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ABSTRACT

Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to
its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the
existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph
structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the
traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and
spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN).
The dynamic time warping algorithm (DTW) is introduced to calculate the similarity of traffic flow sequence
among network nodes in the time dimension, and the spatiotemporal graph of traffic flow is constructed to capture
the spatiotemporal characteristics and dependencies of traffic flow. By combining graph attention network and time
attention network, a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of
traffic data. Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction
accuracy than well-known traffic flow prediction algorithms.
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1 Introduction

With the improvement of the modernization level and the continuous advancement of urbaniza-
tion, lots of new vehicles are projected onto the road, these cause serious traffic security, result in
critical traffic jams, and prolong the traffic time of people. To deal with complex traffic problems,
Intelligent Transportation systems (ITS) have emerged. Traffic flow prediction is the key task of ITS.
Timely and accurate traffic prediction results can not only relieve traffic congestion, increase traffic
efficiency, and decrease energy consumption and pollution but also be the basis and premise of new
applications across the traffic field.

Traffic forecasting research has been going on for decades. Early works focus on statistical
methods, such as historical average (HA) [1], autoregressive integrated moving average (ARIMA)
[2], vector autoregressive (VAR) [3], and Kalman filter [4], etc. Although these methods can capture
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the temporal dependency of traffic data, they neglect the spatial relation and limit their applications.
Later, deep learning models, such as stacked self-coding machines, deep belief network (DBN) [5],
long short-term memory network (LSTM) [6] and gated recurrent unit (GRU) [7] have achieved
improvement in prediction accuracy because they can learn the non-linearity and complex spatial-
temporal dependencies of traffic models. Besides the recurrent neural network (RNN), convolutional
neural network (CNN) is widely employed to recognize the spatial and temporal relationships of traffic
flow. Afterward, the attention mechanism is widely used for traffic prediction. Though these models
can obtain satisfactory results when processing Euclidean data, these models are highly constrained in
traffic flow prediction because the traffic data usually follow a non-Euclidean structure. Afterward,
the graph convolutional network (GCN) stands out among various traffic prediction models and has
achieved considerable accuracy. The latest research works have applied GCN [8], GAT [9], and GNN
[10] to cope with the traffic forecasting problem.

Most of the existing studies are based on graph neural networks to model traffic flow graphs, and
the fixed graph structure is usually applied to deal with the relationship between nodes. However, due
to the time-varying spatial correlation of the traffic network, there is no fixed relationship between the
traffic nodes, and these methods cannot effectively integrate the spatio-temporal characteristics.

To address these issues, the paper proposed TSADGCN, a novel traffic flow prediction model
based on a temporal-spatial relationship graph and attention mechanism network. TSADGCN deeply
explores the complex temporal and spatial characteristics of traffic flow data and establishes their
dependence relationship, combining with attention mechanism and dilated gated convolution network
(DGCN) [11], and improves the prediction accuracy of traffic flow. According to the similarity of
traffic flow sequences between road nodes in the temporal dimension, the concept of a time graph
is proposed. The similarity is calculated by the DTW algorithm [12]. Based on the spatial-temporal
relationship graph, graph convolution and time dimension convolution are performed separately on
each branch with attention mechanism, respectively, to capture the spatial-temporal characteristics
of the traffic flow and its dependence relationship, and then the spatial-temporal relationship of the
traffic flow data is modeled.

The main contributions of this work are described as follows:

• A dilated and gating convolution is proposed to achieve deep temporal features with long
receptive fields, based on a spatial self-attention mechanism, and the node correlation of the
real spatial relationship is calculated.

• The design is a set of adaptive graphs: A time graph with an adjacency matrix as prior
information and a spatial graph with a sequential association matrix to capture dynamic real
node dependencies. The DTW algorithm is used to calculate the similarity degree of traffic
flow sequence between nodes in the road network in time dimension, and the concept of time
graph is proposed. Based on the spatio-temporal relationship diagram, the graph convolution
and temporal dimension convolution are respectively carried out in each branch combined with
the attention mechanism to capture the spatio-temporal characteristics of traffic flow and their
dependencies, and realize the modeling of the spatio-temporal relationship of road network
traffic flow data.

