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ABSTRACT

Named Entity Recognition (NER) stands as a fundamental task within the field of biomedical text mining, aiming to
extract specific types of entities such as genes, proteins, and diseases from complex biomedical texts and categorize
them into predefined entity types. This process can provide basic support for the automatic construction of
knowledge bases. In contrast to general texts, biomedical texts frequently contain numerous nested entities and
local dependencies among these entities, presenting significant challenges to prevailing NER models. To address
these issues, we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer
(RoBGP). Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically
generate word-level initial vectors. It then incorporates a Bidirectional Long Short-Term Memory network for
capturing bidirectional semantic information, effectively addressing the issue of long-distance dependencies.
Furthermore, the Global Pointer model is employed to comprehensively recognize all nested entities in the text. We
conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior
performance of RoBGP over several baseline models. This research confirms the effectiveness of RoBGP in Chinese
biomedical NER, providing reliable technical support for biomedical information extraction and knowledge base
construction.
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1 Introduction

The rapid advancement in biotechnology, medical devices, and clinical practices has led to an
exponential increase in biomedical text data. These data encompass a wide range of information,
including genomics, proteomics, clinical medical records, and key aspects such as disease mechanisms,

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047321
https://www.techscience.com/doi/10.32604/cmc.2024.047321
mailto:lidongmei@bjfu.edu.cn


3604 CMC, 2024, vol.78, no.3

drug development, and medical decision-making. Extracting valuable knowledge from this extensive
biomedical text data necessitates the construction and effective management of knowledge bases.
Knowledge bases serve as pivotal platforms for aggregating and integrating information from multiple
sources, aiding researchers in understanding disease molecular mechanisms, drug mechanisms of
action, and the implementation of personalized medicine. In knowledge base construction, tailored
knowledge extraction methods are essential for processing structurally varied raw data, typically
involving entity extraction and relation extraction. Named Entity Recognition (NER) is an indispens-
able component of knowledge extraction, used to extract and classify text-based information with
special significance [1]. In the biomedical field, accurate entity recognition is essential for constructing
precise knowledge bases and propelling cutting-edge research. Therefore, NER holds a significant
position in the processing, analyzing, and comprehension of biomedical texts.

Currently, research in NER has covered a wide range of fields, yielding numerous markable
achievements [2,3]. Compared to general fields, biomedical NER tends to be more intricate. Specifi-
cally, biomedical entities often vary greatly in length and frequently lack distinct boundaries. Further-
more, unlike typical flat entities, biomedical entities commonly feature nested structures. As shown in
Fig. 1, “ ” (sympathetic nervous system involvement) in the first half of the sentence is
classified as a clinical symptom entity, encompassing the nested “ ” (sympathetic nervous sys-
tem), recognized as a body entity. Similarly, in the second part of the sentence, “ ”
(increased saliva secretion and sweating) is labeled as a clinical symptom entity, while the nested “ ”
(saliva) and “ ” (sweat) are considered body entities. These intricacies present considerable challenges
in biomedical NER.

Figure 1: An example of nested entities. The “sym” and “bod” represent recognized clinical symptom
entity and body entity respectively

