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ABSTRACT

Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learn-
ing (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies
on expert input and necessitates substantial manual involvement. This manual effort spans model development,
feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity
of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple
junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the
variant of Recurrent Neural Networks, harnessing memory cells and gating mechanisms to facilitate long-term
time series prediction. However, forecasting accuracy by particular neural network and traditional models can
degrade significantly, when addressing long-term time-series tasks. Therefore, our research demonstrates that this
innovative approach outperforms the traditional Autoregressive Integrated Moving Average (ARIMA) method
in forecasting long-term univariate time series. ARIMA is a high-quality and competitive model in time series
prediction, and yet it requires significant preprocessing efforts. Using multiple accuracy metrics, we have evaluated
both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.
Furthermore, our findings indicate its superiority over alternative network architectures, including Fully Connected
Neural Networks, Convolutional Neural Networks, and Nonpooling Convolutional Neural Networks. Our AutoML
approach enables non-professional to attain highly accurate and effective time series forecasting, and can be widely
applied to various domains, particularly in business and finance.
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1 Introduction

Time series forecasting is an important and active research area for statistical learning and
machine learning, such as supply chain and financial industries where accurate forecasting is essential.
For example, in the consumer goods domain, improving the accuracy of demand forecasting by 10%–
20% can simultaneously reduce inventory by 5% while increasing revenue by 2%–3% [1]. To solve
time-series forecasting tasks, the methods can be categorized into three categories: linear modeling,
deep learning, and Automated Machine Learning (AutoML) [2].
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Currently, machine learning-based tasks need professionals to understand and build traditional
time series forecasting models, and also require significant manual efforts. Moreover, it is time-
consuming to develop a useful time series forecasting model, because it starts from data preprocessing,
feature engineering, and hyper-parameter tuning to the construction of a time-series model. Only a
small number of data scientists are qualified to perform the tasks. These factors significantly limit
the scope of use for time series forecasting models. AutoML strives to solve one of these problems by
automatically finding a suitable machine learning model [3]. Additionally, Neural Architecture Search,
the process of automating architecture engineering, has been introduced to efficiently search for the
best-performing model architecture given learning tasks and datasets [4,5]. Some more dedicated
AutoML approaches for time series forecasting problems have been explored recently, which are the
robustness and optimization of AutoML [6–8]. To overcome these limitations, AutoML has been
studied by the Google Brain Team [1], and Liu et al. [9] as a potential alternative. AutoML approaches
use raw data as input to produce a high-quality model output without human intervention. However,
the forecasting accuracy for both approaches significantly deteriorates in long-term forecasting.

Therefore, this article provides a comparative analysis between multiple neural network systems
and the traditional time series model. We aim to expand upon the initially identified applications,
by delving into the realm of traditional statistical and AutoML time series forecasting, with an
emphasis on marketing, finance, energy, and economics. Throughout the years, some variants of
Recurrent Neural Networks (RNN) architecture have been developed and advanced, to address the
limitations of vanilla RNN, which are long-term dependency, vanishing, and exploding gradient
problems. Two variants of RNN, Long Short-Term Memory (LSTM) [10] and Clockwork Recur-
rent Neural Networks (CW-RNN) [11], can be found effective when solving long-term time-series
forecasting tasks. This article also shows that the short-term forecasting accuracy of this system has
competitive quality compared to manually crafted models created using traditional Autoregressive
Integrated Moving Average (ARIMA) method. Other network systems under experimentation include
(1) Fully Connected Networks (FNN); (2) Convolutional Neural Networks (CNN); (3) Nonpooling
Convolutional Neural Networks (NPCNN) [9].

Time series data includes three significant components: trends, seasonality, and time lag correla-
tions. Time series with trends does not satisfy the stationary condition, so traditional statistical models
have to be applied after the time series is adjusted to be stationary. To address seasonality, one of
the traditional statistical approaches such as ARIMA uses certain seasonal adjustments to remove
seasonal variations [12]. Thus, it can proceed to model the autocorrelation.

As machine learning techniques keep developing, Neural Network (NN) has become one of the
most commonly used methods on time series data in recent research. Neural Network is also known
as Artificial Neural Network (ANN) and is the core of deep learning algorithms that can be applied in
predictive models. NN was inspired by the human brain with imitation of biological neurons sending
signals to one another and a neural net can be constructed by thousands of processing nodes through
their interconnections. Using NN to build high-quality predictive models, the neurons in NN will
recognize and memorize the patterns in the big data [13].

NN is also a flexible tool in modeling that has different types of network architecture, such as
FNN and RNN. FNN is a basic NN structure that consists of a series of fully connected layers and
each neuron in a certain layer can connect to each neuron in the other layers. Fig. 1 is an example of
basic FNN architecture that contains an input layer, 2 hidden layers, and an output layer. However, the
limitations of FNN exist in the seasonal and trended time series because it is difficult for FNN to access
multiple past data points and capture the seasonality. Zhang et al. [12] have shown their finding of FNN
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in seasonal and trended time series with experiments and have proved this assumption. According to
Paoli et al. [14], they tended to show that a preprocessing step to detrend and deseasonalize time
series data is unnecessary before fitting ANN because it gives the best forecasting results in certain
conditions.

