluation process.

MAE(output, target, mask) =
∑D

d=1

∑T

t=1 |(output − target) � (1 − mask)|∑D

d=1

∑T

t=1

(
1 − maskd

t

) (24)

RMSE(output, target, mask) =
√√√√∑D

d=1

∑T

t=1

(
((output − target) � (1 − mask))

2)d

t∑D

d=1

∑T

t=1

(
1 − maskd

t

) (25)

MRE(output, target, mask) =
∑D

d=1

∑T

t=1 |(output − target) � (1 − mask)|∑D

d=1

∑T

t=1 |target � (1 − mask)|d
t

(26)

A batch size of 32 is used for model training, validation, and testing, which strikes a balance
between computational efficiency and generalization performance. An early stopping mechanism that
monitors the training loss is employed to prevent overfitting and ensure timely convergence. Training
is halted, and the best model parameters are saved if the loss does not decrease after 100 consecutive
epochs, indicating potential stagnation in the learning process. The chosen optimizer for our model
is Adam. Specific hyperparameters associated with the Adam optimizer, such as the learning rate, are
detailed in Table 3. This table provides a comprehensive overview of the hyperparameter settings used
in our proposed model, facilitating reproducibility and further fine-tuning if needed.

To ensure consistent and reproducible results, all experiments were conducted on a single
computer platform with specific hardware and software configurations. The platform was equipped
with an Intel i5 10200 CPU, 32 GB of memory, and an NVIDIA GeForce RTX 2060 GPU, providing
a balanced computational environment for our research. And the deep learning framework used is
Pytorch.
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Table 3: Hyperparameter settings

Hyperparameter Value

Batch size 32
Number of multi-head PSDMSA units 2
Number of multi-head PSDMSA blocks per unit 1
Hidden size of feed-forward network 512
Model hidden dimension 64
Number of heads in multi-head PSDMSA 8
The dimensions of Q, K , V 64,64,64
Importance factor in PSDMSA 5
Learning rate 0.005
Epoch 10000
Optimizer Adam

4.3 Imputation Performance for RM-ALT

In Sections 4.3 and 4.4, our proposed method is compared to several current imputation methods,
including:

(1) Zero Imputation (Zero). Imputing missing values with zero; (2) Mean Imputation (Mean) [37].
Imputing missing values with corresponding mean values from the training set; (3) Median Imputation
(Median) [37]. Imputing missing values with corresponding median values from the training set; (4) K-
Nearest-Neighbors (KNN) [57]. Imputing missing values with the weighted average of k neighbors by
using a k-nearest neighbor algorithm; (5) Random Forest (RF) [50]. Observations in the vicinity of the
missing point are used as features to train high-fit random trees to predict the missing values; (6) M-
RNN [35]. Imputing missing values using multi-directional recurrent neural networks; (7) BRITS [36].
Imputing missing values using bidirectional uncorrelated RNN; (8) Transformer: Imputing missing
values using a vanilla Transformer.

The results of different imputation methods for RM-ALT at varying missing rates appear in
Table 4.

Firstly, the Zero method demonstrates the poorest performance among all considered methods.
Secondly, KNN and RF consistently outperform Median and Mean methods at all missing rates,
emphasizing their efficacy in imputing missing data over imputation methods based on statistical
characteristics. Specifically, the RF method exhibits a substantial reduction of 65.3%, 79.2%, and
65.3% in MAE, RMSE, and MRE values, respectively, compared to the Median method when dealing
with a missing rate of 20%. Moreover, our results indicate that the M-RNN method performs inferior
to both KNN and RF. On the other hand, the BRITS method, which also relies on GRNNs, yields
lower MAE and RMSE than the KNN method for missing rates of 5%, 10%, and 15%. However, at a
missing rate of 20%, BRITS experiences a higher MAE value than KNN but maintains a lower RMSE.
These findings imply that the BRITS method presents less bias than KNN at specific missing values.
Nevertheless, its overall performance remains inferior to that of RF across varying missing rates.
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Table 4: The imputation performance comparison between methods for RM-ALT across different
missing rates from 5% to 20%. Metrics are reported in the order of MAE/RMSE/MRE. The lower the
better