To cope with these challenges, deep learning techniques have become increasingly prevalent in
the development and application of biomedical NER in recent years. Conventional methods treat
biomedical NER as a sequence labeling task, assigning a specific label to each word or character. As a
representative, Bidirectional Long Short-Term Memory with Conditional Random Fields (BiLSTM-
CRF) [4] stands out for its straightforward structure and superior performance, inspiring many
subsequent studies [5,6] to adopt its architecture. Advancements in research have led to the integration
of advanced pretrained language models to further enhance the performance of NER. Notably, the
integration with Bidirectional Encoder Representation from Transformer (BERT) [7] has become
widespread. The masking mechanism of BERT enables the model to exhibit excellent semantic
information extraction ability in English NER. However, when dealing with Chinese text, treating
each character as a token neglects the boundary information of Chinese words, thus affecting the
effectiveness of Chinese NER. Although sequence labeling methods achieve decent performance on
flat NER, they falter with nested NER. An effective method is to treat nested NER as a span selection
task, classifying all possible spans into predefined types in the sentence. For example, Yu et al. [8] used
BERT to encode the input sequence and then adopt a biaffine attention model to assign scores to all
potential spans, achieving the State-Of-The-Art (SOTA) performance on both flat and nested English
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NER datasets. Shen et al. [9] divided Chinese NER into a two-stage task, where the first stage aims
to locate entities, and the second stage classifies entities after boundary adjustments. This method
improves the model’s recognition performance for entities with longer distances through the boundary
regression task. However, despite the success of these methods, they only address individual issues in
Chinese biomedical NER and lack a holistic solution. To bridge these gaps, this paper focuses on
addressing the three major challenges in Chinese biomedical NER during the method design phase.
We fully recognize the inapplicability of conventional masking strategies in Chinese vocabulary, as
well as the limitations of existing models in handling long-distance semantic information and nested
entities. Consequently, we comprehensively consider these issues and aim to tackle them through the
collaborative work of various modules.

Specifically, we propose a Chinese nested biomedical NER model based on RoBERTa and
Global Pointer (RoBGP). RoBGP utilizes the RoBERTa-wwm-ext-large pretrained language model
for obtaining word-level vectors and enhances the extraction of long-distance semantic information
through the Bidirectional Long Short-Term Memory (BiLSTM) network. Simultaneously, the Global
Pointer model is employed to recognize nested biomedical entities. In this paper, our main contribu-
tions are summarized as follows:

1. We propose a novel NER model called RoBGP tailored for Chinese biomedical texts. To
adapt to the characteristics of the Chinese language, the model employs the RoBERTa-wwm-
ext-large pretrained language model, which is based on the Chinese whole word masking
(wwm) strategy to obtain more accurate word-level initial vectors. Additionally, we incorporate
BiLSTM to capture contextual semantic information and enhance the model’s ability to locate
long-distance entity boundaries.

2. Unlike previous sequence labeling models, we employ Global Pointer as the entity recognition
module in our proposed model, effectively addressing both nested and non-nested entity
recognition challenges in a unified manner.

3. We conduct extensive experiments on the publicly available Chinese medical dataset CMeEE.
The experimental results validate the effectiveness of RoBGP and the importance of different
modules within the model.

Section 2 of this paper provides a brief overview of related work. Section 3 elaborates on the model
architecture. Section 4 describes the experimental results and provides analyses. Section 5 further
discusses the results. Finally, the paper concludes with a concise summary of the entire study.

2 Related Work
2.1 Classic Methods for Biomedical NER

Classic methods for biomedical NER can be primarily categorized into rule-based and dictionary-
based methods, machine learning-based methods, and deep learning-based methods. Rule-based and
dictionary-based methods were common in early NER research. For instance, Krauthammer et al. [10]
proposed using dictionaries to recognize gene and protein entities. While practical, these methods faced
limitations due to the continual emergence of new biomedical named entities, resulting in reduced
effectiveness as dictionaries become less comprehensive. Machine learning-based methods mainly
include Hidden Markov Model (HMM) [11], Maximum Entropy (ME) [12], and Conditional Random
Fields (CRF) [13], which require rigorous feature selection and use features such as prefixes, suffixes,
capitalization, special characters, and word stems for training. They offer improved accuracy over
rule-based and dictionary-based methods, but their excessive dependency on feature selection and a
singular recognition strategy limits their efficacy. With the advancement of deep learning, applying
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neural networks to NER has become a trend. Huang et al. [4] proposed the BiLSTM-CRF model,
utilizing BiLSTM to capture contextual features and modifying the BiLSTM layer’s output through
CRF by learning transition probabilities between different labels in the dataset. Ma et al. [6] employed a
Convolutional Neural Networks (CNN) to extract character-level features and then used the BiLSTM-
CRF model to further extract contextual features and output results. Zhang et al. [14] proposed the
Lattice-LSTM model, which encoded a sequence of input characters as well as all potential words
that match a lexicon. Compared with character-based methods, their model explicitly utilized word
and word sequence information. Due to simplicity and effectiveness, deep learning-based methods
serve as the mainstream for biomedical NER.

