
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047918

ARTICLE

BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating
Global Semantic and Spatiotemporal Features

Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1 and Shaohua Zhou2

1School of Computer Science and Engineering, Sichuan University of Science & Engineering, Yibin, 644002, China
2School of Mathematics and Statistics, Sichuan University of Science & Engineering, Yibin, 644002, China

*Corresponding Author: Xingxing Zhang. Email: 322085406224@stu.suse.edu.cn

Received: 22 November 2023 Accepted: 29 January 2024 Published: 26 March 2024

ABSTRACT

While encryption technology safeguards the security of network communications, malicious traffic also uses
encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning
methods relying on expert experience and the insufficient representation capabilities of existing deep learning
methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that
integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features
Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets
through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT) model.
At the byte-level granularity, we initially employ the Bidirectional Gated Recurrent Unit (BiGRU) model to extract
temporal features from bytes, followed by the utilization of the Text Convolutional Neural Network (TextCNN)
model with multi-sized convolution kernels to extract local multi-receptive field spatial features. The fusion of
features from both granularities serves as the ultimate multidimensional representation of malicious traffic. Our
approach achieves accuracy and F1-score of 99.39% and 99.40%, respectively, on the publicly available USTC-
TFC2016 dataset, and effectively reduces sample confusion within the Neris and Virut categories. The experimental
results demonstrate that our method has outstanding representation and classification capabilities for encrypted
malicious traffic.

KEYWORDS
Encrypted malicious traffic classification; bidirectional encoder representations from transformers; text
convolutional neural network; bidirectional gated recurrent unit

1 Introduction

While information is transmitted in plaintext, it also introduces hidden dangers in the information
transmission process. To mitigate the risk of eavesdropping, various applications employ the Transport
Layer Security (TLS) protocol to ensure the confidentiality and reliability of the communication
process. According to data sourced from the “Google Transparency Report” as of September 2021,
HTTPS encrypted traffic constituted 99% of all traffic within the Chrome browser [1]. Simultaneously,
encryption technology offers a means of intrusion for malicious traffic. Malicious traffic typically

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047918
https://www.techscience.com/doi/10.32604/cmc.2024.047918
mailto:322085406224@stu.suse.edu.cn

3930 CMC, 2024, vol.78, no.3

denotes network activity that unlawfully infiltrates, disrupts, and captures the businesses or data of
other parties. This intrusion is primarily attributed to network breaches, corporate attacks, malicious
network traffic, and related program vulnerabilities. The payload information becomes invisible when
traffic is encrypted, and encryption technology alters the plaintext traffic rules and parseable patterns,
thereby concealing the interaction between malicious programs and servers, and evading detection
by firewalls and network intrusion detection systems. Therefore, how to effectively identify malicious
traffic in the context of encryption is of great significance for maintaining cyberspace security and
resisting cyber attacks.

Encrypted malicious traffic classification methods can be primarily categorized into three types:
rule-based matching methods, machine learning or deep learning methods based on manually
extracted features, and deep learning methods based on feature self-learning. Due to the development
of port obfuscation technology [2] and TLS protocol, the plaintext information of network traffic
is gradually becoming ambiguous and randomized, posing a great challenge to the rule-matching
method that relies on the plaintext payload information to construct fingerprints. Subsequently,
researchers manually selected and extracted features based on prior knowledge, and applied machine
learning algorithms that have performed well in multiple fields to identify encrypted malicious traffic.
However, encrypted malicious traffic classification methods based on machine learning rely on a large
number of labeled samples and multiple typical features for training, causing model performance to
seriously depend on the quality of expert-designed features, with limited generalization capabilities
and easily affected by human factors [3]. As deep learning has achieved great success in fields such as
image recognition and sentiment analysis, researchers have begun to convert raw traffic into grayscale
images and sequences and have used deep learning methods to automatically extract features from
them. However, most current studies merely use a single network framework to extract features, such as
Stacked Autoencoder (SAE), Recurrent Neural Network (RNN), and Convolutional Neural Network
(CNN), resulting in limited model characterisation capabilities. Subsequently, Lin et al. [4] applied the
BERT model with deep feature extraction capability to traffic analysis tasks, achieving state-of-the-art
performance on multiple traffic datasets. However, the model only uses the global semantic features
of the packet as the final representation of traffic, ignoring the temporal and spatial features of the
local bytes, resulting in limited model performance.

Currently, there are two deficiencies in the field of malicious traffic classification, the first is that
the traffic classification models based on SAE, RNN, and CNN have relatively simple architectures,
resulting in the inability to deeply excavate traffic features. Additionally, the BERT model with deep
feature extraction capability only uses the multi-head attention mechanism to capture the global
semantic features of traffic, ignoring the locally rich temporal and spatial features, resulting in too
single form of traffic characterization. The above two reasons lead to poor model performance in
malicious traffic classification tasks with high similarity and confusion.

To address the above problems, we need to fully explore deep features of traffic and characterize
traffic from multiple feature angles. Therefore, we propose a model that fuses global semantic features
and local spatiotemporal features, called BSTFNet. To extract the global features and deep semantic
of traffic, we employ BERT’s multi-layer transformer encoder to convert the original traffic into
a high-dimensional vector representation and leverage its powerful context-learning capabilities to
extract the global semantic features of traffic. Subsequently, we use the BiGRU model with excellent
sequence modeling capabilities to extract deep temporal features from the high-dimensional vector
representation of traffic and scaled dot product attention highlights key bytes in the traffic. Finally,
we utilize the TextCNN model with multi-sized convolution kernels to extract local multi-receptive
field spatial features. After the fusion of global semantic features and local spatiotemporal features,

CMC, 2024, vol.78, no.3 3931

the final representation of traffic is obtained. The proposed model offers several notable contributions,
which are outlined below:

• We design a novel encrypted malicious traffic classification model BSTFNet. It innovatively
integrates BERT, TextCNN, and BiGRU, which can automatically learn the global semantic
features and the local spatiotemporal features of traffic from packet level and byte level respec-
tively. The fusion of the two features can more completely characterize encrypted malicious
traffic, thereby improving the classification accuracy.