• On the public data set PeMSD4 and PeMSD8 the model proposed in this paper is experimen-
tally verified and the performance is compared with common predictive models. Experiments
show that the MAE and RMSE of the TSADGCN are respectively better than those of
ARIMA, STGCN, and ASTGCN.
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The remainder of this article is organized as follows. Section 2 describes the theoretical back-
ground. Section 3 formulates the problem definitions and defines the notations. Section 4 discusses the
proposed model in detail. Section 5 details the experimental design. Section 6 illustrates experimental
results. Finally, Section 7 concludes this paper, and the potential future work is suggested.

2 Related Works
2.1 Traditional Prediction Methods of Traffic Flow

Traditional prediction methods aim to mine the rule of temporal dimension from the traffic flow
sequence. These methods include parameter models and non-parameter models. Parameter models
consist of ARIMA, Kalan filter, etc. Non-parameter models include k-nearest neighbor (KNN),
support vector machine (SVM), and Bayes networks [13]. Traditional forecasting methods usually
require the temporal sequence to satisfy certain periodicity and regularity. However, owing to its non-
linearity and randomness, the efficiency of traditional methods is not ideal.

2.2 Traffic Flow Prediction Methods Based on Euclidean Convolutional Networks

Many researchers have employed Euclidean convolutional networks to forecast traffic flow.
Combining the Residual network with CNN, Zhang et al. [14] proposed a novel temporal-spatial data
prediction model for forecasting the city population flow. DBN [5] can effectively capture the high-
dimension features of traffic data and decrease the forecasting error. WaveNet [15] was applied to
build a spatial-temporal graph. By constructing a new self-adaptive dependency matrix and learning
it by node embedding, the model can automatically and accurately capture unseen graph structure
from traffic data. However, Euclidean convolutional models are difficult to directly apply to graph-
structure data, so unable to deal with the graph-structure information of the traffic data.

2.3 Traffic Flow Methods Based on Graph Convolutional Network

Recently, GCN has obtained wide attention in traffic flow prediction and graphs have been used
to construct models of non-Euclidean traffic flow data.

Guo et al. [16] proposed a novel model combining attention mechanism and temporal-spatial
convolutional network to deal with traffic flow forecasting problem, using temporal-spatial attention
mechanism to capture dynamic spatial-temporal correlation in traffic flow data. Yu et al. [17] devel-
oped the STGCN model and employed a graph to build the convolutional structure problem. GMAN
[18] employed an encoder-decoder framework to simulate the effect of spatial-temporal factors on
traffic conditions. T-GCN [19] used the hop links scheme to capture the periodic time correlation
and add the residual to the recurrent graph network, to improve the problem of gradient explosion
and disappearance in long-term backpropagation in deep networks. AST-GCN [20] combines spatial-
temporal graph convolutional models to capture external information while integrating dynamic and
static external information related to roads, such as weather and surrounding landmarks.

There are many transport management solutions to resolve the challenges resulting in traffic
congestion. Jain et al. [21] proposed Real-Time Vehicle Data Integration (RTVDI), which utilized
real-time vehicle data to reduce congestion. RTVDI uses SVM to collect real-time data from vehicles
and use other machine learning algorithms and statistical approaches to acquire insights into traffic
patterns and circumstances and pinpoint locations. Compared with RTVDI, the paper proposed
TSADGCN uses both graph attention networks and temporal attention networks to predict the
traffic flow, the prediction model is more complex and the prediction accuracy is higher than that
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of RTVDI. In addition, TSADGCN uses the DTW algorithm to calculate the similarity of traffic
flow sequences between road nodes in the time dimension. ATM [22] can constantly update traffic
signal schedules depending on traffic volume and estimated movements from nearby crossings. ATM
utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly.
Compared with ATM, the TSADGCN Model uses static data, and input data flow is divided into
three parts: Adjacent data fragment, recent data fragment, and historical data fragment to extract
features.