2.2 Pretrained Language Models in Biomedical NER

In recent years, word embedding technology has been widely applied to natural language process-
ing tasks. Traditional word embedding models such as Word2Vec [15] and Glove [16] used static word
vectors for semantic representation. However, the meaning of a word can vary in different contexts,
leading to the issue of polysemy. For example, the character “ ” (clear) has completely different
meanings in the two sentences of “ ” (the patient is conscious and in good spirits)
and “ ”(lymph node dissection in our hospital). ELMo [17] addressed this issue
to some extent but could not leverage both forward and backward context information simultaneously,
which had certain limitations. BERT [7] effectively made up for the shortcomings of ELMo. For
biomedical NER, we only need to set the downstream task interface and use the relevant data to fine-
tune the model to obtain a more accurate embedded representation of each word in the biomedical
texts. A common approach is to add a CRF layer atop the BERT output, forming the BERT-CRF
model [18]. This model can use the robust semantic representations provided by BERT along with
the label dependencies offered by CRF and has been proven effective on a variety of NER tasks.
Zhang et al. [19] pretrained BERT on a Chinese clinical text corpus and used the resulting embeddings
as input features for BiLSTM-CRF to solve the breast cancer NER problem, achieving an F1 score of
93.53%. Subsequently, Liu et al. [20] proposed an optimized model called RoBERTa, which surpassed
BERT in terms of training data, batch size, and model parameters. Based on RoBERTa, Wu et al. [21]
proposed a model for biomedical NER, achieving F1 scores of 93.26% and 82.87% on the CCKS2017
and CCKS2019 datasets, respectively. RoBERTa-wwm-ext-large [22] was a variant of RoBERTa that
employed a Chinese whole word masking strategy when processing Chinese text. This strategy enabled
the model to acquire precise word-level vectors, making it better suitable for the Chinese NER task.

2.3 Span-Based Methods in Biomedical NER

Most of the aforementioned methods are primarily based on sequence labeling and cannot directly
address the issue of nested entities in biomedical NER. Earlier, a mix of rule-based and machine
learning-based methods was often applied to address nesting issues, but this approach had difficulties
with same-type nested entities and scaling to large datasets with long sentences. In recent years, span-
based methods have risen in popularity due to their superior performance. For instance, Yu et al. [8]
used ideas from graph-based dependency parsing to provide their model with a global view of the
input via a biaffine model. The biaffine model scored pairs of start and end tokens in a sentence which
they used to explore all spans so that the model was able to predict named entities accurately. They
showed that the model worked well for both nested and flat NER through the evaluation of 8 corpora.
Gu et al. [18] proposed a novel method for investigating the regularity of entity spans in Chinese
NER, dubbed as Regularity-Inspired reCOgnition Network (RICON). Specifically, the proposed
model consisted of two branches: a regularity-aware module and a regularity-agnostic module. The
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regularity-aware module captured the internal regularity of each span for better entity type prediction,
while the regularity-agnostic module was employed to locate the boundary of entities and relieve the
excessive attention to span regularity. An orthogonality space was further constructed to encourage
two modules to extract different aspects of regularity features. Cong et al. [23] proposed a Chinese
medical nested named entity recognition model based on feature fusion and a bidirectional lattice
embedding graph. They introduced a medical lexicon and pinyin information to enhance the features
that the model could capture for Chinese medical NER. They also considered the similarity between
different entity types to improve the model’s effectiveness. Liu et al. [24] treated biomedical NER as a
question-answering task, where the question is the entity type and the answer is the entity span. Our
proposed method also belongs to span-based methods, but in contrast to previous research, our model
predicts each character as the start or end of each span without enumerating each span, which is an
efficient practice.

3 Proposed Method

The architecture of RoBGP is shown in Fig. 2, which consists of three principal modules. First,
each character in the biomedical text is processed to obtain its initial vector via the representation
module. Subsequently, the representation module’s output feeds into the encoder module, generating
enhanced feature vectors that incorporate long-distance dependencies. Finally, the recognition module
is used to output the types and positions of corresponding entities.