• The robustness of the model was extensively evaluated on the dataset USTC-TFC2016, and
comparative experiments with mature models confirmed the superiority of the proposed
method. Impressively, this method achieves an accuracy of 99.39% on the public dataset USTC-
TFC2016 packet-level classification, which is better than all current models.

• We conducted a detailed parameter analysis of the model and designed ablation experiments to
prove the effectiveness and indispensability of each module of the BSTFNet model.

The remainder of this article is organized as follows. Section 2 summarizes the current related
work on encrypted malicious traffic classification. In Section 3, we provide the overall architecture
of the BSTFNet model and the detailed design of each module. In Section 4, we introduce the
experimental environment, the model parameters, and the experimental results, and design comparison
experiments and ablation experiments to thoroughly evaluate the model. Finally, we conclude this
paper in Section 5 and present prospects.

2 Related Work
2.1 Encrypted Traffic Classification Methods

As network attacks continue to emerge, encrypted malicious traffic classification technology has
received increasing attention and research from researchers [5]. According to the order in which
traffic classification methods appear, they can be divided into rule-based matching methods, machine
learning and deep learning methods based on manual feature extraction, and deep learning methods
based on feature self-learning.

Currently, the principle of malicious traffic detection method based on rule matching is to
manually establish a rule base through the prior knowledge of experts. The rule library is mainly
derived from textual information, such as traffic ports, uniform resource locators (URLs), and traffic
payload information. Methods based on deep packet inspection (DPI) distinguish various application
types by checking the TCP/UDP port number of the traffic transport layer (such as port 23 for Telnet
traffic, port 443 for HTTPS traffic, etc.) [6]. However, with the widespread use of confusion methods
such as port randomization strategies [7] and camouflage strategies [8], the accuracy of port-based
methods for classifying encrypted malicious traffic has dropped sharply. DPI-based methods build fin-
gerprint information and matching rules with efficient identification effects by analyzing keywords and
plaintext information in unencrypted packets during the handshake when establishing a connection
and then completes the identification of encrypted traffic. Korczyński et al. [9] first extracted plaintext
information from the packet payload of TLS traffic as the application fingerprint and then used a first-
order Markov chain to model the information in the one-way flow from server to client. The model
not only identifies encrypted applications but also detects abnormal communications between servers
and clients. The disadvantage of this approach is that as the application is upgraded, the application
fingerprint also needs to be updated regularly. Li et al. [10] proposed a dynamic DPI scheme, which uses
dynamically symmetric cloud middleware to detect traffic packets. The middleware cannot understand

3932 CMC, 2024, vol.78, no.3

the relationship between the added rules and the data packets, effectively preventing data leakage
caused by correlation analysis, and ensuring the privacy and security of DPI technology. Ning et al. [11]
proposed a deep packet inspection scheme executed in a network middlebox, named PrivDPI. The
DPI rules designed by Ning ensure privacy and security during the traffic detection process, and the
intermediate values generated by each traffic sample can be reused in subsequent detections, greatly
reducing computing delays and memory overhead. Rule-based encrypted traffic detection methods,
which have the advantages of fast identification speed, high classification accuracy, and low memory
overhead, can formulate corresponding matching rules according to tasks. However, its disadvantage
is that the construction of rules requires a huge cost. We need to analyze massive data to build a highly
discriminating rule base, and as network traffic changes, the rule base must be continuously updated
to ensure the flexibility of rules.

The fundamental principle of machine learning or deep learning detection algorithms based on
manual feature extraction is to manually design features through expert prior knowledge and classify
them through machine learning methods such as random forest (RF), extreme gradient boosting
(XGBoost), or deep learning methods such as RNN, CNN. Iliyasu et al. [12] created time series
features such as interarrival time, packet length, and packet direction of consecutive packets as pseudo
images and classified them using a Deep Convolutional Generative Adversarial Network (DCGAN)
model. Alotaibi et al. [13] combined two machine learning models, Support Vector Machine (SVM)
and Naive Bayes and used a fuzzy inference system to effectively improve the decision-making power
and accuracy of the model. Anderson et al. [14] manually extracted the packet size, the packet length,
and the unencrypted plaintext payload during the handshake as classification features, and then used
a logistic regression model as the classification model. The results show that encrypted malicious
traffic has its own unique plaintext statistical characteristics and payload information, which can be
effectively identified by machine learning algorithms. Lucia et al. [15] extracted the lengths of the
first 20 packets in encrypted malicious traffic as feature vectors, using positive and negative values
to indicate the packet transmission direction. They achieved a higher classification accuracy and a
lower false positive rate using a SVM model. Shekhawat et al. [16] extracted 38 features such as
fingerprint information, cipher suite information, and connection features from the traffic logs. They
analyzed these features using three machine learning algorithms (SVM, RF, and XGBoost), ultimately
achieving a high classification accuracy. Torroledo et al. [17] constructed a feature engineering to
extracting 40 encrypted traffic features and then used the Long Short-Term Memory (LSTM) model
to obtain an accuracy of 94.87%. Shapira et al. [18] converted the packet payload size distribution
of flows into square grayscale images and then classified them using a 2D-CNN model. In most
cases, machine learning based on artificial features is oriented to different application scenarios, so
it is necessary to select appropriate features and algorithms based on domain knowledge to train
model. The main factor determining model quality is feature engineering, which directly affects the
classification accuracy and generalization capability [19]. The manual feature selection process not
only heavily relies on expert experience but also extracts features with limited dimensions, resulting in
a model that suffers from the disadvantages of overfitting and poor generalization ability.