Method 5% 10% 15% 20%
Zero 0.8439/1.0022/1.0000 0.8453/1.0031/1.0000 0.8427/1.0000/1.0000 0.8426/0.9997/1.0000
Mean 0.0548/0.1902/0.0650 0.0551/0.1908/0.0652 0.0553/0.1909/0.0657 0.0548/0.1902/0.0650
Median 0.0516/0.2056/0.0611 0.0519/0.2055/0.0614 0.0519/0.2050/0.0616 0.0471/0.1284/0.0563
KNN 0.0234/0.0595/0.0277 0.0241/0.0622/0.0285 0.0246/0.0640/0.0292 0.0247/0.0573/0.0295
RF 0.0179/0.0427/0.0212 0.0181/0.0437/0.0214 0.0180/0.0426/0.0214 0.0181/0.0431/0.0215
M-RNN 0.0235/0.0561/0.0279 0.0243/0.0571/0.0288 0.0275/0.0620/0.0326 0.0274/0.0650/0.0326
BRITS 0.0210/0.0547/0.0249 0.0205/0.0537/0.0243 0.0218/0.0570/0.0258 0.0259/0.0589/0.0308
Transformer 0.0154/0.0258/0.0193 0.0158/0.0262/0.0204 0.0165/0.0295/0.0227 0.0172/0.0321/0.0246
Ours 0.0139/0.0234/0.0166 0.0141/0.0235/0.0167 0.0145/0.0238/0.0172 0.0156/0.0246/0.0186

On the contrary, irrespective of the missing rate, our proposed model shows lower MAE, RMSE,
and MRE values than others. This implies that it possesses more extraordinary imputation ability
when facing RM-ALT. When the missing rate is 5%, our proposed method yielded a 22.3% decrease in
MAE, a 45.2% decrease in RMSE, and a 21.7% decrease in MRE relative to RF; when the missing rate
is 20%, the respective decreases were 13.8%, 42.9%, and 13.5%. These results reveal that our method
exhibits significant improvement in RMSE, which indicates that imputing missing values using this
method does not result in significant deviations at specific missing points.

4.4 Imputation Performance for RM-ALL

Table 5 presents the imputation performance of different imputation models in addressing RM-
ALL across varying missing rates, comprehensively comparing our proposed model against eight other
methods. Notably, the table reveals that the missing rate in the RM-ALL scenario does not significantly
impact the relative performance between models. This observation underscores the effectiveness and
robustness of our proposed model.

Table 5: The imputation performance comparison between methods for RM-ALL across different
missing rates from 10% to 60%. Metrics are reported in the order of MAE/RMSE/MRE. The lower
the better

Method 10% 20% 30%

Zero 0.8356/1.0005/0.9999 0.8367/1.0015/1.0000 0.8347/0.9988/1.000
Mean 0.0485/0.1225/0.0580 0.0484/0.1217/0.0579 0.0483/0.1208/0.0578
Median 0.0472/0.1302/0.0566 0.0471/0.1287/0.0564 0.0471/0.1282/0.0564
KNN 0.0222/0.0506/0.0266 0.0231/0.0524/0.0276 0.0239/0.0557/0.0287
RF 0.0503/0.1269/0.0601 0.0501/0.1260/0.0599 0.0501/0.1256/0.0600
M-RNN 0.0216/0.0574/0.0258 0.0226/0.0601/0.0270 0.0251/0.0633/0.0301
BRITS 0.0167/0.0520/0.0199 0.0175/0.0550/0.0210 0.0169/0.0520/0.0210
Transformer 0.0134/0.0160/0.0210 0.0142/0.0211/0.0170 0.0158/0.0232/0.0190
Ours 0.0090/0.0155/0.0107 0.0092/0.0159/0.0110 0.0100/0.0166/0.0120

(Continued)
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Table 5 (continued)

Method 40% 50% 60%
Zero 0.8354/0.9996/1.0000 0.8356/0.9999/1.0000 0.8349/0.9991/1.0000
Mean 0.0482/0.1212/0.0577 0.0484/0.1219/0.0580 0.0485/0.1220/0.0580
Median 0.0471/0.1284/0.0563 0.0473/0.1298/0.0566 0.0473/0.1298/0.0566
KNN 0.0247/0.0573/0.0295 0.0258/0.0607/0.0309 0.0268/0.0642/0.0321
RF 0.0500/0.1259/0.0599 0.0501/0.1269/0.0600 0.0502/0.1270/0.0601
M-RNN 0.0311/0.0703/0.0372 0.0320/0.0736/0.0382 0.0388/0.0763/0.0464
BRITS 0.0206/0.0610/0.0247 0.0197/0.0596/0.0235 0.0215/0.0625/0.0257
Transformer 0.0174/0.0258/0.0208 0.0188/0.0270/0.0225 0.0202/0.0314/0.0242
Ours 0.0103/0.0171/0.0123 0.0108/0.0176/0.0129 0.0112/0.0175/0.0134

