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ABSTRACT

Software project outcomes heavily depend on natural language requirements, often causing diverse interpretations
and issues like ambiguities and incomplete or faulty requirements. Researchers are exploring machine learning
to predict software bugs, but a more precise and general approach is needed. Accurate bug prediction is crucial
for software evolution and user training, prompting an investigation into deep and ensemble learning methods.
However, these studies are not generalized and efficient when extended to other datasets. Therefore, this paper
proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification
problems. The methods involved feature selection, which is used to reduce the dimensionality and redundancy
of features and select only the relevant ones; transfer learning is used to train and test the model on different
datasets to analyze how much of the learning is passed to other datasets, and ensemble method is utilized to
explore the increase in performance upon combining multiple classifiers in a model. Four National Aeronautics
and Space Administration (NASA) and four Promise datasets are used in the study, showing an increase in the
model’s performance by providing better Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
values when different classifiers were combined. It reveals that using an amalgam of techniques such as those used
in this study, feature selection, transfer learning, and ensemble methods prove helpful in optimizing the software
bug prediction models and providing high-performing, useful end mode.
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1 Introduction

The world is rapidly shifting towards software-based products, drastically increasing our reliance
on software. Software houses and companies work hard to meet their needs and develop high-end
software products. From autonomous vehicles to face emotion and smart cities, recognition systems
are implemented in software-based solutions. Many software houses are creating and doing analysis
or decision-making on arguments in user data. However, a software crisis or failure often occurs due
to increased complexity, short time to market, and high customer demands. This situation gives rise
to successful, error-free software emphasizing quality software production. Many models, principles,
and techniques are followed to achieve this notion, such as small iterations, documentation, user
interaction, and well-organized processes; still, some inevitable bugs occur, causing great distress to the
software users and owners. The unexpected behavior of a system against the provided requirements
shows the presence of a bug, and its timely identification facilitates the testing resources allocation
efficiently and enables developers to improve the architectural design of a system by identifying the
high-risk segments of the system [1], especially since testing the whole software system entirely and
thoroughly is practically not possible with the limited testing resources [2]. To mitigate these defects,
an analysis of predicting them before they are born is necessary. This inspired the birth of Software Bug
Prediction methods, and for this purpose, machine-learning models have proved to be very effective
in achieving the required results. These models help narrow down and reduce the testing hardships of
faulty modules by identifying such components of software systems, whose chances are more likely to
be fault-prone [3].

Prediction models serve a great advantage in development environments as once incorporated,
they can give feedback to the developers while they are in the development process. This might give rise
to the notion that models are 100% accurate, but in actuality, expecting 100% accuracy of prediction is
unreasonable. In such a situation, trusting a model becomes difficult; therefore, it is necessary to get an
optimal model, balancing the false predictions. Efforts have been made to examine the accuracy and
complexity of models, although there are no standard benchmarks for comparing models. This brings
about the compelling utilization of the ensemble method for software bug prediction, as it uses various
methods for the provided dataset to give better prediction results. According to observations, various
methods have resulted in varied levels of prediction performance, but none of them have consistently
delivered the most accurate predictions across various datasets. In this regard, there was a lot of
theoretical and empirical evidence in favor of using the ensemble method to get better results for fault
prediction. The ensemble method promises to improve fault prediction by reducing the shortcomings
of individual methods [3]. One of the key factors for success criteria of bug prediction methods involves
the prediction of the correct occurrence of bugs and understanding the software development life cycle
(SDLC) process flow. It can be used in any stage of SDLC, be it identifying problems, planning and
design, development, testing phase, deployment, and maintenance, irrespective of the type of SDLC
model employed [4]. Another way to achieve effectiveness in the domain of defect prediction comes
from cross-project prediction, which helps to use a huge amount of labeled data present in the source
project to solve different but related issues in the target project [5]. In other words, the information
gained from one dataset is used to solve the problems in another dataset [6]. However, the heterogeneity
of data from numerous projects becomes a challenging issue in cross-project defect prediction, making
it an active research area [7].

Testing the whole software system entirely and thoroughly is practically not possible, especially
with the limited testing resources [2]. The unexpected behavior of a system against the provided
requirements shows the presence of bugs and promptly identifying them. Developers can efficiently
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allocate testing resources and enhance a system’s architectural design by determining the high-risk
system components [1]. Therefore, it is essential to identify bugs in small sections. Therefore, we devise
a novel machine-learning method and evaluate the results using comparison. The objectives of this
research are:

• We proposed a hybrid machine learning feature selection and extraction method for software
bug prediction of natural language processing-based requirements.

• We propose multiple hand-crafted features with famous machine learning classifiers and the
performance is evaluated on open-source datasets.