Deep learning methods based on feature self-learning make up for the shortcomings of machine
learning methods. Its principle is to use the nonlinear modeling ability of neural networks to extract
the feature vector of traffic and then fit traffic through representation learning. As deep learning
technology has achieved great success in fields such as natural language processing and image
recognition in recent years, researchers have also begun to use end-to-end deep learning methods
in encrypted traffic classification and malicious traffic identification tasks. Wang et al. [20] applied
the end-to-end representation learning method to the encrypted traffic classification task for the first

CMC, 2024, vol.78, no.3 3933

time. He first converted traffic into grayscale images and then used a convolutional neural network
to classify them. Through comparative experiments between one-dimensional convolutional neural
network (1D-CNN) and two-dimensional convolutional neural network (2D-CNN), Wang verified
that the nature of traffic is a one-dimensional time series, and 1D-CNN has more advantages in
extracting the characteristics of traffic. Lotfollahi et al. [21] integrated the SAE model and the CNN
model to develop a “Deep Packet” framework for traffic classification. Among them, the SAE model
completed the binary classification task of normal and abnormal traffic, and the CNN model achieved
fine-grained classification of applications on this basis. The results proved that the combination
of multiple deep-learning models can effectively improve classification accuracy. Hwang et al. [22]
truncated or padded the first N packets in the session stream to length L and then converted them
into grayscale images of size N × L. Finally, a model consisting of an autoencoder and a one-
dimensional convolutional network was used for malicious traffic detection. Chen et al. [23] used
ArcMargin to optimize the feature extraction layer of the CNN model, which effectively improved
the resolution ability of the CNN model and enabled the clustering of unknown traffic. In a complex
network environment, relying solely on the spatial features of traffic will lead to a serious decline in
classification accuracy. Due to the time series attributes of network traffic, RNNs, known for their
powerful sequence feature extraction capabilities, are also employed together with CNNs in traffic
classification tasks. Liu et al. [24] proposed an FS-Net model that automatically extracts sequence
features from original traffic packets. They utilized a multi-layer encoding and decoding structure to
mine high-dimensional sequence features from encrypted traffic and used a reconstruction mechanism
to enhance the discriminability and effectiveness of the features. Lin et al. [25] proposed an encrypted
traffic classification model TSCRNN, which combines the CNN model and the bidirectional long
short-term memory (BiLSTM) model. The CNN model extracts the spatial features of traffic, and the
BiLSTM model extracts the temporal features of traffic. Zou et al. [26] utilized the CNN model and the
LSTM model to learn the low-level spatial features and high-level temporal features of network traffic,
respectively, which ultimately improved the classification accuracy effectively. Liu et al. [27] built
the bidirectional gated recurrent unit attention (BGRUA) model for encrypted traffic classification,
which uses BiGRU’s bidirectional modeling capability to extract bidirectional time series features of
trafficand then uses the attention mechanism to increase the weight ratio of important features. The
experimental results showed that the BGRUA model has achieved good results in four indicators:
accuracy, precision, recall, and F1-score. However, methods based on deep learning rely on a large
amount of labeled traffic data. When the data is insufficient, the performance of the model will be
greatly affected [4], and there are shortcomings in single and shallow feature expressions.

With the widespread application of the ransformer model in the field of natural language
processing, researchers have introduced the self-attention mechanism of the Transformer model into
traffic analysis tasks. Wang et al. [28] combined the transformer model with powerful sequence
modeling capabilities and the CNN model with excellent spatial feature extraction capabilities to
design a hybrid deep learning model that can efficiently identify malicious traffic. The experimental
results showed that the hybrid model has better results in various indicators than the individual model.
Subsequently, Google released the pre-trained language representation model BERT [29] based on
a bidirectional Transformer. He et al. [30] introduced the BERT model into traffic classification,
proposing a model that utilizes BERT’s multi-head attention mechanism to learn traffic context
relationships. When performing downstream classification tasks, they used a small amount of data to
fine-tune the BERT pre-trained model to fit the classification task. The experiments were conducted on
multiple publicly available encrypted traffic datasets, and the results showed that the proposed model
outperformed other baseline models. Lin et al. [4] employed a multi-layer bidirectional transformer

3934 CMC, 2024, vol.78, no.3

architecture to capture contextual relationships of traffic. They used a large-scale unlabeled dataset to
build a pre-trained model, fine-tuned the pre-trained model for specific tasks, and ultimately achieved
robust performance on multiple encrypted traffic datasets. Shi et al. [31] captured byte-level and
packet-level features through the BERT module and the CNN module and then concatenated them
as the final features. The experimental results show that it can effectively enhance the performance
of the traffic classification model. Table 1 summarizes the main research results, including the traffic
features and analysis methods used.

Table 1: Summary of existing mainstream methods

Reference Years Features Methods

[9] 2014 Payload information Markov
[10] 2022 DPI
[11] 2019 DPI
[12] 2020 Artificial statistical features GAN
[13] 2019 RF
[14] 2018 Logistic
[15] 2019 SVM
[16] 2019 SVM, RF, XGBoost
[17] 2018 LSTM
[18] 2020 2D-CNN
[20] 2017 Automatically extract spatial

features
CNN

[21] 2020 SAE, CNN
[22] 2020 SAE, 1D-CNN
[23] 2020 CNN
[24] 2019 Automatic extraction of

temporal features
RNN

[27] 2020 BiGRU
[25] 2021 Automatically extract

spatiotemporal features
CNN, BiLSTM

[26] 2018 CNN, LSTM
[4] 2022 Automatically extract global

semantic features
BERT

[31] 2023 BERT
[32] 2023 GPT
[28] 2021 Automatically extract global

semantic and spatial features
Transformer, CNN

[30] 2023 BERT, CNN

From the table, two shortcomings of the current research can be seen. Firstly, the use of shallow
models such as CNN and RNN leads to a lack of depth in feature extraction. The second is that despite
the use of the deep feature extraction model BERT, it does not make full use of the local spatiotemporal
features of traffic. The BSTFNet we proposed can effectively solve these problems.

2.2 Pretrained Models

Pre-trained models are trained on large-scale unlabeled datasets to learn universal semantic
representations. These general features can be applied to a variety of tasks because they reflect

CMC, 2024, vol.78, no.3 3935

general patterns in the data. Subsequently, by fine-tuning a model on specific tasks, a semantic
representation of traffic can be obtained. Payload encoding representation from transformer (PERT)
[30] initially performed service identification on encrypted traffic using the open-source A Lite BERT
(ALBERT) pre-trained model. The drawback of the PERT model is the absence of pre-training tasks
specifically designed for encrypted traffic, which constrained its generalization capability. ET-BERT
[4] constructed a pre-trained model specifically designed for traffic classification by employing two
self-supervised pre-training tasks: the masked BURST model and the same-source BURST prediction.
In comparison to the PERT model, the ET-BERT model exhibited more robust performance and
superior generalization across multiple tasks. Meng et al. [32] proposed a generative pre-training model
NetGPT for traffic understanding and generation tasks, which encodes multi-modal network traffic
into a common semantic space and obtains basic pre-training models that support different tasks.
However, the above models only use the global semantic representation as traffic features and lack
attention to the local spatiotemporal features of traffic, resulting in overly monotonous representation
of traffic in the models.