Figure 2: The architecture of RoBGP

3.1 Representation Module: RoBERTa-wwm-ext-large

Considering the unique characteristics of the Chinese language structure, we adopt RoBERTa-
wwm-ext-large to obtain word-level input vectors. RoBERTa-wwm-ext-large surpasses BERT in
training scope, as it is developed on a larger scale corpus and undergoes additional training steps,
enhancing its ability to assimilate contextual semantics from multiple perspectives. In contrast
to BERT’s character-level tokenization, RoBERTa-wwm-ext-large employs a Chinese whole word
masking strategy during the pretraining phase. Specifically, the input sequence is first segmented into
words, and then all Chinese characters within the same word are masked and predicted simultaneously.



3608 CMC, 2024, vol.78, no.3

This strategy helps the model learn word-level semantic information. The masking strategies of BERT
and RoBERTa-wwm-ext-large are shown in Table 1.

Table 1: Comparison of masking strategies of BERT and RoBERTa-wwm-ext-large

Raw text

(can cause increased saliva secretion and sweating)

BERT

(can cause increased sa[M]va secretion and s[M]eating)
RoBERTa-wwm-ext-large

(can cause increased [M] secretion and [M])

For the biomedical text shown in Table 1, the characters “ ” (saliva) and “ ” (liquid) form a
word that often appears together. However, BERT treats the character “ ” (liquid) as an independent
unit for masking, disrupting the integral contextual structural information of the entire word.
Consequently, BERT is restricted to learning semantic representation solely at the character level.
In contrast, RoBERTa-wwm-ext-large considers “ ” (saliva) as a single unit and masks both char-
acters simultaneously. This method allows it to capture word-level contextual semantic information,
which is beneficial for the recognition of Chinese biomedical entities. Additionally, RoBERTa-wwm-
ext-large employs the dynamic masking mechanism, enabling it to learn more comprehensive feature
representations, thus further enhancing the model’s recognition performance.

3.2 Encoder Module: BiLSTM

Chinese biomedical texts often feature complex syntax and lengthy named entities. To address
this, we employ BiLSTM [25] for encoding the text sequences. It aids in extracting long-distance con-
textual semantic information and enhancing the model’s ability to locate entities at distant positions.
BiLSTM comprises a forward Long Short-Term Memory (LSTM) [26] and a backward LSTM, both
connected to the same output layer. LSTM is an improvement upon Recurrent Neural Networks
(RNN), designing a gate mechanism to regulate information flow. It achieves selective memory
through the forget gate, the input gate, and the output gate, filtering out non-essential information
while preserving essential details. Additionally, it effectively solves the issue of gradient vanishing.
However, unidirectional LSTM only considers past information, neglecting future information. To
simultaneously capture bidirectional contextual information, we input the Chinese biomedical text
sequences in both the forward and backward directions into two LSTMs for feature extraction. By
utilizing the BiLSTM composed of these two LSTMs, we obtain two independent hidden states,

−→
h t

and
←−
h t. The specific calculation formulas are given by Eqs. (1)–(3):

−→
h t = ←−−−−

LSTM(rt) (1)
←−
h t = ←−−−−

LSTM(rt) (2)

ht = [
−→
h t;

←−
h t] (3)

where rt represents the input at the current time step t, ht represents the final output formed by
concatenating the hidden states

−→
h t and

←−
h t. The vector sequence encoded by BiLSTM is denoted

as H = {h1, h2, . . . , hn}.
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3.3 Recognition Module: Global Pointer

Pointer Networks [27] uses two independent modules to recognize the start and end positions
of entities, resulting in inconsistencies between the training and prediction phases. We employ the
Global Pointer (GP) model [28] as the recognition module to address this issue. Following a global
normalization approach, this model treats entity boundaries as a unified whole for discrimination.
For any given sentence, GP constructs one or more upper triangular matrices to traverse all valid
entity spans. The number of matrices is consistent with the number of entity types, where each matrix
corresponds to a specific entity type, and each cell corresponds to an entity span. As shown in Fig. 3,
for the input sentence “ ”(may cause increased saliva secretion and sweating),
GP constructs two upper triangular matrices. The first matrix is used to recognize body entities, while
the second matrix is used to recognize clinical symptom entities.