• We achieved satisfactory performance of Promise and NASA datasets. The performance
analysis of machine learning techniques provides the selection of optimal bug prediction
methods.

The research involves four major steps: Cleaning the dataset followed by Feature Selection,
training the source dataset with individual classifiers, and then using the ensemble learning method to
draw a comparison between both the performances and finally testing the performance of the trained
model on the target dataset. The remaining structure of the paper is organized as follows. Related
work is described in Section 2 of the paper. Section 3 presents the Methodology used for the proposed
framework, Section 4 discusses the achieved results, and Section 5 constitutes the Conclusion.

2 Bug Detection through Multiple Machine Learning Methods

This section provides background knowledge and gives an overview of the previous research
that has been done on the subject at hand by various authors. With the rise in the demand for
software-based products, providing customers with quality products has become critical. Therefore,
such methods are smart enough to cater to this requirement. The main objective of software bug
prediction is to ensure software quality without wasting resources. Even though many models and
frameworks have been proposed, not a single technique comes without its limitations. The majority
of the previous research on software fault prediction is restricted to using comparison methods for
the analysis of each machine-learning technique. Some of them employed only a few techniques and
offered a contrast between them, and others suggested methods as an extension of prior work. Among
all the domains, the widely used approach is machine learning. Different machine learning algorithms
are used to detect bugs, such as neural networks, support vector machines, and Bayesian networks.
Different datasets are available publicly so that the practitioners can easily conduct their experiment
without having any worry about data [8].

2.1 Selection and Performance Analysis of Machine Learning Techniques

To enable the practice of machine learning techniques and feature extraction techniques in
the context of bug prediction, it is required to review the experimental evidence gained on these
techniques through the existing studies [8–14]. The research in [2] carried out proposed an approach to
select the minimal number of best-performing software metrics for fault prediction using the Eclipse
java development tool (JDT) Core dataset and Linear Regression Model using Marginal R square
values. The researchers in [1] performed a comparative performance analysis of multiple machine-
learning techniques for software bug prediction. The experiment involved 15 software bug datasets
from the PROMISE data repository and used classifiers like Naive Bayes, multi-layer perceptron
(MLP), support vector machine (SVM), AdaBoost, Bagging, Decision Tree, Random Forest, J48,
k-nearest neigbours (KNN), radial basis kernel (RBF), and K-means [5,15]. Utilized KC1, CM1,
PC3, and PC4 from PROMISE software defect dataset repository and found that the proposed hybrid
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approach made of Genetic Algorithm and Deep Neural Network (12DNN) classification techniques,
performs better than existing classification schemes and facilitates feature optimization, reducing the
computational time.

2.2 Addressing Imbalanced Data and Feature Selection

The work in [16] involved a review investigation of the machine learning (ML) technique in
semidefinite program (SDP) to highlight the recent and widely used activities in this domain. In [17],
the researchers investigated the effect of feature selection and handling imbalanced data in defect
prediction while proposing a framework with ensemble learning techniques. They used multiple search
methods for feature subset selection. They used six NASA Metrics Data Program (MDP) Datasets.
The researchers in [18] used generative deep learning models to manage data unbalancing with the
help of Stack Sparse Auto-Encoder (SSAE) and Deep Belief Network (DBN). The experiment in
[19] analyzed the impact of a reduced feature set using a hybrid feature selection method (Filter and
wrapper FS method) on the performance of the learning algorithm with Naive Bayes (NB), Radial
Basis Function Network (RN), J48 using NASA’s KC1 data set from promise software engineering
repository. Researchers in [20] found that the selection of a representative feature subset or setting a
reasonable proportion of selected features improves the performance of Cross-Project Defect Predic-
tion (CPDP), while another ensemble learning method has been proposed as a genetic algorithm in the
fish firm [21]. They used feature subset selection and three feature-ranking approaches with K-Nearest
Neighbors (KNN) and Naive Bayes (NB) classifiers. The study in [22] applied Synthetic Minority
Oversampling Technique (SMOTE) and ensemble techniques on the prediction model to reduce the
effect of class imbalance issues and misclassification. Previous methods investigated the effect of deep
learning as a Neural Model and compared it with other techniques that improved fault prediction
performance significantly [23], Hybrid Particle Swarm Optimization-Modified Genetic Algorithm
(PSO- MGA) is used for feature selection and bagging techniques for increasing classification accuracy
[24]. While in [25], they proposed an approach to have high performance of defect prediction model
and applied three feature selection metaheuristic algorithms to get the most effective features. The
experiment was carried out on CM1, MW1, PC1, PC3, and PC4 using SMOTE, Bagging, Ada Boost,
and naive Bayes.