Figure 1: Basic FNN architecture

A CNN is the regularized version of an FNN that builds up with additional convolution layers,
pooling layers, and a fully connected layer. CNN is widely applied in image, video, and speech
recognition. Abdel-Hamid et al. [15] have found that CNN can reduce the error rate by 6% to 10%
when compared with baseline FNN on speech recognition tasks. They indicate that CNN has three
key properties: locality, weight sharing, and pooling. The purpose of the convolutional layer and
pooling layer from CNN is to extract the significant features, as well as the patterns that can reflect
the important components in time series data. In the findings of [9], an NPCNN is the same as the
structure of a CNN except for the removal of the pooling layer. Liu et al. have proposed that NPCNN
along with rectified linear unit (ReLU) activation function and Adam optimizer performs the best in
time series with seasonality and trends since it is an optimal method for both linear and nonlinear
datasets and does not require human intervention.

Since the 1990s, an RNN has been one of the important parts of neural network research. An
RNN is one class of neural network and is particularly designed for sequence models [16], so it has
been widely used to solve time series and ordered data tasks. Nowadays, the application of an RNN can
range from sentiment classification to stock price forecasting. Fig. 2 is an RNN architecture that also
contains an input layer, 2 hidden layers, and an output layer. Different from an FNN, RNN includes
a recurrent network in the hidden layers which can be feedback as input data to the current step.
The design of the recurrent network in an RNN enables to capture of the sequential information and
storing it in the memory state. In 1990, Werbos introduced the approach of backpropagation Through
Time (BPTT), which is the extension of the RNN [17]. BPTT is a gradient-based method to train the
RNN as the sequence of the network along with time evolution.

Employing recurrent networks and BPTT in Vanilla RNN can prove advantageous for short-term
time-series forecasting tasks. This is due to its simpler architecture, faster computational complexity,
and its tendency to retain recent memories. However, BPTT in RNN usually suffers from exploding
and vanishing gradient problems, since the backpropagated error in temporal evolution exponentially
increases or decreases based on the size of the weights. The potential problems can cause the oscillating
weights and the prohibitive amount of time taken by learning to bridge long time lag [10]. Hochreiter
et al. [10] proposed an RNN variant, LSTM, to address the problems, that is enforcing constant error



3532 CMC, 2024, vol.78, no.3

flow through internal states of special units. Moreover, another RNN variant, CW-RNN aims to solve
the long-term dependency problem by having different parts of the RNN hidden layer running at
different clock speeds, timing their computation with different and discrete clock periods [11]. And
yet, updating the neurons in the different clock rates can impact the captures of temporal patterns in
the time series forecasting tasks. LSTM is more proper to overcome the long-term dependency problem
by its memory cells and gating mechanisms.

Figure 2: RNN architecture

Although the adaptability inherent in machine learning models presents some advantages, their
effectiveness heavily relies on access to extensive and high-quality datasets, which can be challenging.
Some novel time series modeling approaches have been discussed and developed in diverse sectors,
including biological systems and chemical processes. For example, the development of a deep hybrid
model integrating first integrate first-principles models and deep neural network (DNN) [18,19]; the
development of a deep hybrid model integrating universal differential equation and DNN [20,21];
the development of hybrid model integrating time-series transformer framework [22–24]. These
hybrid models are designed to enhance comprehensibility predictive accuracy and system-to-system
transferability. They also come with principal applications, including the hydraulic fracturing process,
intracellular signaling pathways, control in the industrial fermentation process, and crystallization
process. We aim to delve into time series forecasting in multiple economic-related domains as well as
the versatility of LSTM, inspired by these integrations of machine learning models.

ARIMA was first introduced in the 1970s [25]. In this article, ARIMA is the typical and traditional
statistical model used to compare with an RNN. Before applying the ARIMA, it tends to obtain the
stationary time series, which means a preprocessing step for non-stationary time series is essential. Liu
et al. [9] were not able to show ARIMA modeling results on simulated data until the data was detrended
and deseasonalized. In addition, Zhang et al. [12] concluded that the performance of detrended and
deseasonalized data in NN models was significantly better than ARIMA. However, a preprocessing
step for non-stationary data does not agree with the state-of-art of AutoML.

The assumption over the performance of ARIMA on long-term time series forecasting is not as
good as the performance of the RNN, given the fact that the RNN can have internal memory. From the
structure of an RNN aspect, the output can be fed back as the input for the next step. In this article, we
design and generate experiments with simulated time series data and real data to prove our hypotheses.
FNN is considered as the baseline model, to study the effect of recurrent network and BPTT in Vanilla



CMC, 2024, vol.78, no.3 3533

RNN and LSTM. The combination of the ReLU activation function and Adam optimizer is used in all
the NNs in our experiments. To obtain a comprehensive analysis of long-term time series in AutoML,
we also include the modeling results of the CNN and the NPCNN. The empirical result in this article
is one step advance in developing a fully AutoML system with the following three contributions: (1)
Full Automation: the proposed system will take pre-processed data input to produce a model as output
without human intervention. (2) Adaptability: this system will work for most time series forecasting
tasks and automatically searches for the best model configurations. (3) High-quality: this proposed
system will offer high-quality models on different types of time series data.

Meanwhile, long-term time series forecasting presents various challenges. The primary limitations
encompass: (1) Data quality issues, such as missing values and high intermittency in real-time-series
data. (2) External uncertainty, as the accuracy of predicting future values based on historical data
proves inadequate. (3) Model degradation, where traditional statistical and certain machine learning
models struggle to capture trends and patterns due to the long-term dependency of time series.

The proposed method, utilizing LSTM RNN, showcases improved performance in univariate time
series forecasting. In addition, this approach empowers non-professionals to effectively engage in time
series forecasting, yielding superior results compared to the traditional ARIMA model crafted by
experts in both long-term and short-term scenarios.