3 Methodology

The encrypted malicious traffic classification method proposed in this article mainly includes
three steps: data preprocessing, malicious traffic characterization, and malicious traffic classification.
The model structure is shown in Fig. 1. Firstly, we perform data preprocessing operations on the raw
Pcap file, including traffic segmentation, data cleaning, length standardization, format conversion,
and sequence generation, with the entire process being carried out using the Datagram2Token
tool [4]. Subsequently, The preprocessed data is used as the input of the model through token
embedding, position embedding and segment embedding, and BERT’s attention mechanism is used
to obtain a vector representation that incorporates global semantic information. Byte-level vectors
(hN

1, . . . , hN
[SEP]) and sentence-level vector hN

[CLS] are the outputs of this process, with the vector hN
[CLS]

corresponding to the global semantic feature of the data packet. We use the BiGRU model to extract
bidirectional timing features of byte-level vectors and then employ the scaled dot-product attention
to improve the feature expression ability of important bytes. We splice timing feature vectors and
byte-level vectors into timing extension vectors, which has the advantage of enhancing the ability to
express timing features while avoiding the loss of original features caused by module series connection.
Then the TextCNN model with convolution kernels of different sizes is employed to extract local
spatiotemporal features. Global semantic features and local spatiotemporal features are fused to
obtain the final representation of traffic, and finally, the Softmax function is used to achieve fine-
grained classification of encrypted malicious traffic.

3.1 Data Preprocessing Layer

To minimize the potential impact of noise and information redundancy in the original dataset on
the model performance, and to ensure that data samples align with the input format of the model,
we utilize the Datagram2Token tool for dataset preprocessing. First, the original PCAP files are
segmented at packet granularity. Subsequently, packets with a size smaller than 80 bytes are removed,
as they do not contain any meaningful payload information. Simultaneously, traffic irrelevant to
the transmission content, such as ARP, ICMP, and DHCP protocol packets, is also eliminated. As
strong identifiers (such as ports and IP addresses) do not carry valuable information for distinguishing
samples, focusing on these details during model learning can potentially lead to overfitting. To avoid
bias and interference, we removed the IP header, the protocol ports of the TCP header, and Ethernet
headers [33]. Subsequently, the packet data is read in hexadecimal, and the hexadecimal traffic

3936 CMC, 2024, vol.78, no.3

sequence is integrated into double bytes, with each unit consisting of four hexadecimal digits (two
bytes). The processed data is shown in Table 2. To mitigate the bias introduced by data imbalance, we
randomly selected 5000 samples from each category (with 2110 samples in the Shifu class), and finally
divided the dataset into a training set, validation set, and test set according to the ratio of 8:1:1.

Figure 1: BSTFNet model architecture

Table 2: Preprocessed data format

Label Hexadecimal sequence

14 feb5 b541 41d5 d558 58ed edf4 f426 26d2 d251 5180 8018 1849 4988 88d2 d2ac ac00 0000
0001 0101 0108 080a 0a1a 1a61 610c 0cfd fd08 0834 34f2 f2cf cf99 995a 5a32 32f2 f2f6 f64b
4bb4 . . .

9 0050 5087 8756 56cf cf38 38d7 d706 0634 3463 6350 5018 18fa faf0 f05e 5e12 1200 0000 0047
4745 4554 5420 202f 2f67 6765 6574 746a 6a73 736f 6f6e 6e3f 3f34 3470 7071 7137 3766 . . .

1 1f90 90b9 b9f9 f9a0 a002 0275 7537 371a 1a02 0250 5018 1850 5000 005a 5ac6 c600 0000
0041 4111 1112 121c 1c19 1918 180f 0f43 4341 411a 1a18 1809 0922 2210 1012 1219 1908
0811 . . .

3.2 Malicious Traffic Representation Layer

3.2.1 BERT-Based Global Semantic Feature Extraction Module

ET-BERT captures byte-level and BURST-level context relationships through two self-supervised
pre-training tasks: a network traffic-specific masked BURST model and homologous BURST pre-
diction. It leverages large-scale unlabeled data for pre-training, refining a universal packet semantic
representation. In this paper, we construct a global semantic feature extraction module using the
ET-BERT pre-trained model. The module consists of 12 Transformer blocks, and the representation
dimension for each input token is set to 768. This design equips it with powerful global semantic
representation capabilities. The BERT model includes two stages: (1) word embedding stage: including
token embedding, segment embedding, and position embedding; (2) encoding stage: in this stage, the
previously mentioned token vectors, sentence vectors, and position vectors are linearly summed to
generate composite embedding representations, which serve as the input to the encoder layers. Then,

CMC, 2024, vol.78, no.3 3937

we utilize the multi-head attention mechanism to capture a vector representation that integrates global
semantic information.

Token embedding converts each token in the sequence into a vector by querying the dictionary
table. The range of each token is from 0 to 65535, and the maximum value of dictionary |V| is 65536. At
the same time, during the word embedding process, the input sequence will be added with two special
tokens [CLS] and [SEP]. Token [CLS] is located at the beginning of the sequence, and token [SEP] is
placed at the end of the sequence. When the input length is less than the model length requirement,
the token [PAD] is filled at the end of the sequence. When the input sequence length exceeds the model
length requirement, a truncation operation is performed.

Position embedding numbers the position of each token in the sequence. Since the transmission of
traffic data is closely related to the order, position embedding needs to be used to ensure that the model
pays attention to the temporal relationship between tokens through relative positions. Therefore, each
input token is assigned an H-dimensional vector to represent its position information in the sequence,
where H is set to 768.