The summary of the previous methods with methodology, advantages, and disadvantages is
presented in Table 1. Many empirical studies and systematic reviews are also conducted in this
research area, such as in [16] and [26], where a review investigation has been performed over the ML
technique in SBP to highlight the recent and widely used activities in this domain. They explored
different datasets in multiple research studies to provide the latest trends and advances in the ensemble
learning approach, concluding that these perform significantly. Many researchers have been made
in these fields, and various techniques and methods are proposed. Numerous machine learning
algorithms detect bugs, and datasets are made accessible to the public so that researchers can carry
out their experiments without worrying about data. Despite all these efforts, the field of software bug
prediction still suffers from a lot of ambiguity. Most of these efforts are made in reviews and surveys,
highlighting new and widely used trends, proposing different frameworks or methods, discussing
various software performance metrics, or suggesting improvements in previous techniques. In all of the
above-mentioned ways, machine learning techniques are proving to be most helpful in bug prediction.
However, it is necessary to examine the experimental evidence gathered from previous studies to further
improve them for enhancing their performance.
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Table 1: Summary of related work done in software bug prediction domain

Study Dataset Methodology Advantages Disadvantages

Hammouri et al. [4] PROMISE software
defect dataset
repository KC1,
CM1, PC3, PC4

Genetic Algorithm
and Deep Neural
Network (DNN)
classification
techniques using
MATLAB tool

Found that the
proposed hybrid
approach performs
better than existing
classification
schemes and
facilitates feature
optimization
reducing the
computational time.

Only a few
datasets have
been used for
empirical
investigations.

Sohan et al. [16] Exploring multiple
datasets in 165
research studies

Machine Learning
Methods

A review
investigation has
been conducted over
the ML technique in
SDP to highlight the
recent and widely
used activities in this
domain.

The study lacks
details.

Yu et al. [20] NASA and
PROMISE datasets

Feature subset
selection and three
feature ranking
approaches.
Classifiers: K
Nearest Neighbors
(KNN) and Naive
Bayes (NB)

Found that the
selection of a
representative feature
subset or setting a
reasonable
proportion of
selected features
improves the
performance of
Cross Project Defect
Prediction (CPDP).

The empirical
study is not
exhaustive. No
comparison with
other feature
selection
techniques has
been provided.

Khan et al. [23] PROMISE dataset
(CM1, JM1, KC1,
KC2, and PC1)

Bayes network,
Random Forest,
SVM, and the Deep
Learning

Investigated the
effect of deep
learning as a Neural
Model and
compared it with
other techniques that
improved fault
prediction
performance
significantly.

The dataset
contains
unbalanced
classes. Lacks
preprocessing of
the dataset.

(Continued)
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Table 1 (continued)

Study Dataset Methodology Advantages Disadvantages

Banga et al. [24] NASA MDP Dataset k-Nearest Neighbor
(KNN), Random
Forest (RF), SVM

Hybrid Particle
Swarm
Optimization-
Modified Genetic
Algorithm (PSO-
MGA) is used for
feature selection and
bagging techniques
for increasing
classification
accuracy.

More datasets of
different domains
are required to
prove the
usefulness of the
proposed
approach.

Ibrahim et al. [25] PC1, PC2, PC3, and
PC4 from PROMISE
repository

Random Forest as a
classifier and
Bat-based search
Algorithm (BA) for
the feature selection

Proposed an
approach to have
high performance of
defect prediction
model and applied
three feature
selection
metaheuristic
algorithms to get the
most effective
features.

No concrete
results have been
provided.

Akalya
Devi et al. [19]

KC1 data set
(Promise software
engineering
repository)

Naive Bayes (NB),
J48, Radial Basis
Function Network
(RN)

Utilized a hybrid
feature selection
method (Filter and
wrapper FS method)
to examine the effect
of a smaller feature
set on the learning
algorithm’s
performance.

The research only
made use of one
fault prediction
dataset.

3 Methodology

In this study, various techniques of Machine Learning are explored to find the optimized ones that
will help to elevate the quality of software through software bug prediction. A machine learning model
is proposed using the techniques described above on different datasets for exploration purposes. The
entire process requires a clean dataset with relevant features, an efficient classifier, and valid training
and testing of the model.

1. Initially, the feature selection technique is applied to both datasets to get rid of irrelevant and
redundant features.

2. In the next phase, while choosing a machine learning classifier, at the first step, three individual
classifiers, i.e., naïve Bayes, Decision Tree (J48), and Multi-Layer Perceptron (MLP) are
chosen. These are said to be frequently used classifiers and give good performance in defect
prediction [1,16].
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3. Later, a combination of the ensemble-learning method and transfer learning is proposed to
create the model. Random Forest is implemented for the ensemble method, and the meta
classifiers included Bagging and AdaBoost, while the base classifiers employed are mentioned
above.