Figure 3: A demo of global pointer

For positions i and j, after encoding through BiLSTM, the corresponding query vector qi,α and
key vector ki,α are obtained via a fully connected layer. Thus, we obtain the query vector sequence
Q = {q1,α, q2,α, . . . , qn,α} and key vector sequence K = {k1,α, k2,α, . . . , kn,α} required for recognizing the
α-th type of entity. The scoring function is defined as shown in Eq. (4):

Sα(i, j) = qT
i,αkj,α (4)

where Sα(i, j) represents the score for a continuous substring composed of the i-th to j-th elements in
the sequence, belonging to an entity of type α.

In order to further enhance the model’s ability to capture entity length and span information,
we explicitly introduce relative positional encoding information in the scoring function, as shown in
Eq. (5):
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Sα(i, j) = (Riqi,α)
T(Rjkj,α) = qT

i,αRj−ikj,α (5)

where R is a transformation matrix, satisfying RT
i Rj = Rj−i.

3.4 Loss Function

Given the fact that the biomedical field usually involves a large number of entity types, while the
number of target types is relatively small, the loss function for such NER problem is defined as shown
in Eq. (6):

L = log
(

1 +
∑

(i,j)∈Pα

e−Sα(i,j)
)

+ log
(

1 +
∑

(i,j)∈Qα

eSα(i,j)
)

(6)

For the NER task, it is only necessary to consider combinations where i ≤ j. Pα represents the set
of starting and ending positions for all entities of type α. Qα represents the set of starting and ending
positions for all non-entities or entities of types other than α. The corresponding formulas are given
by Eqs. (7)–(9):

� = {(i, j) |1 ≤ i ≤ j ≤ n} (7)

Pα = {(i, j) |t[i : j] ∈ Eα} (8)

Qα = � − Pα (9)

where t[i : j] represents the contiguous substring composed of the i-th to the j-th elements of sequence t,
and Eα represents the set of all entities of type α. During the decoding phase, all contiguous substrings
t[i : j] that satisfy Sα (i, j) > 0 constitute the set of entities of type α.

4 Experiments
4.1 Datasets

We conduct experiments on the publicly available Chinese medical dataset CMeEE1 [29], which is
one of the largest and most comprehensive datasets for the Chinese biomedical NER task and is widely
used as a benchmark for evaluating the performance of various NER models on Chinese biomedical
texts. The dataset consists of 15,000 samples for training, 5,000 samples for validation, and 3,000
samples for testing. The annotated data encompasses a total of 2.2 million characters, comprising
47,194 sentences and 938 files. On average, each file contains 2,355 characters. There are 9 distinct
medical entity types in the dataset, labeled as disease (dis), clinical symptom (sym), drug (dru), medical
equipment (equ), medical procedure (pro), body (bod), medical laboratory test item (ite), microbiology
(mic) and department (dep). Table 2 shows the labeling scheme and examples of some entities.

Table 2: Examples of the CMeEE dataset

Entity type Label Example

disease dis
(Urinary retention patients are prone to secondary urinary tract infection.)
|||0 2 dis|||7 11 dis|||

(Continued)

1https://tianchi.aliyun.com/dataset/95414.

https://tianchi.aliyun.com/dataset/95414
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Table 2 (continued)

Entity type Label Example

department dep (Therefore, regular ophthalmic follow-up should be emphasized.)
|||8 9 dep|||

body bod (Splenic rupture is rare, but it is a serious complication, so it is not advisable
to re-press when examining the spleen.)
|||0 0 bod|||17 18 bod|||

.
clinical
symptom

sym (Based on clinical manifestations of fever and severe cough, with few lung
signs, the chest X-ray shows relatively pronounced features, suggesting
Mycoplasma pneumoniae infection.)
|||8 9 sym|||11 12 sym|||14 18 sym|||