Zero imputation yielded the least favorable results of all the models, with MAE, RMSE, and
MRE values of 0.8356, 1.005, and 0.9999, respectively, for a missing rate of 10%. These results
strongly indicate a significant data bias. The KNN surpasses the Mean and Median methods across
all missing rates since it incorporates the information from the several nearest neighboring samples.
The performance of the RF is inferior to that of the Mean and Median methods. This suggests that
the imputation mechanism of RF may not be appropriate for addressing the RM-ALL issue.

Furthermore, the models based on deep learning demonstrate remarkable superiority over other
methods for all missing rates. Among the diverse deep-learning models, self-attention-based models
produce considerably superior outcomes in comparison to their GRNN-based equivalents. At a
missing rate of 10%, the Transformer shows a decrease of 22.2%, 65.0%, and 46.2% in MAE, RMSE,
and MRE, respectively, compared to the best GRNN-based method BRITS. Similarly, at a missing rate
of 60%, the MAE, RMSE, and MRE illustrate a decline of 6%, 49.8%, and 5.8% compared to BRITS.
Finally, our proposed model achieves superior results at all missing rates compared to Transformer,
and the MAE decreases by 30.8%, 31.9%, 27.5%, 27.5%, 42.6%, and 44.6% for missing rates of 10%,
20%, 30%, 40%, 50% and 60%, respectively. Compared to BRITS, the MAE, RMSE, and MRE
decrease by 46.1%, 70.2%, and 46.2%, respectively, at a 10% missing rate, and by 47.9%, 72.0%, and
47.9% at a 60% missing rate. It is worth noting that the RMSE values of BRITS and M-RNN models
are significantly higher than the MAE values, which suggests that large errors have occurred at specific
missing data points. The MAE and RMSE of our proposed method are much closer. Consequently, it
infers that the model proposed seldom causes significant discrepancies for specific missing data points.
The case imputation results illustrated in Figs. 7–9 corroborate the analysis.
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Figure 7: Case imputation results of attribute 1 for missing rate of 40%. (a), (b), and (c) show the
imputation results given by our proposed model; (d), (e), and (f) show the results given by BRITS
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Figure 8: Case imputation results of attribute 2 for missing rate of 40%. (a), (b), and (c) show the
imputation results given by our proposed model; (d), (e), and (f) show the results given by BRITS
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Figure 9: Case imputation results of attribute 3 for the missing rate of 40%. (a), (b), and (c) show the
imputation results given by our proposed model; (d), (e), and (f) show the results given by BRITS

In three figures, the imputation results of our proposed model and the BRITS model for three
temporally consecutive sliced samples with the missing rate of 40% are presented. The black solid
curves represent the ground truth, while the green circles denote the imputed values. It is evident that
our proposed model effectively captures the temporal evolution of data and imputes plausible values
for the missing data points. Conversely, BRITS’ imputed values for specific missing data points exhibit
significant deviations from the actual values, leading to considerable data bias.

The training parameter count and computational efficiency of various deep learning imputation
models in achieving the aforementioned results are examined. The results are listed in Table 6. It
is noteworthy that BRITS demonstrates the longest training duration, with a single epoch taking
8.647 s to complete. The M-RNN and Transformer models share similar training times per epoch.
Our proposed model showcases fewer training parameters and a shorter training time per epoch than
other models. This offers strong evidence supporting its superiority among the considered models.

Table 6: The number of training parameters and training time per epoch of different models

Model Number of training parameters Training time per epoch

M-RNN 2.66 M 4.240 s
BRITS 2.14 M 8.674 s
Transformer 1.52 M 4.377 s
Ours 0.79 M 1.054 s
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4.5 Ablation Experiments

In this section, three ablation studies under the RM-ALL scenario are conducted to evaluate
the reasonableness of our proposed model. In 4.5.1, the effectiveness of models employing various
self-attention mechanisms under different missing rates is assessed and compared; in 4.5.2, the
performance of models incorporating different combinations of modules is evaluated and compared;
and in 4.5.3, the model’s effectiveness while utilizing different learning objectives is compared.