4. The model is then trained on the source project, and for testing, another project is availed. The
results achieved are compared to analyze the better-performing technique.

3.1 Preprocessing

A machine learning model requires large data, which is often not in a clean state and needs
formatting. In such cases, the researcher carries out data preprocessing, which is a mandatory phase
to clean the data and put it into usable format. Therefore, such operations are carried out, which
ensure the data is suitable for a machine learning model, hence increasing its accuracy and efficiency.
The study in [16] provided NASA datasets in two versions. The version of the dataset known as DS
includes inconsistent and duplicated instances, whereas the version known as DS’ is cleaner. Originally,
these datasets were available on the NASA website; however, they have been removed from this source.
NASA datasets consist of 12 clean subsections [20]. We have taken four cleaned and widely used
datasets from the available datasets [20], which include CM1, MW1, PC1, and PC2. Previous studies
have already discussed and used these cleaned versions of datasets in their experiments. The PROMISE
dataset repository comprises four subsections and is provided. They contain 20 object-oriented metrics
as independent features and defect-proneness of class as dependent variable. The criteria for cleaning,
as stated in [16], is shown in Table 2.

Table 2: Selected features based on dataset

Dataset name Selected feature ID No. of feature selected

CM1 5,16,18,34,36 5
NASA MW1 1,3,5,13,18,27,29,35,37 9

PC1 1,4,5,8,16,17,18,30 8
PC2 5,17,29 3

Ant-1.7 4,5,6,11,15,18,19 7
PROMISE Xalan-2.4 4,5,6,10,11 7

Camel-1.6 17,19,2,3,4,6,7,9 11
Ivy-2.0 15,16,17,18,20,1,4,5,8,9,11,13,18 8

3.2 Feature Selection

In recent years, the feature selection technique [27] has been vastly implemented in building
software defect prediction models as the high-dimensionality of features can disturb the performance
of the model; therefore, we select the features that are relevant to the class. For our study, we have
employed feature subset selection using CFS (correlation-based feature selection). To calculate the
correlation between each feature ((Xi)) and the target variable ((Y)), ranking the features based on their
correlation coefficients and selecting the top features comprise the correlation-based feature selection
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process. For linear relationships, the Pearson correlation coefficient ((r)) is commonly used

ri,Y =
∑N

j=1

(
Xi,j − Xi

) (
Yj − Y

)
√∑N

j=1

(
Xi,j − Xi

)2 ∑N

j=1

(
Yj − Y

)2
(1)

where (Xi, j) represents the (j)−th instance of feature (Xi), (Yj) represents the (j)−th instance of the
target variable, (X̄i) represents the mean of feature (Xi), (Ȳ) represents the mean of the target variable,
and (N) represents the number of instances.

Rank features based on their absolute correlation coefficient values:

Rank (Xi) = |Corr(Xi, Y)| (2)

For selecting features, we specify a number of top-ranked features ((k)) or a correlation threshold.
Features that exceed this threshold are chosen for inclusion in the model:

Selected features = {
Xi

∣∣Rank (Xi) >Threshold
∣∣} (3)

This process aids in the identification of features that have the strongest linear relationships with
the target variable, allowing for dimensionality reduction while retaining the most relevant information
for predictive modeling.

It evaluates the redundancy between different features and analyzes their predictive ability. To get
the optimal subset of features, the Best-first search is applied. Features with more relevancy to class
are preferred over the features irrelevant to other features. While using the datasets in our prediction
model, we only use the shared features of each source and target dataset, as the feature numbers are not
the same in all datasets. The selected features of each dataset are listed in Table 2. The table represents
the dataset name, ID of selected feature, and number of total selected features. The ID list in Tables 2
and 3 shows the ID of selected features for NASA and PROMISE datasets, respectively.

Table 3: Features in PROMISE dataset

ID Feature name Feature details

1. wmc Weighted method per class
2. dit Depth of inheritance tree
3. noc Number of children
4. cbo Coupling between object class
5. rfc Response for a class
6. lcom Lack of cohesion in methods
7. ca Afferent couplings
8. ce Efferent couplings
9. npm Number of people methods
10. lcom3 Lack of cohesion in methods
11. loc Lines of code
12. dam Data access metric
13. moa Measure of aggregation
14. mfa Measure of functional abstraction
15. cam Cohesion among methods of class

(Continued)
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Table 3 (continued)

ID Feature name Feature details

16. ic Inheritance coupling
17. cbm Coupling between methods
18. amc Average method complexity
19. mac__cc Max. McCabe’s cyclomatic complexity
20. avg__cc Avg. McCabe’s cyclomatic complexity