The rest of the article is organized as follows. Section 2 reviews the preliminary knowledge
of time series, the theoretical foundation of the ARIMA, and multiple neural network systems.
Section 3 discusses our research design and explains the setting of multiple NN models and ARIMA.
Section 4 gives a comparative analysis and presents empirical results. Section 5 concludes our research,
summarizing the findings. In Section 5, we delve into potential future research directions, emphasizing
extending our methods to long-term multivariate time series forecasting and time series forecasting
involving multiple covariates.

2 Methodology

This section discusses the basis of time series and how the traditional statistical model ARIMA
and multiple NNs apply to time series data.

2.1 Seasonality and Trends in Time Series

Time series data can include two important patterns: seasonality and trends. Seasonality occurs in
time series when patterns repeat in a fixed period. Trend occurs when long-term time series increases
or decreases, and it is usually described with a linear function. Most non-stationary time series data
involve seasonal and trended patterns.

The multiplicative decomposition of seasonal and trended time series can be described as Eq. (1).

Xt = Tt × St + et (1)

where at time t, Xt is the value of time series, Tt is the trend component, St is the seasonality component
and et is the noise. Before analyzing seasonal and trended time series, the decomposition of the time
series is essential. Seasonality can be presented by the plot of the partial autocorrelation function for
each seasonal lag. The trend can be explained by the correlation between Xt and Xt−k, where k is the
length of the cycle.
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With neural networks, no specific assumptions need to be made about the model, and the
underlying relationship is determined solely through data mining [12]. NN can automatically recognize
seasonal and trend patterns.

2.2 Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA

ARIMA and seasonal ARIMA are traditional statistical approaches to forecasting time series
data. If time series is non-stationary, decomposition of time series has been applied to remove the
effects of seasonality and trend.

ARIMA (p, d, q) is a classical statistical method that is generalized by the integration of Autore-
gressive (AR) and Moving Average (MA) and makes the non-stationary data stationary by taking the
difference between current data values and previous data values. p is the order of AR, d is the degree
of differencing and q is the order of MA. For trended time series, ARIMA (p, 1, q) takes the degree of
1 difference of the time series values as Eq. (2).

Δyt = yt − yt−1 (2)

where yt is the future value and yt−1 is the previous value.

The work by Box et al. [25] on the seasonal ARIMA model has had a major impact on the
practical applications of seasonal time series modeling. ARIMA model needs that data to be seasonally
differenced to satisfy the stationarity condition. In the ARIMA (p, d, q) × (P, D, Q)s model, p, d, q
represent nonseasonal factors and P, D, Q represent seasonal factors. Thus, the ARIMA (p, d, q) ×
(P, D, Q)s model follows Eq. (3).

ΦP (Bs) φ (B)∇D
s ∇dxt = δ + ΘQ (Bs) θ (B) wt (3)

where s is the length of the cycle, the polynomials φ(B), θ (B) of orders p, q respectively represent the
AR part and MA part, ΦP(Bs), ΘQ (Bs) of orders P, Q respectively represent the seasonal AR part and
seasonal MA part, ∇d = (1 − B)

d is the nonseasonal component and ∇D
s = (1 − Bs)

D is a seasonal
component.

To address seasonality and trends in time series, human intervention is required if applying
ARIMA to model time series. We need to manually select the parameters p, d, q, P, D, Q of ARIMA
when we solve every time-series task. However, neural network models can give more efficient solu-
tions, since the selection of parameters is no longer needed and particular assumptions are unnecessary
for modeling. Thus, deep learning can determine and investigate the underlying relationship of time
series data. This data-driven approach is one of the most important advantages of neural networks in
solving many complex real-world forecasting problems [12].

2.3 Fully Connected Network (FNN)

A FNN is a basic neural network model that contains only fully connected layers. Fully connected
layers can employ the different activation functions, to have linear or nonlinear transformation to an
input vector along with weight matrix and bias. Fully connected layers are usually placed at the end of
the sequence of layers in NNs, so they generate the outputs. For the time series forecasting tasks, the
input nodes are the previous lagged observations while the output provides the forecast for the future
value [12]. Simply, the model can be expressed mathematically, for m is the number of input nodes, n
is the number of hidden nodes,

yt = α0 +
∑n

j=1

(∑m

i=1
βijyt−i + β0j

)
+ εi (4)
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where yt, yt−i are future values and previous lagged observations respectively, f can be some activation
functions, α0, β0j are the bias terms, αj is the weight vector from hidden layers to the output layer, and
βij are weights from the input layer to hidden layers.

The fully connected layers can be applied in hidden layers to transform the inputs to higher
dimensional data to prepare for the other NN models.

2.4 Convolutional Neural Network (CNN)

CNN is a regularized version of FNN that contains convolution operation and pooling operation.
The purpose of the convolution layer is to extract the features from the input data. A filter or
convolutional kernel is a smaller matrix in spatial dimensionality. The convolution layer convolves each
filter across the dimensions of input to produce a two-dimensional activation map [26]. As the filters
slide through the entire input data, element-wise multiplication is operated at each corresponding
region. Thus, it generates a feature map that can highlight and capture learned features. A CNN
uses convolution in at least one of its layers. The flexibility of the CNN can be well modeled for
image classification, video recognition, time series, etc. As we introduce the specific attributes of FNN
previously, the networks are fully connected and tend to overfit the data. The pooling layer is organized
into feature maps, and the number of feature maps in the pooling layer and in the convolutional layer
are the same, except the size of the map is smaller. The purpose of the pooling layer is to reduce
the resolution of feature maps [15]. A CNN takes another approach to regularize NN that finds
the hierarchical pattern in the data, extracts the internal components, and uses simpler and smaller
patterns to compose another pattern.

We intend to use a CNN to predict the future value X_t in the time series. Given any time series,
the equation follows Eq. (5).