In summary, existing graph convolutional models usually pay attention to the temporal dimension
or spatial dimension relationships, fail to consider the dependency among traffic nodes at different
timestamps, and the possible dependencies between different nodes at different time intervals are not
fully considered. In addition, most algorithms are based on graph neural networks to model traffic
graphs and attempt to use fixed graph structures to obtain relationships between nodes.

3 Problem Formalization

In this paper, the traffic prediction task is to learn a function that maps signals from T historical
graphs to future T’ graphs, i.e., to predict the traffic state in a future time interval based on the traffic
information in the past time interval.

To represent the forecasting process, give some definitions as follows:

Definition 1 (Road graph). A road graph G = (V, E) is used to denote the connection relationship
between road nodes. Where V ∈ RN×M is a set of nodes, M denotes the number of the characteristic at
each node, E is the edges set representing the connection between nodes.

Definition 2 (Adjacency Matrix). The adjacency matrix AM is defined as the collective character-
istic of the road map, representing the connectivity of the road network, which can be formalized as

AM (i, j) =
{

1, AM (i, j) = 1
0, otherwise (1)

Let Xt ∈ RN×M denote the observation of N nodes at time point t, and let Xi
t ∈ R denote the

observation of the ith node at time point t. Given a series of node historical observations at S time
points X = {Xt−S, Xt−S+1, L, Xt}, the target of traffic prediction is to predict a series of observations
Y = (Xt+1, Xt+2, · · · , Xt+Tp), where Tp is a special time point after the current time. We strive to
build a mapping function f ( · ) between X and Y to minimize the loss, f : [X(t−T+1), . . . ,Xt;G] →
[X(t+1), . . . , X(t+Tp)].

4 TSADGCN Framework

The proposed TSADGCN framework in this paper is depicted in Fig. 1. The framework comprises
a temporal sequence split module, temporal convolutional networks layer with attention mechanism,
DGCN layer, spatial convolutional layer with attention mechanism (SGCN), and temporal-spatial
graph and weighted fusion module.

Input flow is a traffic data set. Xh, Xd and Xw are respectively adjacent data fragments, recent
data fragments, and historical data fragments. The spatial-temporal diagram is formed by fusing
the time graph established by the DTW algorithm and the spatial graph established according to
the neighborhood relationship between nodes. Based on the spatial-temporal relationship graph,
graph convolution and time dimension convolution are performed separately on each branch with
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attention mechanism, respectively, to capture the spatial-temporal characteristics of the traffic flow
and its dependence relationship, and then the spatial-temporal relationship of the traffic flow data was
modeled. Fusion is weighted output. �s,h,�s,d,�s,w are spatial attention weight matrix of three modules,
respectively. Yh, Yd and Yw are the traffic flow predictions of the three modules, respectively. FC is the
full connection layer, and Y is eventually the traffic flow output.

Figure 1: Framework of TSADGCN

4.1 Input Flow Split

Considering the periodicity, proximity, and other characteristics of traffic flow data in the
temporal dimension, the input flow is divided into three parts: Adjacent data fragment, recent data
fragment, and historical data fragment to extract features. As shown in Fig. 2, taking the traffic flow
predicting X(T) after Tx time step as an example, the input sequence is split as follows.

Figure 2: An example of constructing the input of time sequence fragments

Adjacent data fragment Xh = {XT−h, XT−h+1, ..., XT−1} ∈ RN×M×Th is the historical data near the
predicted value. The recent data fragment Xd = {XT−p, XT−p+1, . . . , XT−p+Tx} ∈ RN×M×Td is historical
data for the previous 1 day at the same time as the forecast fragment. A historical data fragment
Xw = {XT−w, XT−w+1, . . . , XT−w+Tx} ∈ RN×M×Tw is historical data from one week ago at the same time as
the forecast period. Where Tx = 12, the traffic flow data is predicted for the next 1 h; h = 36, the traffic
flow data for the first 3 h of the segment to be predicted is selected; p is the traffic flow data for that
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moment in the day before the segment to be predicted; w is the traffic flow data for that moment in
the previous week.

4.2 Spatial-Temporal Block

To capture the structure features at the temporal dimension and spatial dimension, in this paper,
three spatial-temporal components are used to explore and analyze the spatial-temporal relationships
between historical data sequence, recent data sequence, and adjacent data sequence. The spatial-
temporal component consists of the attention mechanism, DGCN, and graph attention network.