The transfer learning technique is unique in its form as it helps save knowledge gathered from
solving one problem and applies it to a related but different problem. We can also say that a model
created for one task can be used as the basis for another through transfer learning. For example, the
knowledge acquired to identify light vehicles can also be applied to identify heavy vehicles. Thus, this
technique serves as a great way to solve research problems in the machine learning domain. This study
focuses on the cross-company bug prediction situation where source data and target data belong to
various companies/projects [28]. The model is built using one project considered as a source project
and employed for prediction on another project called the target project [20]. The set of features in both
projects is kept the same, but we employ a feature selection approach to reduce irrelevant features.

3.3 Ensemble Technique

The Ensemble learning technique utilizes multiple classifiers in building a classification model
to improve the overall performance and efficiency of bug prediction. It also improves the model’s
generalization capability and decreases the problem of class imbalance. Different data is trained
with different classifiers so that each classifier generates its classification error. However, not all
classifiers produce the same set of corresponding errors. The ensemble learning methods can reduce
biased learning caused by class imbalance classification by combining these classifiers through certain
mechanisms. In this scenario, the ensemble learning techniques of boosting (Bst) and bagging (Bag)
are widely used [29,30]. The iterative process of ensemble learning uses each model’s predictive power
to enhance the overall performance of the ensemble. When combining these models, two popular
methods are boosting and bagging (also known as bootstrap aggregating). In Bagging, distinct subsets
of the training data are used to train Multiple Layer Perceptron (MLP) models independently, adding
diversity to capture different patterns in the data. In contrast, boosting improves adaptability by
gradually expanding the ensemble through the training of new MLP instances to highlight instances
that earlier models misclassified. MLP is combined with both bagging and boosting techniques to
produce a hybrid model. Bagging is used to introduce diversity into the training of multiple MLP
instances, and Boosting is used iteratively to improve the model’s performance by concentrating on
difficult instances. The advantages of both approaches are combined in this hybrid method to create
a strong, flexible ensemble that improves prediction accuracy. The specific research objectives and
dataset characteristics may lead to variations in the implementation details.

The ensemble learning process is characterized by an iterative methodology employing individual
models to contribute to an overall ensemble result. Two commonly used strategies for combining these
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models are Bagging (Bootstrap Aggregating) and Boosting. The formulation of Bagging (Bootstrap
Aggregating) is as follows: The Ensemble prediction (Ebag) is

Ebag (D) = 1
M

∑M

i=1
Ei(Di) (4)

where M is the total number of models (MLPs), D represents the dataset, and Di denotes a bootstrap
sample for the i-th model. Ei (Di) is the prediction of the i-th model on its bootstrap sample. The
boosting formulation is as follows: Ensemble prediction (Eboost) is

Eboost (D) =
∑M

i=1
wiEi(Di) (5)

where Ei represents the error of the i-th model and wi is the weight assigned to the i-th model. The
weights are adjusted iteratively during the boosting process. Hybrid Model (Combining Bagging and
Boosting with MLP) is Ensemble prediction (Ebag-boost) is

Ebag−boost (D) = 1
M

∑M

i=1

(∑T

J=1
wjEi,j(Di)

)
(6)

where T is the number of boosting iterations and Ei,j(Di) represents the error of the j-th iteration of the
i-th model, reflecting the model’s performance on its bootstrap sample at that iteration. This hybrid
approach leverages the diversity introduced by Bagging and the adaptability of Boosting, combining
both strategies with Multiple Layer Perceptron models (MLP). The ensemble predictions are formed
by averaging or summing the predictions of individual models, with the weights adjusted during
boosting iterations. This formulation comprehensively represents the ensemble learning process,
incorporating both Bagging and Boosting strategies with MLPs.

3.4 Dataset

The prediction model is assessed on four NASA benchmark datasets (CM1, MW1, PC1, PC2)
[31] and four datasets from the PROMISE Repository (ant-1.7, camel-1.6, ivy-2.0 and xalan-2.4) [32].
These datasets are publicly available and consist of historical data of software modules. Different
studies have widely used these datasets, and this is the primary reason for our interest in them, as
it will help in evaluation. They include several features and a known output class that determines the
defectiveness of an instance. Based on data available for other features, the prediction model predicts
this output class. The datasets have many projects with various attributes, sizes, and defective rates that
help check the research’s generality. All the features in the PROMISE repository and NASA dataset
have been shown in Tables 3 and 4, respectively.