Xt = f (Xt−1, Xt−2, · · · , Xt−k) + εt (5)

where Xt−1, Xt−2, · · · , Xt−k are the previous lagged observations, f are some functions and εt is the error.
The previous lagged observations are fed into hidden layers to extract and pattern. CNN’s framework
performs well in terms of discovering and extracting the internal structure of data [27].

2.5 Nonpooling Convolutional Neural Network (NPCNN)

The structure of an NPCNN is the same as the structure of a CNN, except for removing the
pooling layer, which makes NPCNN contain convolutional layers and fully connected layers. What is
the contribution of the pooling layer in CNN? The very success of CNNs on visual object recognition
tasks was thought to depend on the interleaved pooling layers that purportedly rendered these models
insensitive to small translations and deformations [27]. The pooling layer allows representations to
vary very little when elements in the previous layer vary in position and appearance [28]. In CNN,
the pooling layers can cause the loss of information, but it can be neglected if we aim for image
classification.

Being different from image classification, we do not want to lose some important information
when it comes to time series forecasting. In [9], Liu et al. have studied and reported the effects
of convolutional layers and pooling layers in CNN. Their empirical results provide an important
suggestion when modeling seasonal and trended time series with CNN to avoid pooling layers in the
network.
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2.6 Backpropagation Through Time (BPTT) and Recurrent Neural Networks (RNN)

An RNN is a type of ANN that allows previous outputs to be fed as inputs to the current step
within the hidden layers. The recurrent connections in the RNN allow saving the “memory” from the
past to predict current and future data values, so the effect of recurrent networks brings particular
advantages to the RNN. Therefore, RNNs are widely applied in sequential and time series data.

Distinguished from the other NNs, the weights of parameters in the RNN are the same within the
network, because the gradients from outputs at the current time step are dependent on outputs from
the previous time step. Thus, it can reduce the complexity of parameters. The weight of parameters can
be determined and adjusted by the BPTT algorithm. BPTT is an extension to basic backpropagation,
and it can be applied to dynamic systems. This allows one to calculate the derivatives needed when
optimizing an iterative analysis procedure, a neural network with memory, or a control system that
maximizes performance over time [17]. For instance, in the dynamic system, if we need to recognize
moving objects in the NN, the action at time t is required and determined by the memory at time t−1.

The loss function L in the RNN at all times depends on all the loss at each time step, and the math
expression follows Eq. (6).

L
(
ŷ, y

) =
∑T

t=1
L

(
ŷ〈t〉, y〈t〉) (6)

Furthermore, the BPTT algorithm computes the gradient at each time step t using the loss
function, such as Eq. (7).

∂

∂W
L(T ) =

∑T

t=1

∂

∂W
L(T ) |(t) (7)

where W is the weight matrix.

Fig. 3, [28] presents the unfolding RNN in time and the complete computation process in the
RNN structure.

Figure 3: Unfolding RNN (LeCun et al. [28])

Note that xt is the input at time step t, st is the hidden state at the time step t and the black box
is the delay of one time step. As a result, it has become the internal memory in the RNN. st can be
calculated as Eq. (8).

st = f (Uxt + Wst−1) (8)

Also, ot is the output at time step t and the same parameters (U , V , W) are shared across the time.
To forecast the future data values in the time series data, applying the activation function can generate
the output at each layer of RNN.



CMC, 2024, vol.78, no.3 3537

2.7 Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber [10,29] discovered the vanishing and exploding gradient problems in
the Vanilla RNN. According to the gradient-based algorithms, such as Real-Time Recurrent Learning
and BPTT, the gradients of the loss function can become smaller and converge to zero; become larger,
and diverge, as the current error signals backpropagate in time. Hence, LSTM is introduced with
memory cells and gate units to solve the long-term dependency problems and improve long-term time
series forecasting tasks.

A memory cell block consists of an input gate, a forget gate, and an output gate. S memory cells
sharing the same input gate and output gate form a structure called a “memory cell block of size S”.
The input gate is to store and protects the memory information from perturbation by unnecessary
input. The forget gate is to look for and discard information from the block. The output gate can
determine what memory to remove from the block. The gate units aim to control the error flow from
input connections to output connections [10]. Fig. 4 illustrates the operational principles and roles of
memory cells within an LSTM architecture. The system comprises 8 input units, and 2 memory cell
blocks of size 2, along with 4 output units. Within the layers, each gate unit and memory cell can see
all non-output units. Given a sequential data input, the networks initialize the input and form the
memory cells and gate units. Within the memory cells, it takes inputs at the current time step and
applies the activation function to connect the previous hidden state at the input gate; discards the
irrelevant memory at the forget gate and updates memory; it leads updated memory to the output
gate. Then, it can output the current values based on passing the previous states.

Figure 4: Memory cell in LSTM architecture (Hochreiter and Schmidhuber [10])

Therefore, during the BPTT, the gradients can propagate unrestrictedly through the three gates
within the memory cell. Thus, it involves multiple learnable parameters: input weights, recurrent
weights, and bias terms. Across the multiple time steps, it allows us to learn and update each parameter
in LSTM while training to minimize the error. Hence, the LSTM system is better at retaining useful
long-term memory and not losing short-term memory.

2.8 Rectified Linear Unit (ReLU) Activation Function & Adam Optimizer

Activation functions are well developed to apply in NNs, and some activation functions are most
commonly used, such as linear function, ReLU, and Sigmoid function.

The purpose of the non-linear activation function in NNs is to generate non-linear output in
the model. ReLU is one of the activation functions in deep learning, which indicates the non-linear
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function. It aims to resolve the vanishing gradient problem in the RNN. The definition of ReLU is
expressed as the positive part of the argument and its mathematical expression of ReLU is

f (x) = x+ = max (0, x) (9)

where x is input to a neuron in NN.