4.2.1 Temporal Attention Layer

The traffic flow has related change within a period. The attention model can allocate different
weights and obtain dynamic temporal relationships according to traffic flow data. Meanwhile, the
noise ratio is reduced accordingly. Different kinds of data are input into the attention layer for deep
fusion to obtain a more credible attention weight. Attention weight can be calculated as follows:

E = Ve · σ
(((

X r
h

)T
U1

)
U2

(
U3X r

h

) + be

)
(2)

E
′
p,q = soft max

(
Ep,q

) = exp
(
Ep,q

)
∑Tr

q=1 exp
(
Ep,q

) (3)

where Ve, be ∈ RTr×Tr , U1 ∈ RN, and U3 ∈ RCr are learnable parameters. Xr
h={X1, X2, . . . , XTr−1} ∈

RN×Cr×Tr represents the output of the rth spatial-temporal block and the input of the rth+1 spatial-
temporal block, respectively. E represents the number of attention scores at each time t and varies
with the input data. Ep,q denotes the correlation between time P and time Q and normalized using the
Softmax function.

4.2.2 DGCN

In this paper, DGCN is mainly applied to achieve deep temporal features and dependencies.
DGCN is a temporal convolutional layers that have the advantages of dilated convolution and gating
mechanisms. The gated mechanism is the key component of DGCN. The aim of using the residual
structure is to prevent gradients from disappearing during the deepening of the network, while allowing
more information to be transmitted across multiple features. Dilated convolution is another key
component of DGCN, whose internal process is shown in Fig. 3. The receive field increases with the
dilated ratio, and it is very useful for long-term prediction. A uniformly distributed random tensor is
defined to perturb the gate of DGCN. The input of this layer is X̂h ∈ RN×Cr×Tr , and X̂r

h is the output
from the attention layer after the rth layer.

4.2.3 Construct Spatial-Temporal Relationship Graph

The DTW is a typical algorithm for calculating the similarity of a two-time sequence, and this
paper uses DTW ideas to construct a time association matrix of traffic flow data between different
nodes. For any two nodes i and j, the traffic sequence is represented as{

Xi,f = (
xi,1,f , xi,2,f , · · · , xi,l,f

)
Xj,f = (

xj,1,f , xj,2,f , · · · , xj,l,f

) (4)
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where Xi,f, Xj,f denote respectively the traffic flow data of node i and node j, I and J is the length of
two sequence.

Figure 3: Structure of DGCN

Euclidean distance between middle points of two sequences is used to measure the similarity, let
d (m, l) represents the Euclidean distance function.

d (m, l) = |xi,m,f − xj,l,f |, m ∈ [1, I ] ; l ∈ [1, J] (5)

where m, l are the mth, lth timestamps in the traffic flow sequence of node i and node j, respectively.

Let path P = (P1, P2, L, PE) as outline path diagram between the two sequences, is shown in Fig. 4.

The whole path meets the constraint conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lk = (mk, lk) ∈ [1, I ] × [1, J]

l1 = (1, 1) and lE = [I , J]

0 ≤ mk+1 − mk ≤ 1

0 ≤ lk+1 − lk ≤ 1

(6)

where lk = (sk,tk) is the coordinates of the points passed in the path in Fig. 4.

The total matching cost between two sequences is defined as

C
(
Xi,f , Xj,f

) =
E∑

k=1

d (sk, tk) =
E∑

k=1

|xi,sk
, xj,tk

| (7)

In this paper, the minimum total matching cost is defined recursively as

C (sk, tk) = d (sk, tk) + min [C (sk, tk − 1) + C (sk − 1, tk) + C (sk − 1, tk − 1)] (8)
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Finally, the minimum matching cost C (I , J) is defined as

C (I , J) = DTW
(
Xi,f , Xj,f

) = min
[
C

(
Xi,f , Xj,f

)]
(9)

Figure 4: Outline path diagram

Definition 3 (Temporal graph) A temporal graph GT(V, D) comprises a set of road nodes V and
a set of edges D representing the set of time sequence similarity degrees between each node, which is
shown in Fig. 5.