4.2 Evaluation Metrics

We use precision (P), recall (R), and F1 score to evaluate the model’s recognition performance,
corresponding to Eqs. (10)–(12):

P = TP
TP + FP

× 100% (10)

R = TP
TP + FN

× 100% (11)

F1 = 2 × P × R
P + R

× 100% (12)

where TP represents the number of entities correctly predicted by the model, FP represents the number
of non-entities incorrectly recognized as entities by the model and FN represents the number of entities
incorrectly recognized as non-entities by the model. P represents the proportion of correctly predicted
entities to all predicted entities, R represents the proportion of correctly predicted entities to all true
entities and the F1 score is the harmonic mean of the two. These three metrics are all positive indicators,
meaning that higher values correspond to greater model effectiveness.

4.3 Experiment Setting

Before conducting the experiments, we set the maximum sentence length to 256 based on the
statistics of sentence lengths in the dataset. In the pre-processing phase, we utilize a 24-layer RoBERTa-
wwm-ext-large model with 16 attention heads, ultimately obtaining 1024 dimensional vectors from the
dataset. To prevent overfitting in the BiLSTM layer, we apply dropout with a dropout rate of 0.5 and
set the BiLSTM hidden layer size to 1024. In model training, the number of epoch is set to 10 and
the batch size is set to 64. Furthermore, we train the model by the Adam optimizer [30] with an initial
learning rate of 0.00003. The hyperparameters are shown in Table 3.
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Table 3: Hyperparameters of the proposed model

Description of hyperparameters Value

character embedding dimension 1024
BiLSTM hidden layer size 1024
maximum sentence length 256
learning_rate 0.00003
dropout_rate 0.5
batch_size 64
optimizer Adam
epoch 10

4.4 Baselines

To validate the performance of RoBGP, we compare it with the following seven models:

1. BiLSTM-CRF [4]: A method using a BiLSTM network for capturing the contextual informa-
tion of the input sequence and a CRF layer for solving sequence labeling.

2. Lattice-LSTM [14]: A variant of BiLSTM that incorporates word information into character-
level inputs by constructing a word-character lattice. This model can handle the word segmen-
tation problem and the ambiguity of Chinese characters.

3. BERT-CRF [18]: A combination of BERT and CRF. This model can utilize the rich semantic
representations from BERT and the label dependencies from CRF.

4. BERT-Biaffine [8]: A model that uses BERT to encode the input sequence and a biaffine
network to predict the spans and types of entities. This model can handle nested entities and
exploit the interactions between entity head and tail tokens.

5. FFBLEG [23]: A feature fusion and bidirectional lattice embedding graph model that inte-
grates character embeddings, word embeddings, and pinyin embeddings. This model can
capture the polysemy of Chinese characters and the similarity between different entity types.

6. RICON [18]: A regularity-inspired recognition network consisting of two branches that use
a regularity-aware module to learn the internal regularity of each span, and a regularity-
independent module to localize entity spans, avoiding excessive focus on the regularity of
the span.

7. FLR-MRC [24]: A machine reading comprehension framework that fuses label relations, which
implicitly models the relations between different label types through graph attention networks
and integrates label information with text.

Except for (1) and (2), the rest of the methods all use pretrained language models. (5), (6), and (7)
are all recent SOTA models.

4.5 Results and Analysis

4.5.1 Compared with Baselines

The performance of various models on the CMeEE dataset is displayed in Table 4. The results
demonstrate that RoBGP outperforms baseline models, achieving an F1 score improvement ranging
from 1.17% to 12.19%, validating the outstanding performance of RoBGP in the biomedical NER
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task. Upon a detailed analysis of the reasons behind this performance enhancement, we attribute it to
the fact that our proposed model is more adept at recognizing entities with long-distance dependencies.
Additionally, RoBGP exhibits excellent performance in handling nested entities, providing robust
support for accurate localization of entity boundaries in complex contexts.