Adam optimizer is an optimization algorithm that is the derivation of stochastic gradient descent.
It is used to update weights iterative in the NNs. In a large number of recent deep learning studies,
Adam optimizer is shown empirically to outperform the other gradient-based and stochastic gradient-
based optimization methods.

The empirical findings have shown and suggested that the combination of ReLU activation
function and Adam optimizer is the best and most efficient when modeling in the baseline FNN [9].
Therefore, in Section 3, we will adopt this combination in all of the NN models.

3 Research Design

This section presents the experiment setting of ARIMA and NN models, demonstrates the
potential challenges of long-term time series forecast using simulated data and real data, and provides
the modeling strategy to overcome the challenges. Both simulated data and real data are trended and
seasonal, so how the models address these two components in the time series is important to our study.

In the experiment, ARIMA serves as the traditional statistical model, which is widely applied
to time series forecasts. At the same time, FNN serves as the baseline model for the NNs, since its
structure is simple and direct. The characteristics and capabilities of CNN, NPCNN, and RNN can
be specified when constructing the neural network system. The purpose of this article is to provide the
empirical results, so two main questions are investigated as follows:

1. How is the data preprocessing conducted in the ARIMA and NNs? Will data preprocessing
significantly improve the forecasting performance?

2. Is an RNN able to overcome the trends and seasonality components of time series, and
outperform the traditional statistical method ARIMA and other NNs in long-term time series
forecasting?

3.1 The Simulated Data

The idea of simulated time series data was originally adopted from [12], but the simulated data
needs to be generated and adjusted following our research goals.

The data uses month as a unit, so it can be closely and commonly applied to economic and business
real data. Additionally, monthly time series are more challenging for forecasts, because they have more
seasons to deal with the other types of seasonal data such as quarterly time series [12]. Similar to
Eq. (1), the mathematical expression of the multiplicative model follows Eq. (10).

yt = Tt × SIt + et (10)

where at time t, Tt = 100 + 0.6t represents the linear trend components, SIt represents seasonal
components referred to in Table 1, and et represents the error term using the Gaussian noise N

(
0, σ2

)
.

Among the options of σ = 1, 5, 15, σ = 15 is selected, because the range of noise distribution can be
larger and the simulated time series is closer to real data.
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Table 1: Seasonal indexes for the simulated data

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Seasonal indexes (SI) 0.75 0.80 0.82 0.90 0.94 0.92 0.91 0.99 0.95 1.02 1.2 1.8

The long-term time series forecasting task is difficult and unexpected. Instead of simulated data
having a stable linear growth, we decided to modify the data by increasing 40% values from t = 156
to t = 180. The purpose of modification is to make the simulated data more complex, so it can mimic
some real data. Fig. 5 is shown as the plot of the simulated time series after the adjustment.

Figure 5: The simulated time series after adjustments

The total number of simulated data points is 180. For data partition, the training set includes the
first 156 data points, and the test set includes the remaining 24 data points. As a result, data splits in
such form of a 156-months training set and a 24-months test set (unknown forecast lengths).

3.2 The Real Data

The real data is the monthly wine sales collected by the database of analytical results of the
Australian Wine Research Institute’s Commercial Services Group [30]. Both real data range from
January 1980 to December 1994, and the dataset includes white wine sales and red wine sales in such
time order. Fig. 6 shows the plots for white wine sales and red wine sales, respectively.

In this study, white wine sales and red wine sales are both treated as independent univariate time-
series data and thus, the correlation between white wine sales and red wine sales is not considered.

The number of simulated data points is the same as the number of each real dataset. Similarly, the
data partition for each real dataset follows: the training set includes the first 156 data points and the
test set includes the remaining 24 data points.
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Figure 6: The real data

3.3 Modeling Strategy

The modeling strategy discussion is separated into two parts: how to develop the traditional
statistical model ARIMA and how to develop the deep learning model NNs.

At first, it is essential to determine if the time series is stationary before modeling ARIMA. To
determine if the time series data is stationary, the Augmented Dickey-Fuller (ADF) test is commonly
applied. The ADF is the extension of the Dickey-Fuller test, so the model of ADF is given as Eq. (11).

Δyt = c + βt + γyt−1 + δ1Δyt−1 + · · · + δp−1Δyt−p+1 + εt (11)

where c is a constant, β is the coefficient for trend and p is the lag order of the AR process.

The ADF is used to test the null hypothesis assuming the presence of unit root in the time series.
With significance level α = 0.05, if the p-value calculated from Eq. (10) is greater than α = 0.05, then
we can conclude this time series is stationary; otherwise, it is non-stationary.

A time series needs to lack trend and seasonality to be stationary, where the trend and seasonality
may affect a time series at different instants and result in inaccurate predictions [31]. Therefore, the
preprocessing step of deseasonalization and detrend (DSDT) of non-stationary time series is necessary
before proceeding to ARIMA.

The results of the ADF test show that simulated data and both real data are non-stationary time
series. Given a range of parameters in ARIMA (p, d, q) × (P, D, Q)s, it requires to use grid search
algorithm to target the best combination of parameters’ values among all the possible combinations.
Grid search can be used with ARIMA and other models where it proved efficient. It tries a set of
possible hyper-parameters applied to the task at hand [2]. However, grid search algorithms can be
computationally expensive and require enough manual effort. Each time series modeled by ARIMA
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has to experience the grid search because the ARIMA results in different parameter combinations for
different time series data.

For the simulated data and both real data, the ARIMA model is trained using the 156-month
training set and aims to predict a 24-months test set. Details of empirical findings will be provided in
the next section.