Figure 5: Time graph

Definition 4 (Time sequence association matrix). Given the timing sequence similarity threshold,
the time sequence association matrix is a location characterization of nodes, which can be formalized
as
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AM0 (i, j) =
{

1, Di,j < TThreshold

0, otherwise
(10)

where TThreshold is used to distinguish whether the time series between two nodes is similar. The time
sequence within the threshold is considered to be similar.

Definition 5 (Spatial-temporal relation graph) A spatial-temporal relation graph GT(V, AMs)

consists of V and AMs represents the matrix merging adjacent matrix and temporal incidence matrix.

AMs (i, j) =
{

1, AM (i, j) = 1 or AM0 (i, j) = 1
0, otherwise (11)

The spatial-temporal diagram is shown in Fig. 6.

Figure 6: GT diagram

4.2.4 Spatial Attention Weight

Considering the influence of each node on the traffic flow and the interaction between different
nodes, the attention mechanism is added to measure the importance of input features of different nodes
and input features at different times.

Double-linear attention is applied to design the score function. Given as Xd spatial correlation �v,d

is defined as

Γv,d = Sv,d × σ
[(

XdW1,d

)
W2,d

(
W3,dXd

)
T + bv,d

]
(12)

where Sv,d ∈ RN×N, bv,d ∈ RN×N, W1,d ∈ RH, W2,d ∈ RM×H, W3,d ∈ RM are the parameters to be learned,
W1,d represents the weight of the H dimension, W3,d and denotes the weight of different data types.
W2,d characterizes the interaction between the H dimension and the dimension weights of different
data kinds. W3,c represents the weight of different data types, such as the weight of vehicle speed in
flow prediction, etc. W2,c represents the interaction between dimension H and dimension weights of
different data types, Xc ∈ RN×F×H is all data of all nodes, σ is the activation function, N is number of
nodes, F is the number of data types, H is the length of time. For H selection of the three branches
of adjacent information, recent information, and historical information, the first three time points,
the same time point of the previous day and the same time point of the previous week, have the most
obvious historical influence on the current traffic flow.
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According to the spatial correlation matrix, then take the attention weight matrix of the adjacent
information branch space as an example, the expression of the spatial attention weight between node
i and node j is formulated as follows:

αV(i,j),d = exp
(
ΓV(i,j),d

)
N∑

j=1

exp
(
ΓV(i,j),d

) (13)

�V(i,j),d is the element in row i and column j of the spatial correlation matrix, which represents the
spatial dimension correlation degree between node i and node j. αV(i,j),d is the spatial attention weight of
node i and node j. By calculating the spatial attention weights of all nodes, the spatial attention weight
matrix can be obtained.

�s,d=

⎛
⎜⎜⎝

αv(1,1),d αv(1,2),d. . . αv(1,N),d

αv(2,1),d

M
αv(2,2),d

O
αv(2,N),d

M
αv(N,1),d L αv(N,N),d

⎞
⎟⎟⎠ (14)

The spatial attention weight matrices of the other two branches �s,h�s,w can also be obtained.

4.2.5 SGCN

In this paper, SGCN is mainly applied to achieve not only the spatial relationship in the road
network structure but also the time-dimensional relationship and space-time correlation feature of
sequence similarity between nodes. Based on establishing the spatial-temporal diagram, the spatial
dimension characteristics of the nodes in the space-time graph are extracted by graph convolution.
This feature combines nThe entire graph is represented by its corresponding Laplacian matrix, and
the Laplacian matrix L of the space-time graph is defined as follows:

L = IN − Ds
− 1

2 AMsDs
− 1

2 (15)

Ds =
∑

j

As (i, j) (16)

where AMs is the neighbor matrix for Section 4.2.3, In is the identity matrix.

Performing the eigenvalue decomposition on L, then L = βΔβT , where � is the diagonal matrix
formed by the eigenvalues of L, and β is the decomposition basis. Using the above parameters, the
formula for graph convolution on the input historical data is obtained as

Xg = βΘg (Δ) βTX (17)

where �g is the convolution kernel parameter of the graph and Xg is the convolution result of the graph.