Segment embedding is a marker used to distinguish two sentences in an input sentence pair. It
classifies two sentences based on whether they are semantically similar so that the input sentences can
be simply connected and input into the model. It is mainly used in the pre-training stage, and this
article does not cover such work.

In the encoding layer, the BERT model uses a multi-layer bidirectional transformer encoder to
encode the input vectors. Each Trm corresponds to a unit encoder, (E[CLS], E1,..., E[SEP]) are the input
vectors of the BERT module, and (hN

[CLS], hN
1, . . . , hN

[SEP]) are the output vectors of the module. We use
hN

[CLS] as the global semantic features of traffic, because the [CLS] token itself does not contain any
semantic information and can more fairly integrate the semantic information of other tokens in the
sequence, thereby better representing the global features of traffic. The BERT model architecture is a
multi-layer bidirectional Transformer encoder, whose structure is shown in Fig. 2.

Figure 2: BERT model architecture

3938 CMC, 2024, vol.78, no.3

The core of the transformer is the self-attention mechanism, which can learn the relationship
between any two tokens in the sequence. Its principle is to construct three matrices Q, K , and V to
query the relationship between the current token and other tokens in the context and update the feature
vector. The updated feature vector contains information about the entire sequence. The calculation
process of the self-attention mechanism can be expressed as Eq. (1):

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (1)

where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is the matrix dimension
of Q and K. BERT enhances the expression ability of the model by using multi-head self-attention.
Multi-head self-attention linearly projects the query, key, and value matrices h times, and obtains the
attention weights by executing scaled dot-product attention in parallel. Finally, the h attention weights
are multiplied with the value matrix, and then merged to generate a new representation. The multi-head
self-attention calculation process can be expressed as Eqs. (2) and (3):

hhead
i = Attention

(
QW Q

i , KW K
i , VW V

i

)
(2)

MultiHead (Q, K, V) = Concat
(
hhead

1 , hhead
2 , · · ·, hhead

h

)
W 0 (3)

where h represents the number of attention heads, and W Q
i , W K

i , W V
i are the weight matrices for the

hhead
i .

3.2.2 Temporal Feature Extraction Module

In recent years, methods combining BERT and LSTM have performed well in natural language
processing, such as sentiment analysis [34], and sarcasm detection [35]. Studies have shown that using
models such as LSTM on top of the BERT model can mine deeper temporal features of sequences.
Inspired by this, we use BiGRU after the BERT model to extract deep temporal features of traffic.
Compared with LSTM, GRU has a simpler structure, fewer parameters, and lower complexity. GRU
comprises two gate structures: the reset gate and the update gate. The reset gate determines the extent
to which information from the previous time step is ignored, and the larger the reset gate, the less
information is ignored. The update gate controls the degree to which information from the previous
time step is brought into the current state. The larger the value of the update gate, the more status
information is brought into the previous moment [36]. The structure of the GRU unit is shown in
Fig. 3a, x and h represent input and output respectively, r and z represent reset gate and update gate
respectively. The update gate outputs a value zt between 0 and 1. zt determines the extent to which
the information ht−1 at the previous moment is passed to the next state. The reset gate controls the
importance of ht−1 to the result ht. Then based on the update gate, the memory information gt at the
current moment is generated, and the output ht is calculated. The GRU calculation process can be
expressed as Eqs. (4) to (7):

zt = σ (Wzxt ⊕ Uzht−1) (4)

rt = σ (Wrxt ⊕ Urht−1) (5)

gt = tanh
(
Wgxt ⊕ Ug(rt ⊗ ht−1

)
(6)

ht = (1 − zt) ⊗ ht−1 ⊕ (zt ⊗ gt) (7)

CMC, 2024, vol.78, no.3 3939

where σ represents the sigmoid activation function, Wz, Wr, Wg, Uz, Ur, Ug represents the weight
parameter, ⊕ represents the elementary addition operation, ⊗ represents the elementary multiplication
operation, and tanh represents the hyperbolic tangent activation function of the candidate hidden state.

A unidirectional GRU can only establish connections between the current input and historical
information, failing to capture the impact of future input on the current input. However, there is a
temporal relationship between bytes and their adjacent bytes in traffic data. Therefore, we choose
the BiGRU model to extract temporal features. The BiGRU model consists of both a forward and a
backward GRU, and their complementary nature enables the model to establish connections between
preceding and succeeding byte states. The structure of the BiGRU model is depicted in Fig. 3b.

Figure 3: GRU model architecture

The BiGRU module receives the output vector of the BERT module as input and deeply mines
the time series features in it. The calculation process is shown in Eqs. (8) to (10):
→
ht = GRU

(
xt,

→
ht−1

)
(8)

←
ht = GRU

(
xt,

→
ht−1

)
(9)

ht = wt

→
ht + vt

←
ht + bt (10)

Here, ht represents the output state of the forward GRU and the backward GRU at time t,
respectively, xt is the input of the hidden state, Wt and Vt represent the weight matrix of the output
state, respectively, bt represents the bias matrix. Due to the varying contributions of each byte in the
packets to the identification of encrypted malicious traffic, we utilize a scaled dot-product attention
mechanism to enhance the weight of important features within the temporal feature vectors. Finally, we
spliced the temporal features and vectors (hN

1, . . . , hN
[SEP]) into a temporal extension vector, avoiding

the feature loss of the original byte-level vectors caused by the module series connection.

3.2.3 Spatial Feature Extraction Module

The TextCNN model is a variant model based on Convolutional Neural Networks. We believe that
TextCNN is the preferred choice for extracting local multi-receptive field features from traffic, because
it exhibits excellent local feature extraction performance in vulnerability text classification [37] and
malicious code classification [38] tasks. Compared with traditional CNN, the advantage of TextCNN
is that we can set convolution kernels of various sizes to extract spatial features from sequence content

3940 CMC, 2024, vol.78, no.3

of different lengths. Additionally, the convolutional operations of the TextCNN model can be executed
in parallel, significantly accelerating the model training speed. The structure of TextCNN is shown in
Fig. 4.