Secondly, let us discuss the experimental setting for NNs. Please note all of the neural network
models are applied by the open-source software Keras and TensorFlow.

In our research, a FNN is considered a baseline model among all the NNs. The construction
of CNN, NPCNN, Vanilla RNN, and LSTM will be modified based on the construction of FNN.
Although we notice that simulated data and wine sales data are non-stationary, the state-of-the-art
AutoML and NN systems do not require time series deseasonalization and detrend, so this data
preprocessing step can be omitted. Moreover, data normalization can be applied based on the nature
of the task. To train neural networks with univariate time series data on the Keras interface, the scaled
training set needs to be proceeded to TimeseriesGenerator. Thus, a univariate time series can generate
batches of input-output pairs. The input_shape in the modeling includes length of 12 with 1 feature.
To keep the consistency of the experiment, the process of obtaining the input and output pairs should
be consistent for the test set. Furthermore, the input data needs to be reshaped to proceed to the
input layer according to the characteristics of a certain type of layer. The FNN in the experiment
includes 4 layers: an input layer based on the shape of generated_batches, 2 hidden layers (Dense(64)
and Dense(16)) both using ReLU activation functions, and an output layer using Linear activation
function. On the Keras interface, an FNN is constructed by multiple dense layers and the number of
neurons or units can be selected based on the complexity of the problem. Dense(64), one of the hidden
layers, represents that the output space dimension is (None, 64). Then, (None, 64) becomes input,
proceeds to the next hidden layer, and Dense(16) generates the output as (None, 16). The neurons in
each layer contain the weight and bias, so backpropagation is used to learn them. ReLU is not linear,
thus it has the flexibility to make the arbitrary shape and approximate the domains. In the output
layer of FNN, Dense(1) with Linear activation function is used, since it aims to solve the regression
problem. The model is compiled by defining the Adam optimizer and mean absolute error (MAE)
loss. It indicates that the loss will be minimized by the optimizer during the training process.

A CNN is constructed based on the construction of FNN. Other than the layers in the FNN,
one convolutional layer with 8 convolutional kernels (Conv1D) and ReLU activation function, and
one pooling layer with ReLU activation function (MaxPooling1D) are added in the hidden layers.
When training CNN, time series data is considered as one dimensional or flattened image, thus we
use Conv1D and the number of convolutional kernels indicates the length of the one-dimensional
convolution window. Reference [9] tested the uses of two types of pooling layers with the metrics mean
square error (MSE): AveragePooling1D and MaxPooling1D, and the results of MaxPooling1D show
the lowest errors. In addition, to proceed to the Conv1D layer, the shape of inputs required to be
three-dimensional with batch size, the number of timesteps, and the number of features. The use of the
pooling operation in CNN is to downsample and reduce the inputs, so it helps avoid overfitting. Since
the dimension of inputs is a three-dimensional tensor, CNN should flatten (Flatten) the inputs, so it
can well proceed to the output layers with the Linear activation function.

The construction of NPCNN is the same as CNN, except for removing the pooling layer
(MaxPooling1D). To consider the effect of seasonality and trends, the removal of the pooling layer
can improve the long-term forecasting results. The details are discussed in Section 4.

Given the FNN as the baseline, a fully connected RNN layer with 128 neurons and ReLU
activation function (SimpleRNN) is added and the remaining layers remain the same as in FNN. The
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shape of inputs should be based on generated_batches by the TimeseriesGenerator, but SimpleRNN
outputs in the two-dimensional form, so a flattened layer is not necessary for RNN. The reason for
that is the fully connected RNN layer processes input sequences one-time step at a time and produces
an output vector for each time step. Furthermore, the output vector of each time step becomes a
function of the input vector of that time step and the internal state which RNN particularly owns.
However, a Vanilla RNN can easily suffer from learning dependencies. To improve the performance,
we can highly recommend an LSTM. It is an RNN variant, so it can be superior compared to the other
methods because its internal state can be updated based on previous “memory”and current inputs, and
also retain the long-term dependency. From the efficiency perspective, LSTM is more computationally
intensive than Vanilla RNN, because of the memory cells and gate mechanisms. The experimental
diagram is given by Fig. 7A , in order to clearly demonstrate our computational approach. When
constructing LSTM networks as Fig. 7B, the LSTM layer is selected in addition to the FNN baseline
model.

Figure 7A: Experimental diagram

Figure 7B: LSTM structure

4 Empirical Findings

The previous section introduces the simulated data and both real data and discusses the experi-
mental setting of ARIMA and NNs, so this section aims to show and interpret the empirical results
from the experiments. The empirical results include the performances and visualizations of long-term
forecasts of the test set. In the experiment, the evaluations of models are not only on the whole test
set, but evaluations of the first 6, 12, 18, and 24-month data of the test set are also shown.
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Three accuracy metrics are used for model evaluation: (1) Mean Absolute Percentage Error
(MAPE), (2) MAE, and (3) Root Mean Square Error (RMSE). The formulas of metrics follow
Eqs. (12)–(14).

MAPE = 100% · 1
n

∑n

t=1

∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣ (12)

MAE = 1
n

∑n

t=1

∣∣∣Ŷt − Yt

∣∣∣ (13)

RMSE =
√

1
n

∑n

t=1

(
Yt − Ŷt

)2

(14)

where t is time, Ŷt is the predicted value at t and Yt is the observed value at t.