4.5.1 Ablation Study with Different Self-Attention Mechanisms

Table 7 illustrates the imputation performance of four distinct self-attention mechanisms, applied
within our designed identical network structure we designed. The mechanisms are denoted as ‘Full,’
‘DMSA,’ ‘PSSA,’ and ‘PSDMSA.’ The labels ‘Full,’ ‘DMSA,’ ‘PSSA,’ and ‘PSDMSA’ respectively
represent the utilization of vanilla self-attention, diagonal masking self attention, probabilistic sparse
self-attention, and probabilistic sparse diagonal masking self attention.

Table 7: The imputation performance with models using different self-attention mechanisms under
different missing rates (The metric is MAE, lower is better)

Self-attention mechanism 10% 20% 30% 40% 50% 60%

Full 0.0111 0.0109 0.0112 0.0116 0.0125 0.0131
DMSA 0.0101 0.0106 0.0109 0.0116 0.0114 0.0121
PSSA 0.0094 0.0112 0.0107 0.0111 0.0114 0.0123
PSDMSA 0.0090 0.0092 0.0100 0.0103 0.0108 0.0112

The experimental results demonstrate that the model utilizing PSDMSA consistently outperforms
the vanilla self-attention mechanism. Across missing rates of 10%, 20%, 30%, 40%, 50%, and 60%, the
MAE values exhibit reductions of 19.0%, 15.6%, 10.7%, 11.2%, 13.6%, and 14.5%, respectively, when
using PSDMSA. Additionally, our observations reveal that the model’s performance is enhanced when
PSSA and DMSA are jointly utilized, surpassing models that rely exclusively on either mechanism.
Specifically, when compared to the DMSA-based model, the PSDMSA-based model achieves MAE
reduction rates of 10.9%, 13.2%, 8.3%, 11.2%, 5.3%, and 7.4% at missing rates of 10%, 20%, 30%, 40%,
50%, and 60%, respectively. Moreover, in comparison to the PSSA-based model, the PSDMSA-based
model demonstrates MAE reductions of 4.4%, 8.9%, 6.5%, 7.2%, 5.3%, and 8.9% at corresponding
missing rates of 10%, 20%, 30%, 40%, 50%, and 60%. These findings collectively suggest that PSDMSA
significantly enhances imputation performance.

4.5.2 Ablation Study with Different Combinations of Units

Generally, a more profound network architecture is associated with enhanced feature extraction
and knowledge-learning capabilities. Consequently, following the modification of full self-attention
and construction of the initial PSDMSA unit, a second unit is incorporated, and the feature vectors
learned in the first unit are leveraged for representation reuse. However, the representations derived
from the second unit do not consistently surpass those obtained from the first unit. Therefore, it is
reasonable to combine the learned representations from both units. To enhance imputation quality,
a weight fusion unit that adaptively adjusts the weights of the output representations from both
PSDMSA units is introduced.
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To prove our design’s better imputation ability, the performance of the four models with different
combinations of units are compared in this part. The results are presented in Table 8:

Table 8: Ablation experiment results with different combinations of units under different missing rates
(The metric is MAE, lower is better)

Design 10% 20% 30% 40% 50% 60%

One unit 0.0115 0.0117 0.0121 0.0125 0.0124 0.0132
Two units 0.0201 0.0208 0.0215 0.0224 0.0250 0.0285
Two units + residual 0.0102 0.0107 0.0111 0.0133 0.0129 0.0139
Ours 0.0090 0.0092 0.0100 0.0103 0.0108 0.0112

(1) One unit: The second PSDMSA unit and weight fusion unit are not included. The output of
only one unit is used as the final representation; (2) Two units: The first and second PSDMSA units
are employed without the weight fusion unit, and the output of the second unit is used as the final
representation; (3) Two units + residual: The first and second PSDMSA units are employed without
the weight fusion unit, and the final representation is derived from the combination of outputs of two
units by using a residual connection; (4) Ours.

Based on the experimental findings, it is evident that the imputation performance of the One
Unit model is superior to that of the Two Units model. This implies that increasing the network
depth does not necessarily lead to improved performance and may even have a detrimental effect.
Moreover, when examining the combination of the learned representations from two units, our model,
which incorporates the weight fusion unit, outperforms the model that directly combines the outputs
of two units using a residual connection (Two units + residual). Additionally, our model achieves
better performance than the One-unit model. These findings demonstrate a significant enhancement
in imputation performance resulting from our design.