Table 4: Performance of the models on the CMeEE

Model P (%) R (%) F1 (%)

BiLSTM-CRF 60.39 51.35 55.50
Lattice-LSTM 63.02 58.43 60.64
BERT-CRF 58.34 64.08 61.07
BERT-Biaffine 64.17 61.29 62.29
FFBLEG 64.70 64.92 64.81
RICON 66.25 64.89 65.57
FLR-MRC 66.79 66.25 66.52
RoBGP (Ours) 64.86 70.77 67.69
Note: The bold number means the best results and the underlined shows
second best results.

4.5.2 Comparison of Different Pretrained Language Models

To ascertain the performance of RoBERTa-wwm-ext-large [22] in RoBGP, we conduct a series of
experiments using various mainstream pretrained language models, including ELMo [17], XLNet [31],
BERT [7], RoBERT [20], and BERT-wwm. Notably, BERT-wwm is an enhancement of the original
BERT model, incorporating a whole word masking strategy. Simultaneously, we maintain consistency
in the downstream models with RoBGP, utilizing the BiLSTM-GP structure. This involves semantic
encoding through BiLSTM followed by entity recognition via GP. The experimental results are shown
in Table 5.

Table 5: Experimental results of different pretrained language models

Pretrained language model P (%) R (%) F1 (%)

ELMo 60.51 64.80 62.58
BERT 60.69 66.83 63.61
BERT-wwm 64.23 64.67 64.45
XLNet 65.18 65.89 65.54
RoBERTa 64.36 69.71 66.93
RoBERTa-wwm-ext-large 64.86 70.77 67.69

It can be observed that RoBERTa-wwm-ext-large outperforms other models in F1 score perfor-
mance. In a detailed analysis, when compared to ELMo, the F1 scores of BERT, XLNet, RoBERTa,
and RoBERTa-wwm-ext-large models improved by 1.03%, 2.96%, 4.35%, and 5.11%, respectively.
This improvement highlights the advantage of the Transformer module in encoding, particularly in
capturing contextual semantic dependencies for high-quality vector representations. In comparison
to BERT-wwm, RoBERTa-wwm-ext-large’s F1 score improved by 3.24%, reflecting the beneficial
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effects of the dynamic masking mechanism, larger batch size, and expanded training corpora on
entity recognition. In contrast to RoBERTa, RoBERTa-wwm-ext-large’s F1 score improved by 0.76%,
indicating that the word-level vectors obtained through the Chinese whole word masking strategy
compensate for the deficiencies of character-level vectors, making it more suitable for the Chinese
NER task.

4.5.3 Comparison of Different Recognition Modules

To validate the effectiveness of the GP model, we conduct comparisons with Softmax and CRF as
entity recognition modules based on RoBGP, and the experimental results are shown in Fig. 4. It can
be seen that in terms of precision, recall and F1 score, CRF outperforms Softmax by 6.32%, 5.75%, and
6.1%, respectively. This indicates that during the label decoding stage, compared to Softmax, which
treats each label as independent for prediction, CRF explicitly considers contextual correlations and
constraints among labels, which is more conducive to improving model accuracy. In Contrast to the
CRF model, the GP model achieves enhancements of 2.81%, 1.28%, and 2.13% in precision, recall,
and F1 score, respectively. This demonstrates the effectiveness of GP in addressing the issue of nested
entities, making it particularly suitable for the nested NER task.

Figure 4: Experimental results of different recognition modules

4.5.4 Ablation Experiment

To further validate the effect of each module in RoBGP on model performance, we conduct
ablation experiments. In each experiment, we maintained consistency in certain hyperparameters.
Subsequently, we progressively eliminate one of RoBERTa-wwm-ext-large, BiLSTM, and GP. Table 6
shows the specific experimental results. Here, we add explicit names for these ablation models:

1. RoBGP (w/o RoBERTa): RoBGP model with RoBERTa-wwm-ext-large excluded.
2. RoBGP (w/o BiLSTM): RoBGP model with BiLSTM excluded.
3. RoBGP (w/o GP): RoBGP model with GP excluded.
4. RoBGP (Baseline): The complete RoBGP model, including all components.
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Table 6: Effects of different modules in RoBGP on model performance

RoBERTa-wwm-ext-large BiLSTM GP F1 (%)

RoBGP (w/o RoBERTa) × √ √ 61.75
RoBGP (w/o BiLSTM) √ × √ 64.25
RoBGP (w/o GP) √ √ × 65.56
RoBGP (Baseline) √ √ √ 67.69

Note: “√” means to include the module, and “×” means to exclude the module.