MAE and MAPE are more important measurements in the time series modeling evaluation. To
observe if there is any inconsistency in modeling performance, MSE and RMSE are also applied and
referred to. MSE and RMSE are commonly used to evaluate the models, so they do not need more
discussion. MAPE is capable of measuring the mean percentage difference between the predicted
values and observed values. For example, if MAPE is 4%, then the average prediction is 4% off the
observed value, so the purpose of MAPE is to bring the relative measures in the model. MAE can
directly measure the mean absolute difference between the predicted values and observed values, so its
clear interpretability helps obtain the magnitude of errors.

4.1 The Results of Modeling Simulated Data

Table 2 shows the forecasting results of 6, 12, 18, and 24-month in the test set. For the 6-month
forecasts, the forecasting errors from CNN and NPCNN are not far different, but both of them have
the highest errors. The forecasting errors from ARIMA, Vanilla RNN, and LSTM are very close
to each other, but the errors of FNN show to be the lowest. However, for 12, 18, and 24-month
forecasting, the forecasting errors of LSTM outperform all the other NNs and ARIMA by resulting
lowest errors. Particularly, the errors of LSTM are approximately 40% or less than the errors of FNN,
CNN, NPCNN, and Vanilla RNN, and on the other hand, the performance of ARIMA is better than
these NNs. The overall performance of NPCNN is slightly better than CNN, due to the removal of the
pooling layer. As more months we predicted, the errors of all models increased, so it indicates more
difficulty encountered when predicting long-term time series.

Table 2: Forecasting results of the test set in the simulated data

Forecast length Models MAPE (%) MAE RMSE

6-month ARIMA-DSDT 30.4183 78.5207 81.3969
FNN 28.3111 73.5413 77.0314
CNN 38.4635 97.9288 99.6166
NPCNN 38.2424 96.7749 98.0115
Vanilla RNN 31.6912 81.8247 86.4611
LSTM 30.7807 78.8114 80.4055

(Continued)
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Table 2 (continued)

Forecast length Models MAPE (%) MAE RMSE

12-month ARIMA-DSDT 29.7033 87.5524 92.7371
FNN 34.5136 107.6529 126.6539
CNN 36.3004 104.5324 107.7903
NPCNN 36.5523 106.5037 111.3984
Vanilla RNN 34.311 101.8434 109.0573
LSTM 27.2298 76.9406 80.1249

18-month ARIMA-DSDT 27.2684 76.8926 83.2122
FNN 31.4806 92.877 110.7191
CNN 35.5459 97.4837 101.2034
NPCNN 34.6031 96.2335 101.8753
Vanilla RNN 32.4113 91.3226 99.2285
LSTM 23.6981 65.1705 71.5648

24-month ARIMA-DSDT 26.9507 79.8357 87.4773
FNN 33.467 104.7759 127.1769
CNN 34.8982 100.5059 105.4687
NPCNN 35.2057 103.6958 112.2081
Vanilla RNN 33.368 99.2252 109.304
LSTM 21.5257 60.9877 67.2579

Note: ARIMA−DSDT = Deseasonalization and Detrend have been processed in the data before ARIMA modeling.

According to the Fig. 8, the ARIMA (3, 1, 0)×(0, 1, 1)s and LSTM predictions do show capturing
and well predicting the abrupt increase in the simulated data, but prediction by LSTM eventually and
approximately reaches to actual value as time passes. LSTM shows itself to be a more reliable and
flexible tool when forecasting long-term time series.

Figure 8: The simulated data forecasting compared by ARIMA (3, 1, 0) × (0, 1, 1)s and LSTM

4.2 The Results of Modeling Real Data

The evaluation design of real data is similar to the simulated data. Firstly, for the white wine
sales data, Table 3 shows that forecasting errors of ARIMA and CNN are the closest to the errors
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of LSTM, ARIMA and CNN slightly better predict the short-term forecasted values. However, the
forecasting errors of FNN are shown to be one time higher than them. The white wine sales data does
not reveal enough linear trend but obvious seasonality. The long-term forecasting results of LSTM
outperform in terms of all three metrics. Nevertheless, the long-term forecasting performance of CNN
and NPCNN is not satisfying, compared to the others. The 24-month prediction by LSTM computes
that is approximately 10.45% off the observed values, and thus this long-term forecast is promising.

Table 3: Forecasting results of the test set of wine sales data

White wine sales Red wine sales

Forecast lengths Models MAPE
(%)

MAE RMSE MAPE
(%)

MAE RMSE

6-month ARIMA-DSDT 8.7092 267.3638 367.6425 16.0119 230.6409 270.2548
FNN 14.5056 366.8641 526.7203 28.0079 469.9322 483.649
CNN 8.2626 266.0152 391.1015 16.4397 267.2242 303.2052
NPCNN 9.8683 318.8118 418.1253 22.4071 279.4302 344.6334
Vanilla RNN 10.2952 317.0787 425.2559 14.1835 254.0651 304.787
LSTM 8.8306 258.3949 306.662 12.4402 174.1644 194.6974

12-month ARIMA-DSDT 9.8989 369.4735 541.148 13.2377 251.8652 347.5172
FNN 17.9799 673.7442 925.8129 27.0217 599.9702 705.9766
CNN 10.5611 408.5439 597.8329 15.9748 335.4088 389.835
NPCNN 10.8804 399.9398 542.6419 18.1866 314.2824 410.1849
Vanilla RNN 10.8321 398.01 567.9462 14.4389 325.539 406.0045
LSTM 9.9255 355.3635 488.6 11.7875 233.302 311.8323

18-month ARIMA-DSDT 10.7716 393.6367 529.923 12.9352 246.4817 328.2575
FNN 16.9081 598.4941 813.4253 26.0258 563.6044 652.594
CNN 12.694 475.0189 629.5812 15.8407 340.4696 403.8087
NPCNN 12.7756 460.7533 584.4867 18.136 293.6673 393.2292
Vanilla RNN 11.6856 423.8925 564.119 15.9224 356.7617 434.0644
LSTM 9.6394 342.0841 450.8697 11.5444 230.1887 293.2363