Table 4: Features in NASA dataset

ID Feature name

1. LOC_BLANK
2. BRANCH_COUNT
3. CALL_PAIRS
4. LOC_CODE_AND_COMMENT
5. LOC_COMMENTS
6. CONDITION_COUNTS
7. CYCLOMATIC_COMPLEXITY

(Continued)
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Table 4 (continued)

ID Feature name

8. CYCLOMATIC_DENSITY
9. DESIGN_COMPLEXITY
10. DECISION_COUNT
11. DESIGN_DENSITY
12. DESIGN_COMPLEXITY
13. EDGE_COUNT
14. ESSENTIAL_COMPLEXITY
15. ESSENTIAL_DENSITY
16. LOC_EXECUTABLE
17. PARAMETER_COUNT
18. HALSTEAD_CONTENT
19. HALSTEAD_DIFFICULTY
20. HALSTEAD_EFFORT
21. HALSTEAD_ERROR_EST
22. HALSTEAD_LENGTH
23. HALSTEAD_LEVEL
24. HALSTEAD_PROG_TIME
25. HALSTEAD_VOLUME
26. MAINTENANCE_SEVERITY
27. MODIFIED_CONDITION_COUNT
28. MULTIPLE_CONDITION_COUNT
29. NODE_COUNT
30. NORMALIZED_CYCLOMATIC_COMPLEXITY
31. NUM_OPERANDS
32. NUM_OPERATORS
33. NUM_UNIQUE_OPERANDS
34. NUM_UNIQUE_OPERATORS
35. NUMBER_OF_LINES
36. PERCENT_COMMENTS
37. LOC_TOTAL

The working of the prediction model is evaluated based on certain evaluation criteria, which
include Accuracy, Recall, Precision, Area Under Receiver Operating Characteristics Curve (AUC-
ROC), F-measure, etc. AUC and Recall, the most widely used performance metric [16], are used in
this study. These metrics help to quantify the performance of machine learning models [33]. However,
as accuracy is considered a poor performance measure for imbalanced defect data sets, we use the most
widely used metric to estimate the performance of each classifier, the area under the ROC curve-AUC
as the performance metric in our study.

This section has discussed the creation of a model that involves preprocessing, feature subset
selection, transfer learning, and ensemble learning methods. We mentioned the data sets, all of their
features, and then the selected features after the feature selection was done. We discussed the classifiers
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used in the making of the model and the performance metrics that will used to calculate the efficiency
of the model. In short, we have reviewed the technical approach to make the software defect prediction
model. The overall framework of the proposed method is presented in Fig. 1.

Figure 1: The overall framework architecture of the proposed model. The next section discusses the
analysis of the methods implemented in the software bug prediction model

4 Discussion

Software Defect Prediction methods can forecast software bugs in the initial stages of develop-
ment, increasing the efficiency and performance of the final product. Machine learning models have
proved to be very effective in achieving the required results. This section discusses the results given
by the model that we have created above and how it can be evaluated. The proposed framework is
implemented on four cleaned NASA MDP datasets and four cleaned PROMISE repository datasets
by using three individual classifiers and three ensemble methods. The statement ‘Source! Target’
represents defect prediction from the source project to the target project. For example, ‘CM1! MW1’
indicates that CM1 is regarded as the source project, and MW1 is regarded as the target project.

We took AUC values as the performance metric instead of accuracy, as accuracy sometimes gives
biased results. We can easily evaluate the comparison of performance between the individual classifiers
and the ensemble method. Apart from a few cases, we have noticed that when we trained our model
with the source dataset and changed the target dataset to test the model, our results with the ensemble
method were significantly improved. However, in a few cases, the individual classifier outperformed
the ensemble method.

To analyze the performance results of NASA and Promise datasets, Tables 5 and 6 are referred
to, respectively. Here again, we can see the performance comparison between the individual classifiers
and the ensemble method where we observe the model showed good results with the ensemble method,
but the deviation is also seen a few times where the individual classifier outperformed. Rest we see the
ensemble method taking charge.
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Table 5: Performance evaluation on NASA dataset