Figure 4: TextCNN model architecture

The convolution kernel of TextCNN can only perform one-dimensional convolution operations
in the length direction of the sequence, and its shape is embedding_size × filter_size. Where embed-
ding_size is the dimensionality of the vectors after being embedded by the BERT module, and filter_size
represents the size (height) h of the convolution kernel, indicating the number of words that can be
extracted from the sequence in each convolution operation. The filter_size is set to (2, 3, 4,5, 6). The
result Oi of each sliding window is calculated through the convolution operation, and its calculation
process can be expressed as Eq. (11):

oi = f (Wh · xi : i+h−1 + bh) (11)

Here, xi : i+h−1 is the word vector matrix from row i to row i+h-1, bh is the bias term, and f represents
the nonlinear activation function Relu. Through the height h of the convolution kernel and the
sequence length n, it can be calculated that there are n-h+1 convolution windows, so the convolution
summary result is c = [O1, O2, ..., On−h+1]. After each filter convolution is completed, a feature map
representing the sequence will be extracted. The number of feature maps is equal to the number of
convolution kernels.

In the pooling layer, the global maximum pooling method is used to extract the maximum value
in each vector. After the pooling operation, we obtain a 64-dimensional vector, which is formed by
a combination of the maximum value of the features extracted by each convolution kernel. This not
only reduces the feature dimension but also eliminates the length difference between vectors.

Finally, we splice the feature vectors output by convolution kernels of different sizes to obtain local
multi-receptive field spatial features. The feature dimension is 5 × num_filter, and dropout technology
is used to prevent overfitting.

3.3 Encrypted Malicious Traffic Classification Layer

We concatenated the global semantic features and local spatiotemporal features as the final
representation of encrypted malicious traffic. Then, we utilized the feature transformation space of

CMC, 2024, vol.78, no.3 3941

the fully connected layer to map it to the sample category space. Finally, we used the Softmax function
to calculate the probabilities for each category of traffic, and selected the maximum probability as the
classification result. The Softmax function can be represented by Eq. (12).

Pi = exi∑k

i=1 exi
(12)

Here, Pi represents the probability of recognizing the traffic as the i class, and xi is the score for the
corresponding category. e is the exponential function with base e, which highlights the larger values in
the vector.

4 Experiments
4.1 Experimental Environment and Setup

This experiment was performed using Python version 3.7, with the Windows10 operating system,
the processor is an Intel(R) Xeon(R) W-2275 CPU @ 3.30 GHz, and the graphics processing unit is
a single NVIDIA RTX A4000, with a 16 GB graphics processing unit memory. All experiments were
based on PyTorch and Universal Encoder Representations (UERs) [39].

The model parameters are as follows: In the BERT layer, we set the maximum input length to 128
tokens, and the token embedding dimension to 768. In the BiGRU layer, we set the hidden neurons
to 128, the number of attention heads is set to 2, and the number of layers to 2. In the TextCNN
convolution layer, we set the number of convolution kernels to 64, chose the global maximum pooling
method, selected Relu as the activation function, and set the dropout rate to 0.3. We set the batch
size to 64, the learning rate to 2 × 10−5, and the epoch size to 15, and selected Adam as the model
parameter optimizer.

Fig. 5 illustrates the shape of the feature vectors for the main network layers of the BSTFNet
model. The model takes 128 tokens as input, which are then transformed into a feature matrix of
shape (128, 768) by the embedding layer. The 768-dimensional vector corresponding to the CLS token
serves as the global semantic feature of the input traffic sequence, while the representation vectors of
the remaining 127 tokens become the input for the local feature extraction layer. A 320-dimensional
spatiotemporal feature vector is obtained through the TextCNN layer and the BiGRU layer. Finally,
the global semantic features and the local spatiotemporal features are fused to produce the ultimate
1088-dimensional representation vector. Through the fully connected layer and softmax function,
traffic classification is achieved.

Figure 5: Feature vector shapes for major network layers

3942 CMC, 2024, vol.78, no.3

4.2 Experimental Datasets

To ensure the credibility of the research results, we chose the USTC-TFC2016 dataset [40] to
evaluate the model proposed in this paper. This dataset, resembling a real network environment, has
been widely applied in research on encrypted malicious traffic classification. The USTC-TFC2016
dataset is a collection of encrypted traffic, consisting of 10 categories of malware and 10 categories of
benign applications. The format of all traffic files is pcap. The dataset contains relatively few redundant
and repeated traffic samples, and it is encrypted using the TLS protocol. Table 3 shows the application
category composition of the USTC-TFC 2016 dataset.

Table 3: USTC-TFC 2016 dataset composition

Traffic type Application categories

Benign BitTorrent, FTP, Warcraft, MySQL, Skype, Facetime, Outlook, SMB,
Weibo, Gmail

Malware Htbot, Cridex, Neris, Nsis-ay, Shifu, Virut, Zeus, Tinba, Miuref, Geodo

4.3 Experimental Evaluation Methods

We evaluated the model’s performance using four metrics: Accuracy, Precision, Recall, and F1-
score, aiming to assess the model classification performance on encrypted malicious traffic from
various perspectives. The specific calculation formulas are represented as Eqs. (13) to (16):

Accuracy = TP + TN
FP + TN + FP + TN

(13)

Precision = TP
FP + TP

(14)

Recall = TP
FN + TP

(15)

F1 − score = 2 × Precision × Recall
Precision + Recall

(16)

where TP represents the count of positive samples that have been accurately recognized, while FP
corresponds to the count of negative samples that have been erroneously identified. TN signifies the
count of negative samples that have been correctly classified, and FN indicates the count of positive
samples that have been mistakenly categorized.

4.4 Experimental Results and Analysis

4.4.1 Comparison with Baseline Models

To validate the effectiveness of the model on the encrypted malicious traffic classification task, we
selected seven models (FlowPrint [41], FS-Net [24], 1D-CNN, TextCNN, CNN-LSTM [26], ET-BERT
[4], BFCN [31]) as baseline models. The experiments were conducted on the USTC-TFC2016 dataset
to demonstrate the generalization capability of the BSTFNet model. Table 4 presents the experimental
results of the BSTFNet model and other baseline models on the USTC-TFC2016 dataset.