24-month ARIMA-DSDT 11.4001 447.872 563.1053 11.5167 239.589 321.9751
FNN 19.0744 754.0756 988.2545 27.4151 649.0517 754.1498
CNN 13.5519 540.6997 667.8237 17.2302 405.4927 479.3757
NPCNN 12.8508 495.1397 601.7356 15.3284 271.7573 374.4326
Vanilla RNN 12.4471 483.3543 592.93 16.2465 392.5483 475.9419
LSTM 10.4468 402.4446 493.8023 10.6039 233.1067 315.2351

Note: ARIMA−DSDT = Deseasonalization and Detrend have been processed in the data before ARIMA modeling.

Moreover, Fig. 9 shows that RNN forecasts are well able to capture small fluctuations of the
sequence which ARIMA is not.
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Figure 9: The white wine sales data forecasting compared by ARIMA (0, 1, 1) × (0, 1, 1)s and LSTM

The red wine sales data shows a more obvious trend and seasonality, compared to white wine sales
data. Table 3 also shows that the forecasting errors of ARIMA are closer to the forecasting errors of
Vanilla RNN and LSTM in the red wine data. None of FNN, CNN, and NPCNN do not perform
satisfyingly in short and long-term forecasting, compared with ARIMA and LSTM.

Table 3 also indicates that the overall performance of NPCNN is not as satisfying as CNN. The
LSTM also outperforms in all lengths of forecasting. After time series deseasonalizing and detrending,
ARIMA can be competitive among the model selections. In Fig. 9, the visualization of ARIMA and
RNN forecasts can attest. To forecast red wine sales data, the errors of FNN point out that FNN
might encounter more challenges due to larger effect seasonality and trend components.

4.3 Critical Analysis and Discussion

One significant advantage of this approach is its user-friendly design, allowing individuals without
expertise in ARIMA to engage in univariate time series forecasting through the application of an
LSTM network. The practical demonstration of this methodology using real-world data illustrates its
effectiveness in achieving superior forecasting outcomes for both short-term and long-term scenarios.

However, it is important to note that this approach has its limitations. Users are still required
to possess knowledge of LSTM networks and the ability to fine-tune their parameters to ensure
satisfactory results.

In the realm of time series forecasting, widely employed in various commercial applications, a
significant barrier exists—many data scientists lack expertise in time series analysis, such as ARIMA.
Furthermore, the accuracy of long-term forecasting using ARIMA is often insufficient, limiting its
widespread application. The impactful contribution of this approach is democratizing both long-
term and short-term time series forecasting, providing data scientists with superior performance
capabilities.

5 Conclusion

Nowadays, time series analysis and forecasting have been studied by more techniques such as
traditional statistical methods, machine learning, and deep learning. The automated search can adjust
the architecture and hyperparameter choices for different datasets, which makes the AutoML solution
generic and automates the modeling efforts [1]. The automatic machine learning framework suggests
that non-professionals can solve machine learning-related problems efficiently, and require less human
intervention and effort.
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Meanwhile, the purpose of this study is to provide a solution in terms of AutoML novelty
when solving long-term time series tasks. This article has provided a detail-oriented analysis between
classical statistical model ARIMA and multiple NNs, and empirically shown the ability and signifi-
cance of neural network models on the seasonal and trended time series. The finding of [32] reveals
how competitive are neural networks in time-series forecasting compared with traditional univariate
methods.

The decomposition of non-stationary time series is required for the ARIMA model, and the data
preprocessing cannot be neglected. In the experiment of ARIMA, they result in different parameters
for each simulated data and real data, because the grid search of parameters is necessary to obtain
the best combination of parameters. Moreover, traditional statistical models usually require users to
have statistical and mathematical knowledge, to better practice in real life. On the other hand, the
advantages of NNs are more compelling. The original time series data can proceed to NNs directly
without making it stationary. This article has introduced the fundamental basis and experiments of
FNN, CNN, NPCNN, Vanilla RNN, and LSTM, and the characteristics of RNN and LSTM, internal
state, and memory cells, bring a major impact in the forecasting. Since the utilization of RNN to
perform long-term forecasting, we do not need to hand-craft model parameters such as lag variables
used in the ARIMA model. This enables this approach to be used to develop the AutoML system.
Even though the long-term forecast by LSTM outperforms, we also have recognized some drawbacks
of using LSTM to forecast long-term time series. The training process is complex due to optimizing
the hyperparameter in each layer, overfitting can happen during training and the deep learning model
often lacks interpretability.

The AutoML approach employing LSTM RNN can yield highly accurate results for both short-
term and long-term time series forecasting. And yet, users of this AutoML approach are required
to possess certain fundamental knowledge of time series, LSTM RNN and programming skills.
This AutoML approach empowers non-professionals to achieve highly efficient univariate time series
forecasting, applicable across diverse domains, including sales, marketing and other commercial
applications. Consequently, it facilitates the availability of highly accurate time series forecasting for a
wide range of commercial applications.

In this article, the empirical evidence has shown the effectiveness of using RNN to perform long-
term forecasting on univariate time series. Two nature extensions of this experiment are using RNN to
perform long-term multivariate time series forecasting and to perform long-term univariate time series
forecasting with multiple covariates. Both cases are more useful than univariate time series forecasting.
In addition, this can make AutoML on time series data more practical. Using RNN in both cases is
the natural next step for the extension of this study.
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