Sr. No. Source −→ Target Individual classifier Ensemble method

NB J48 MLP Rf Adaboost Bagging

1. CM1 −→ MW1 0.708 0.500 0.704 0.748 0.564 0.653 0.643 0.775 0.618 0.730
2. CM1 −→ PC1 0.757 0.539 0.750 0.797 0.708 0.651 0.713 0.690 0.584 0.746
3. CM1 −→ PC2 0.210 0.491 0.145 0.855 0.486 0.827 0.350 0.404 0.584 0.849
4. MW1 −→ CM1 0.729 0.446 0.627 0.709 0.694 0.648 0.691 0.725 0.648 0.728
5. MW1 −→ PC1 0.767 0.485 0.536 0.796 0.594 0.668 0.686 0.763 0.673 0.697
6. MW1 −→ PC2 0.786 0.552 0.740 0.798 0.737 0.674 0.570 0.763 0.683 0.690
7. PC1 −→ CM1 0.674 0.580 0.702 0.695 0.583 0.699 0.664 0.689 0.729 0.694
8. PC1 −→ MW1 0.755 0.681 0.652 0.745 0.563 0.498 0.624 0.748 0.663 0.725
9. PC1 −→ PC2 0.813 0.399 0.762 0.835 0.768 0.681 0.735 0.793 0.725 0.766
10. PC2 −→ CM1 0.636 0.500 0.601 0.743 0.496 0.754 0.614 0.695 0.664 0.748
11. PC2 −→ MW1 0.559 0.500 0.503 0.652 0.500 0.570 0.530 0.565 0.591 0.762
12. PC2 −→ PC1 0.756 0.500 0.748 0.763 0.508 0.724 0.570 0.767 0.721 0.799

Table 6: Performance evaluation on PROMISE dataset

Sr. No. Source −→ Target Individual classifier Ensemble method

NB J48 MLP Rf Adaboost Bagging

1. Ant-1.7 −→ Camel-1.6 0.901 0.814 0.492 0.588 0.554 0.562 0.567 0.599 0.590 0.606
2. Ant-1.7 −→ Xalan-2.4 0.695 0.820 0.754 0.752 0.661 0.807 0.717 0.725 0.739 0.777
3. Ant-1.7 −→ Ivy-2.0 0.750 0.740 0.647 0.798 0.740 0.797 0.762 0.784 0.794 0.789
4. Xalan-2.4 −→ Camel-1.6 0.628 0.653 0.705 0.583 0.507 0.563 0.588 0.576 0.603 0.619
5. Xalan-2.4 −→ Ant-1.7 0.799 0.762 0.812 0.800 0.604 0.683 0.738 0.782 0.772 0.813
6. Xalan-2.4 −→ Ivy-2.0 0.810 0.748 0.725 0.705 0.620 0.644 0.776 0.811 0.779 0.829
7. Camel-1.6 −→ Ant-1.7 0.725 0.626 0.734 0.652 0.667 0.594 0.656 0.736 0.645 0.688
8. Camel-1.6 −→ Xalan-2.4 0.698 0.603 0.700 0.649 0.620 0.577 0.638 0.708 0.642 0.663
9. Camel-1.6 −→ Ivy-2.0 0.722 0.634 0.689 0.718 0.670 0.658 0.655 0.746 0.649 0.692
10. Ivy-2.0 −→ Ant-1.7 0.769 0.737 0.712 0.776 0.702 0.707 0.669 0.777 0.746 0.768
11. Ivy-2.0 −→ Camel-1.6 0.815 0.801 0.864 0.985 0.833 0.953 0.924 0.810 0.952 0.905
12. Ivy-2.0 −→ Xalan-2.4 0.602 0.545 0.584 0.557 0.568 0.498 0.524 0.618 0.595 0.605

4.1 Effect of Individual Classifiers on the Performance of Model

In a machine learning model, data is classified using classifiers that help train the model and
then test it on the data to check its performance. For this purpose, in the proposed framework, the
model is first built using individual classifiers and observing their efficiency. When the model is trained
using the NASA dataset with individual classifiers, we observe certain trends in the performance. The
individual classifiers used were Naive Bayes (NB), J48, and Multi-Layer Perceptron (MLP). Out of
twelve iterations, they outperformed the ensemble method only two times. Both these times, Naive
Bayes (NB) gave better results. This shows that a combination of multiple classifiers can improve the
performance of the software bug prediction model. During the training and testing of the Promise
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dataset with NB, MLP, and J48, we observed that these individual classifiers again gave better results
twice. But this time NB outperformed, and the other time, MLP performed well. The achieved AUC-
ROC values were remarkably good.

4.2 Effect of the Ensemble Method on the Performance of the Model

Upon employing Bagging and Boosting on the individual classifiers mentioned above and using
Random Forest as the third ensemble method, we tried to investigate how the performance of the
model varies with the use of multiple classification methods.

The model, when trained and tested on the NASA dataset using Bagged and Boosted versions
of NB, J48, MLP, and Random Forest, we found that Random Forest showed excellent results most
of the time. The lowest performance was given with the Boosting algorithm, while Bagged MLP also
performed well in three places. The promise dataset showed a different trend. On using dataset projects
from the Promise dataset, Bagged NB performed better than all, while RF and Bagged MLP showed
good results in two places each.