CMC, 2024, vol.78, no.3 3943

Table 4: Comparison results on malicious traffic classification

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

FlowPrint 81.46 65.34 70.02 65.73
FS-Net 88.46 88.46 89.20 88.40
1D-CNN 96.93 97.04 96.86 96.94
TextCNN 98.28 98.30 98.30 98.30
CNN-LSTM 98.32 98.37 98.21 98.27
ET-BERT 99.05 99.09 99.07 99.07
BFCN 99.16 99.17 99.17 99.17
Proposed 99.39 99.40 99.40 99.40

The experimental results indicate that our approach achieved the best performance across all four
evaluation metrics and outperformed all baseline models. The accuracy, precision, recall, and F1-
score of the BSTFNet model are 99.39%, 99.40%, 99.40%, and 99.40%, respectively. This represents
an improvement of 2.46%, 2.36%, 2.54%, and 2.46% over the 1D-CNN model, and a 0.34%, 0.31%,
0.33%, and 0.33% improvement over the ET-BERT model. What is impressive is that compared with
the BFCN model composed of BERT and CNN, our model improved by 0.23% in four indicators,
indicating that the BSTFNet model can make up for the shortcomings of the BFCN model in
extracting temporal features and spatial features.

Fig. 6 displays the confusion matrices for well-performing models (1D-CNN, TextCNN, CNN-
LSTM, ET-BERT, BFCN, BSTFNet) on the USTC-TFC2016 dataset. Confusion matrices are
commonly used to validate classification results and enable researchers to gain a better understanding
of the model performance. The rows in the confusion matrix correspond to the actual categories of the
samples, and the columns represent the predicted labels inferred by the models. It can be observed from
Fig. 6 that most models exhibit some confusion between the Neris and Virut categories. In the case of
our model, samples predicted as Neris class included 16 Virut samples, 2 Nsis-ay samples, and 1 Htbot
sample. Samples predicted as Virut included 26 Neris samples, 5 Nsis-ay samples, and 3 Htbot samples.
Compared to the ET-BERT model, our model reduced the confusion of samples by 30 in the Neris class
and by 4 in the Virut class. For a more intuitive comparison, Table 5 statistics the Precision, Recall,
and F1-score of the six models in the Neris and Virut categories. The table shows that the BSTFNet
model performs the best in the Neris and Virut categories, with respective improvements of 3.85% and
1.93% in F1-score compared to the baseline model ET-BERT. This indicates that the BSTFNet model
exhibits superior detection performance for malicious traffic types with higher similarities.

4.4.2 Model Parameter Analysis

Fig. 7 shows the training curve of the BSTFNet model. We can observe the convergence behavior
of the model on the data set. The BSTFNet model achieved convergence after only 10 training epochs.
After reaching convergence, the accuracy of the model on the training set and validation set reached
100% and 99.40%, respectively. The experimental results confirm the robust performance of the model
on the data set, showing excellent convergence speed and accuracy, and no signs of overfitting.

3944 CMC, 2024, vol.78, no.3

Figure 6: Confusion matrices for six models

CMC, 2024, vol.78, no.3 3945

Table 5 : Experimental results of six models in the nerius class and Virut class

Method Nerius class Virut class

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

1D-CNN 80.70 73.60 77.00 77.21 84.00 80.46
TextCNN 87.18 83.00 85.04 85.00 88.40 86.67
CNN-LSTM 88.98 84.00 86.42 84.30 90.20 87.15
ET-BERT 95.26 88.40 91.70 88.99 95.40 92.85
BFCN 93.71 92.40 93.51 92.46 93.20 92.83
BSTFNet 96.72 94.40 95.55 93.40 96.20 94.78

Figure 7: Training curve of BSTFNet model

The convolution kernel size is the core parameter of the TextCNN model. The local spatial feature
extraction layer aims to extract local multi-scale spatial features by defining convolution kernels of
different sizes, thereby obtaining diverse and more representative features. We selected 5 commonly
used convolution kernel size combinations for the experiments. The experimental results are shown
in Fig. 8. The results show that the model using convolution kernel sizes of 2, 3, 4, 5, and 6 has the
highest accuracy on the data set, reaching 99.39%.

Num_layer represents the number of stacked layers of bidirectional GRU, which is closely related
to the complexity and fitting ability of the BiGRU module. Each layer of GRU can capture sequence
features at different time steps. If Num_layer is too small, the model is insufficient to extract the deep
features of traffic. Conversely, the model will overfit the fine information of the samples, resulting in
a decrease in generalization ability. Moreover, as the GRU layers are stacked too much, the memory
cost of the model will also increase exponentially. Therefore, by choosing the appropriate number of
layers, the model can have both excellent generalization and fitting capabilities. To select parameters
suitable for the model, we designed four stacking layer numbers for experiments. The experimental
results are shown in Fig. 9. When Num_layer is 2, the model has the highest accuracy in the encrypted
malicious traffic classification task. At the same time, the results verify that too many or too few GRU
layers will bring the risk of over-fitting and under-fitting to the model.

3946 CMC, 2024, vol.78, no.3

Figure 8: Effect of different convolution kernel sizes

Figure 9: Effect of different num_layer

4.4.3 Ablation Experiments

To validate the indispensability of each feature extraction module in our model, we designed
four ablation models for experimental comparison: BERT-TextCNN, BERT-BiGRU, BERT-NOCLS,
and TextCNN-BiGRU. The BERT-TextCNN model removes the BiGRU-Attention temporal feature
extraction module, BERT-BiGRU removes the TextCNN local spatial feature extraction module,
TextCNN-NOCLS removes the global semantic features, and TextCNN-BiGRU removes the BERT
encoder. All experiments are conducted on the processed USTC-TFC2016 data set. Fig. 10 is the
harmonic mean of all category results in the data set. Figs. 11 and 12 are the experimental results
for the Nerius category and Virut category, respectively.