The first-order Chebyshev polynomial is used to approximately reduce the Eq. (18).

Xg ≈ θg

[
IN + D− 1

2 (IN + As) D− 1
2

]
X (18)

where θg ∈ R is a trainable parameter.

Using the above graph convolution calculation method, combined with the spatial attention
weight matrix in Section 4.2.3, the result of the spatial-temporal relationship graph convolution
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combined with the attention mechanism can be obtained as follows:

Xd,g ≈ θd,g

[
IN + D− 1

2 (IN + As) D− 1
2

]
� ΨS,d (19)

where � is the Hadamard product. According to the above method, the outputs Xh,g, and Xw,g of the
three branches after spatial-temporal graph convolution can be calculated in turn.

4.2.6 Temporal Convolutional Layer

In the spatial dimension, the graph convolution captures the neighboring information of each
node on the graph. Next, a standard convolution layer is stacked in the temporal dimension, and then
the information on neighboring time slices is merged to update the signal of the node.

For instance, the operation on the layer in the recent component is calculated as

Xr
d = σ

(
Φ ∗

(
σ

(
θg ∗ GX̂ r−1

h

)))
(20)

where ∗G denotes a graph convolution operation, Xr
d is the output of rth layer. σ is the activation

function.

In each branch, the temporal attention weight matrix is introduced separately, and the feature
extraction of the temporal dimension is realized by combining two-dimensional convolution.

Through the convolution of the time dimension, the output of 3 branches can be obtained: Yh, Yd

and Yw.

Finally, a fully connected layer is used to ensure that the output of each component has the same
size and specification as the prediction target, and uses ReLU as the activation function.

4.3 Multi-Component Fusion

Because the three components have different degrees of influence on the fusion process, the output
result is a linearly weighted fusion to obtain the stream. The fusion prediction results are defined as

R̃ = (Rh,Rd,Rw) (21)

Ŷ = R̃
(

Ŷh,Ŷd,Ŷw

)
= Rh � Ŷh + Rd � Ŷd + Rw � Ŷw (22)

where � is the Hadamard product. Rh, Rd and Rw are 3 learnable parameters; Ŷ is final traffic
predictions.

5 Design of Experiment
5.1 Datasets

To evaluate the proposed model, many comparative experiments were implemented on the
PEMSD4 and PEMSD8 data set for verification. PEMSD4 is data collected from January to February
2018 at 307 monitoring sites in the San Francisco Bay Area, USA. PeMSD8 is the traffic data of San
Bernardino from July to August 2016. The data is organized into a record every 5 min and includes
data on flow, vehicle speed, and lane occupancy. A specific information summary is in Table 1.

To eliminate the adverse effects of too large or too small traffic volumes on overall predictions in
traffic data, This article uses the Z-score side method to standardize the data and all data values fall
within the range of [0,1]. The average value is zero.
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Table 1: Specific information on PeMSD4

Data set PeMSD4 PeMSD8

Data type Traffic flow Traffic flow
Nodes 307 170
Edges 341 195
Time steps 16992 17856
Features 3 3
Sampling 5 min 5

5.2 Experimental Setup

The mean absolute error (MAE) function and the root mean square error (RMSE) function are
used as evaluation functions. MAE can reflect the actual error of the predicted value, while RMSE
reflects the square root of the arithmetic mean of the squared error.

The specific formula is defined as

MAE = 1
m

∑
i

||xi − x̂i|| (23)

RMSE =
√

1
m

∑
i

(
Xi − X̂

)2

(24)

The experimental data set is divided into training set, validation set and test set, each with a ratio
of 6:2:2. In this paper, 32 1 × 3 convolution kernels are employed in graph convolution and time
convolution, the prediction time step c is 12, the learning rate is set to 0.001, the batch size is set to
64, the mean square error is used as the loss function, Adam is used as the optimizer for optimization,
and the number of model iterations is set to 100. For each of the three blocks of time and space, we
consider 12 historical data: Th = 12, Td = 12, Tw = 12.