5 Result Analysis
5.1 Tool Used

In this study, experiments are performed using Weka, an open-source data mining tool under
GNU (General Public License), developed in Java language at the University of Waikato, New
Zealand. As a collection of machine learning algorithms with a variety of tools for data preparation,
classification, regression, clustering, association rules mining, and visualization, this tool has been
widely used in data mining studies [34]. Weka is usually preferred due to the ease it provides because of
its graphical user interface. It contains numerous algorithms from which any of choice can be selected,
their parameters can be tuned, and finally run on the desired dataset. One dataset can have different
models applied to it, and the output that meets the requirement can be chosen. Most of the functions
are built therefore, the researcher does not have to worry about learning languages and can focus on
his work alone. Weka requires the input in the formatting of Attribute Relational File Format while
the filename should have the extension of raff. The output received is easily readable and can also be
visualized.

5.2 Performance Evaluation on NASA and PROMISE Datasets

The performance of machine learning model is dependent on many factors. Our goal in this study
was to check if optimizing the model using multiple classifiers works well. A relative comparison of
individual classifiers and ensemble-based methods shows that, generally, the use of multiple classifiers
in ensemble methods performed better as compared to the individual ones across all the datasets.
However, our results indicate that minor deviations are there which can be corrected with a few more
optimizations such as tuning of parameters, class balancing, and feature selection using different
techniques. The findings also show that there was a vulnerability in the performance of classifiers,
as certain classifiers exhibited good performance in some datasets but compromised in others. This
makes it abundantly clear that there is no one predominant classifier, which may be due to the nature
of the classifier used to train or test a particular dataset or even the nature of the dataset that was
trained on the classifier and also the dataset that was tested with it.

To further review our results, we have performed a box-plot examination of the results obtained.
The box-plot analysis is considered a non-parametric test that presents the variation in the samples
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without making any assumptions about the statistical distribution of the data [35]. Figs. 2 and 3
demonstrate the results obtained from box-plot analysis for both NASA and Promise datasets. The
box plot for the NASA dataset is shown in Fig. 4, and the box plot for the Promise dataset is shown in
Fig. 5. The diagrams of the Box-plot yield the minimum, first quartile, maximum, and third quartile
values of a sample, whereas the center of the box plot shows the median value. The varying heights,
medians, and tails reveal that there are variations in the performance of the classifiers, and no one
classifier performed consistently. This increases the odds of considering other factors of a prediction
model and exploring those for better results.

Figure 2: Accuracy of multiple machine learning techniques on PROMISE datasets

Figure 3: Accuracy of multiple machine learning techniques on NASA datasets

The selected classifiers have been chosen for their different nature of work as Naive Bayes works
on probability, J48, which is a trimmed version of C4.5 decision tree [36], MLP, which is an artificial
neural network, Random Forest that consists of decisions trees while using bagging and feature
randomness during classification, Bagging and Adaboost are the ensemble learning methods. So,
these classifiers perform differently yet are strong enough to give us good insight into our model
performance. Although with our currently used datasets, J48 and Adaboost have not performed very
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well, whereas Bagged NB, Bagged MLP, and Random Forest have given good results. Therefore, our
outcomes suggest that the detection of software defects should make use of ensembles as predictive
models. The BAR plots, attained by all classifiers, of ROC-AUC scores are shown in Figs. 4 and 5.
It tells us there is no single dominant classifier, which may be due to the nature of the datasets. For
instance, Random Forest and bagging MLP classifiers performed well on multiple NASA datasets,
while Bagging MLP and Naive Bayes classifiers achieved the highest ROC-AUC scores for Promise
datasets.

Figure 4: Boxplot NASA dataset

Figure 5: Boxplot PROMISE dataset

6 Conclusion

Software Bug Prediction is an active research area and is being widely explored using machine
Learning. This paper proposes a framework based on ML techniques like feature selection, transfer
learning, and classification through ensemble methods. The experiment is carried out on four NASA



CMC, 2024, vol.78, no.3 4395

MDP and four PROMISE datasets. The results revealed that, generally, the use of multiple classifiers in
ensemble methods performed better as compared to the individual ones. So, we compared the results by
using individual NB, J48, MLP, and ensemble methods that included Random Forest, AdaBoost, and
Bagging, where the latter two served as meta classifiers with NB, J48, and MLP as their base classifier.
However, our results indicate that minor deviations are there, which reveal different dimensions of a
prediction model. Another observation made during the development and analysis is that to get the
best results, we need to have a fine-tuned data set, prepare the dataset with good features for the model
to be trained and optimized on, and choose excellent classifiers to increase the predictive ability of the
model. Future work can be carried out on the above-mentioned dimensions to enhance the predictive
ability of the model as multiple factors are involved to create a generalized model.
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