4.5.3 Ablation Study with Different Loss Functions

To evaluate the suitability of imputation loss (IL) for the self-attention-based imputation model
and assess its impact on performance enhancement, we compare the imputation performance of our
proposed model using IL, reconstruction loss (RL), and a combination of IL + RL as the learning
objectives. Eqs.(4) and (27) provide the definition of IL and RL. The results are presented in Table 9.

RL = LOSSMAE

(
X3

output, X, M input

)
(27)

Table 9: Ablation experiment results with different loss functions under different missing rates (The
metric is MAE, lower is better)

Design 10% 20% 30% 40% 50% 60%

IL 0.0090 0.0092 0.0100 0.0103 0.0108 0.0112
RL 0.4310 0.3874 0.4873 0.4127 0.5537 0.5763
IL + RL 0.0119 0.0130 0.0136 0.0148 0.0158 0.0170

As shown in the table, the PSDMSA-based model’s imputation performance is significantly
impaired when RL is applied. This can be attributed to the non-autoregressive nature of the
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self-attention mechanism, which processes input data globally and in parallel. As a result, observations
can be identified through the missing value mask matrix. When RL is used as the loss function, the
self-attention-based model minimizes the discrepancy between observed and reconstructed values,
neglecting the missing values. Furthermore, the PSDMSA-based model with IL + RL exhibits lower
imputation performance than the model employing IL as the learning target. Overall, the model
utilizing IL demonstrates optimal imputation performance unaffected by variations in the missing
rate. For example, when IL is adopted as the learning objective, the MAE values in a scenario with a
60% missing rate show a decrease of 98.1% and 34.1% compared to models using RL and IL + RL,
respectively. This signifies a significant improvement in imputation performance due to the application
of IL.

5 Conclusion

This paper proposes a non-autoregressive imputation model that utilizes an improved self-
attention mechanism to handle the missing values in RTT-AT. The proposed model consists of two
cascaded PSDMSA units incorporating the sparse mechanism, diagonal masking, and a weight fusion
unit. The model’s learning objective is to minimize imputation loss.

Initially, two common missing patterns in RTT-AT data are identified and formulated. Next, the
differences between the imputed values provided by the proposed model and the other eight models
and factual values are analyzed, as demonstrated by MAE, MSE, and MRE. During this process,
the missing rates are varied to observe how model performance fluctuates. The experimental results in
Sections 4.3 and 4.4 show that our model consistently performs best across both missing patterns, even
when the missing rate varies. In the RM-ALT pattern, our model achieves a 31.2%∼39.8% reduction
in MAE, a 56.2%∼58.2% reduction in RMSE, and a 31.2%∼39.6% reduction in MRE compared
to BRITS, the best GRNN-based imputation model. In the RM-ALL pattern, the reductions are
40.8%∼50.0% for MAE, 68.1%∼72.0% for RMSE, and 42.9%∼50.2% for MRE. Moreover, the MAE
and RMSE between imputed values given by our model and their corresponding actual values are
much closer, indicating substantially lower bias on specific missing data points and better ability
to capture the evolution of the values. Lastly, the parameter counts and training time for multiple
models are evaluated. In conclusion, our proposed model stands out as the most cost-effective
solution. Compared to BRITS and the vanilla Transformer model, the training time per epoch of
our proposed model is just 12.2% and 24.1% of their respective times. In other words, our proposed
model accomplishes better imputation performance with less parameter size and time consumption.

Additionally, ablation experiments investigate the impact of attention mechanisms, module com-
binations, and loss functions on imputation performance. The results show that our model achieves
outstanding imputation performance, highlighting the effectiveness of its design choices. Integrating
PSDMSA, the weight fusion unit, and imputation loss effectively enhances the model’s imputation
performance.

However, our model currently focuses on two missing patterns, RM-ALT and RM-ALL, and does
not investigate its performance on other types of missingness, such as long gap missing. Furthermore,
the model’s performance in the presence of outliers and noise in the data has not been explored yet.
In future work, we will explore the model’s imputation capabilities in extreme scenarios, including
long-term missing data and the coexistence of multiple missing patterns. Furthermore, we will utilize
the current findings to perform experiments on downstream tasks, specifically classification and
prediction, to evaluate the plausibility of the imputation outcomes.
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