5.3 Time Map Threshold Experiment

In this paper, the idea of dynamic programming is used to find the minimum total matching cost
recursively. When constructing the temporal graph, a threshold is defined to establish the temporal
correlation between nodes. Different threshold values will have a certain impact on the prediction
performance of the whole network. Therefore, different temporal maps are established by changing
different thresholds for multiple training to verify the best results of the prediction performance of the
whole network, as shown in Fig. 7. The optimal prediction can be achieved when the threshold is set
to 3200 while the other structures of the whole network remain unchanged.



CMC, 2024, vol.78, no.3 4355

Figure 7: Effect of time graph threshold on MAE

When the threshold is set to 3200, the number of neighboring nodes of each node in the temporal
graph must be around five. If the threshold is set too low, the number of adjacent points obtained will
be small and the association relationship of the time dimension cannot be effectively extracted. When
the setting is large, the number of adjacent nodes is too large, resulting in poor overall prediction.

5.4 Baselines

PyTorch 1.7.2 framework was used to implement the architecture and experimental simulation of
the above model. They were trained and evaluated on an NVIDIA GeForce RTX 3090 with 16 GB of
memory. Other results refer to ASTGCN [16].

To evaluate the prediction performance of the model proposed in this paper, the following models
are selected for comparative analysis.

HA: Predict the traffic value for the next time stamp based on the average traffic flow in the past
1 h.

VAR: The kernel function selected in this article is the radial basis function, with the kernel
coefficient set to 0.1.

ARIMA: A classic model for time sequence forecasting analysis, which is simple and does not
require other variables.

STGCN: A model based on spatial methods for spatial-temporal data analysis.

ASTGCN: The model fully considers the periodic characteristics of time, and combines graph
convolution operation to extract spatial-temporal networks with spatial characteristics.

6 Results and Discussion

We used RMSE and MAE to verify and evaluate the proposed model on the PeMSD4 data set.
On average, the model presented in this paper is more effective and efficient than all other comparison
models, as shown in Table 2. We analyze in detail the differences between the model presented in this
article and other models from three aspects.
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Table 2: Comparison of TSADGCN and other models

Dataset Evaluation metrics HA VAR ARIMA STGCN ASTGCN TSADGCN

PeMSD4 MAE 36.76 33.76 32.11 27.28 23.29 22.82
RMSE 54.14 51.73 68.13 38.41 36.88 35.34
PeMSD8 MAE 29.52 21.41 24.04 20.99 17.95 17.73
RMSE 44.03 31.21 43.30 30.78 27.35 27.17

6.1 Prediction Accuracy

From Table 2, we can see that the proposed TSADGCN model achieves better results in MAE and
RMSE in the traffic prediction experiment of 1 h in the future. Compared with HA, VAR increases the
nonlinear characteristics of traffic flow information extraction, and ARIMA combines auto-regressive
and moving average, the difference between traditional statistical methods, such as to achieve the
dependence on traffic flow time series modeling, but can only capture linear relationship, in a complex
network structure of traffic flow prediction has great limitations. ASTGCN introduces convolution
and attention mechanism, significantly more than ordinary convolution operations comply with the
traffic demand forecast. TSADGCN obtains the capture of dynamic spatial-temporal information
through attention-based time layers and DGCN. In addition, TSADGCN also considers how to
capture deep spatial-temporal features, which helps to achieve better accuracy than these two methods.

6.2 Medium and Long-Term Forecasting Ability

As can be seen from Fig. 8, with the increase in forecast time, the predicted effect of each method
presents a different decline. HA and ARIMA methods are very effective for short-term prediction;
however, as the prediction time increases, the prediction performance decreases rapidly. Comparing
the index parameters of the STGCN, ASTGCN, and TSADGCN proposed in this paper, it can be seen
that the effect of TSADGCN is significantly better, and the reason is that STGCN and ASTGCN only
considered the proximity in the spatial graph, while TSADGCN constructs the similarity relationship
of traffic flow patterns between nodes through the DTW algorithm, establishes the potential traffic
flow influence relationship between the nodes of the time graph, and analyzes the structure of the
entire road network.