The results indicate that all three modules play a crucial role in RoBGP, significantly enhancing
its recognition performance. Specific analyses are as follows:

1. Compared to RoBGP (Baseline), the F1 score of RoBGP (w/o RoBERTa) decreases by 5.94%.
This indicates that the quality of static word vectors generated by Word2Vec is inadequate, as
it only establishes a one-to-one relationship between words and vectors, incapable of handling
ambiguity. However, by adopting RoBERTa-wwm-ext-large, rich word-level semantic features
are captured, establishing a robust foundation for the subsequent encoding stage.

2. Compared to RoBGP (Baseline), the F1 score of RoBGP (w/o BiLSTM) decreases by 3.44%.
This is because BiLSTM possesses a strong ability to capture long-distance label dependency
relationships, which is particularly valuable in the biomedical field. Therefore, the incorpora-
tion of BiLSTM enhances the performance of our proposed model.

3. Compared to RoBGP (Baseline), the F1 score of RoBGP (w/o GP) decreases by 2.13%. The
CRF decoder exhibits good recognition performance in traditional NER tasks, but it fails to
address the issue of nested named entities prevalent in the biomedical field. The GP model
treats the entity’s head and tail as a whole and makes decisions within the candidate entity set,
achieving remarkable performance in the nested NER task.

5 Discussion

Our experimental results show that our proposed RoBGP can effectively utilize Chinese biomed-
ical word information for efficient NER. We compare RoBGP with seven baselines: BiLSTM-CRF
[4], Lattice-LSTM [14], BERT-CRF [18], BERT-Biaffine [8], FFBLEG [23], RICON [18] and FLR-
MRC [24]. By comparing BiLSTM-CRF and Lattice-LSTM, we prove that word embedding vectors
obtained through the pretrained language model are more advantageous for the downstream task. By
comparing BERT-CRF and BERT-Biaffine, we show that extracting long-distance Chinese word-level
information is more beneficial for biomedical NER. Additionally, GP is more suitable for recognizing
nested entities compared to traditional sequence labeling models. Through the comparison with SOTA
models FFBLEG, RICON, and FLR-MRC over the past 2 years, we demonstrate that RoBGP has
certain advantages in the Chinese biomedical NER task.

However, we also notice that RoBGP does not achieve the highest precision, indicating some
room for improvement. This shortcoming is partly attributed to the Chinese whole word masking
strategy employed, which might not comprehensively process and capture character-level information,
potentially leading to errors or omissions in some fine-grained entity recognition. Therefore, in our
future research, we may consider exploring the use of hybrid semantic representations involving both
characters and words to further refine our model.
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6 Conclusions

In this paper, we propose a Chinese nested biomedical NER model called RoBGP for the
fundamental task of constructing the biomedical knowledge base. The model can capture rich semantic
information at the biomedical word level, extract long-distance semantic dependency relationships,
and effectively recognize nested entities through the GP model. We conduct extensive experiments
with our model on the publicly available Chinese medical dataset CMeEE. Alongside this, we carry
out detailed comparisons with various mainstream models to evaluate our model’s performance in a
comprehensive manner. The experimental results show the superiority and effectiveness of our model
in the Chinese biomedical NER task. Each module plays an indispensable role in the entire framework.
However, despite achieving advanced performance in experiments, our model still faces challenges and
space for improvement. Particularly, we acknowledge limitations in fine-grained entity recognition. In
future research, we will explore new methods and strategies to overcome this issue, aiming to enhance
the quality and efficiency of knowledge base construction to fulfill the needs of the biomedical field
better.
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