As can be seen from Fig. 8, the performance of all methods on data set PeMSD4 is worse than
that on PeMSD8. Compared with PeMSD8, on the PeMSD4 dataset, the performance improvement
among all models is greater. This is because the traffic situation in the PeMSD4 region is more complex
and it is more challenging to make predictions using PeMSD4.

Compared with most models, TSADGCN has certain differences in the traffic flow prediction
results of different nodes. Table 3 shows the prediction ability of TSADGCN in several nodes, node
137 is the node with the largest error in the whole prediction, and node 196 is the node with the smallest
error. Fig. 9 shows the prediction ability of TSADGCN for two traffic flow patterns at three different
nodes in total, node 3, node 59, and node 196.
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Figure 8: Compared performance for different periods

Table 3: Comparison of nodes

Node MAE RMSE

0 29.26 14
1 27.26 16.67
. . . . . . . . .

137 43.45 31.08
196 6.29 10.58
306 14.28 11.58
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Figure 9: TSADGCN traffic flow prediction graph at different nodes

Combining Table 3 and Fig. 9, we can see that the prediction effect of node 196 is the best among
the three nodes. From the prediction of nodes 3, 59, and 196, it can be seen that the more standard the
change of traffic data is, the closer the predicted value is to the true value.

Fig. 10 shows the traffic flow prediction results of TSADGCN on node 196 for a week from
January 01 to 07, 2018. It can be seen that the model can well track the daily traffic flow changes.
This model can effectively capture the time-cycle of the entire traffic change and the spatial-temporal
correlation caused by the interaction between different nodes.

Figure 10: TSADGCN weekly traffic flow forecast at sensor 196

6.3 Ablation Study

To further understand the influence of each module in TSADGCN, ablation comparison exper-
iments are conducted. Based on the TSADGCN model developed in this paper, three variants are
designed, as shown below. (1) TSADGCN-T: Remove the TAL module. (2) TSADGCN-R: Remove
the residual network. (3) TSADGCN-G: Remove the DGCN module. Fig. 11 shows the prediction
error bars of the variant model experiment conducted in the PeMSD4 data set.

It can be seen from Fig. 11 that all modules in the model proposed in this paper can play a role in
improving the prediction performance. Among them, the ST graph module has the greatest impact on
the model and has a stronger ability to improve the pre-measurement accuracy. The convolution effect
of DGCN is second, followed by the residual network. This is because considering the improvement
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of computational efficiency and prediction effect, the effect of the residual network is not obvious. To
sum up, all the modules in the STAGCN model proposed in this paper are effective and can help the
model better perform the prediction task.

Figure 11: Performance comparison of variant models on the PeMSD4 dataset

6.4 Computation Analysis

6.4.1 Computation Time

Table 4 shows the calculation time of TSADGCN, STGCN, and ASTGCN. In this table, we used
the PEMD4S dataset to compare the cost of training and inference time for each model. The training
time for an epoch is calculated in seconds, while the reasoning time for the entire test data is calculated
in seconds. Although TSADGCN takes slightly longer than STGCN and ASTGCN, its predictions
are more accurate and efficient. STGCN has the shortest training time. However, its results are poor
and less accurate compared to other models.

Table 4: Computation time analysis on PEMS04

Method Training (s/epoch) Inference

STGCN 29.26 14
ASTGCN 27.26 16.67
TSADGCN 43.45 31.08

6.4.2 Complexity Analysis

The models presented in this paper are based on time diagrams, spatial diagrams, and space-time
diagrams, and add GRU and self-attention layers, which in part increases the complexity of the model.
Since each graph processing is independent of each other, the complexity of the model can be reduced.
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7 Conclusions and Future Work

This paper proposes TSADGCN, which combines graph convolution network and DGCN to
build spatial-temporal convolutional blocks and acquire the spatial-temporal features of traffic data
simultaneously. DTW algorithm is used to measure the similarity of time series. Compared with HA,
VAR, ARIMA, STGCN, ASTGCN, TSADGCN fully considers the spatial-temporal characteristics
of traffic flow and its correlation, and the accuracy of traffic flow prediction is significantly higher than
other models. In future work, will further verify the multi-scale information of traffic flow forecasting.
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