The experimental results show that compared with the other four models, the BSTFNet model
achieved the best performance in the four average indicators of all categories, increasing the F1-
score by 0.86%, 0.22%, 0.19%, and 0.17%, respectively. For the nerius class, which is more difficult
to classify, the F1-score increased by 8.37%, 2.76%, 2.43%, and 2.05%, respectively, and for the virut
class, they increased by 7.80%, 1.75%, 1.39%, and 0.99%, respectively. After removing the BERT layer,

CMC, 2024, vol.78, no.3 3947

the model performance dropped sharply, indicating that the BERT module of the BSTFNet model is
crucial for mining high-dimensional features. After removing the temporal feature extraction module,
spatial feature extraction module, and global semantic features respectively, the model performance
also declined, indicating that the local spatiotemporal features extracted by the BiGRU and TextCNN
models can greatly improve the attention and identification ability of encrypted malicious traffic.
Models with global semantic features are better able to extract the deep contextual relationships of
encrypted malicious traffic, and the parallel connection of global features and local features avoids the
loss of some features caused by series connection to a certain extent. Through the above experiments,
we verified the necessity of each feature extraction module of the BSTFNet model, indicating that a
model that simultaneously considers global features, temporal features, and spatial features performs
better than a model that only considers a single global semantic feature.

Figure 10: Average accuracy, recall, precision, and F1-score for each ablation model across all
categories

Figure 11: The recall rate, precision rate, and F1-score of each ablation model on the Nerius category

3948 CMC, 2024, vol.78, no.3

Figure 12: The recall rate, precision rate, and F1-score of each ablation model on the Virut category

5 Conclusion

Aiming at the problems of existing encrypted malicious traffic classification methods with single
representation and insufficient feature extraction depth, this paper proposes an encrypted malicious
traffic classification method based on global semantic features and local spatiotemporal features. We
first use BERT to extract the global semantics of traffic, and then use TextCNN and BiGRU models
to extract the spatial and temporal characteristics of traffic respectively. The experimental results show
that our model achieves the optimal accuracy and F1-score on the USTC-TFC2016 data set. At the
same time, the ablation experiment proves the indispensability of each module of the BSTFNet model.
In future work, we will start from the data level and use data enhancement technology to deal with
the problem of unbalanced encryption malicious traffic classification to further adapt to the actual
network environment. On the other hand, the detection of malicious traffic requires high immediacy.
In the future, we will combine real-time machine learning and deep learning to achieve fine-grained
classification of encrypted malicious traffic under the big data platform, and support real-time updates
of the model.

Acknowledgement: The authors would like to thank the reviewers for their contribution to this paper.

Funding Statement: This research was funded by National Natural Science Foundation of China
under Grant No. 61806171, Sichuan University of Science & Engineering Talent Project under Grant
No. 2021RC15, Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering
Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.
2022QYJ06, Sichuan University of Science & Engineering Graduate Student Innovation Fund under
Grant No. Y2023115, The Scientific Research and Innovation Team Program of Sichuan University
of Science and Technology under Grant No. SUSE652A006.

Author Contributions: Study conception and design: Hong Huang, Xingxing Zhang; data collection:
Xingxing Zhang, Ye Lu, Ze Li; analysis and interpretation of results: Hong Huang, Xingxing Zhang,
Shaohua Zhou; draft manuscript preparation: Xingxing Zhang. All authors reviewed the results and
approved the final version of the manuscript.

CMC, 2024, vol.78, no.3 3949

Availability of Data and Materials: Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/yungshenglu/USTC-TFC2016.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. Keshkeh, A. Jantan, K. Alieyan, and U. M. Gana, “A review on TLS encryption malware detection:

TLS features, machine learning usage, and future directions,” in Proc. Adv. Cyber Secur., Penang, Malaysia,
2021, pp. 213–229.

[2] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “The rise of traffic classification in IoT networks:
A survey,” J. Netw. Comput. Appl., vol. 154, pp. 102538, 2020. doi: 10.1016/j.jnca.2020.102538.

[3] E. Nazarenko, V. Varkentin, and T. Polyakova, “Features of application of machine learning methods for
classification of network traffic (features, advantages, disadvantages),” in Proc. 2019 Int. Multi-Conf. Indust.
Eng. Mod. Technol. (FarEastCon), Vladivostok, Russia, 2019, pp. 1–5.

[4] X. Lin et al., “ET-BERT: A contextualized datagram representation with pre-training transformers for
encrypted traffic classification,” in Proc. ACM Web Conf. 2022, Lyon, France, 2022, pp. 633–642.

[5] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network traffic analysis applications, tech-
niques, and countermeasures,” ACM Comput. Surv., vol. 54, no. 123, pp. 1–35, 2021. doi: 10.1145/3457904.

[6] J. McPherson, K. L. Ma, P. Krystosk, T. Bartoletti, and M. Christensen, “PortVis: A tool for port-based
detection of security events,” in Proc. 2004 ACM Workshop Vis. Data Min. Comput. Secur., Washington,
USA, 2004, pp. 73–81.

[7] A. Madhukar and C. Williamson, “A longitudinal study of P2P traffic classification,” in Proc. 14th IEEE
Int. Symp. Model., Anal. Simul., Monterey, CA, USA, 2006, pp. 179–188.

[8] C. Thay, V. Visoottiviseth, and S. Mongkolluksamee, “P2P traffic classification for residential network,”
in Proc. 2015 Int. Comput. Sci. Eng. Conf. (ICSEC), Chiang Mai, Thailand, 2015, pp. 1–6.

[9] M. Korczyński and A. Duda, “Markov chain fingerprinting to classify encrypted traffic,” in Proc. IEEE
INFOCOM 2014-IEEE Conf. Comput. Commun., Toronto, ON, Canada, 2014, pp. 781–789.

[10] C. Li, Y. Guo, and X. Wang, “Towards privacy-preserving dynamic deep packet inspection over outsourced
middleboxes,” High-Confid. Comput., vol. 2, pp. 100033, 2022. doi: 10.1016/j.hcc.2021.100033.

[11] J. Ning, G. S. Poh, J. C. N. Loh, J. Chia, and E. C. Chang, “PrivDPI: Privacy-preserving encrypted traffic
inspection with reusable obfuscated rules,” in Proc. 2019 ACM SIGSAC Conf. Comput. Commun. Secur.,
London, UK, 2019, pp. 1657–1670.

[12] A. S. Iliyasu and H. Deng, “Semi-supervised encrypted traffic classification with deep convolutional gener-
ative adversarial networks,” IEEE Access, vol. 8, pp. 118–126, 2020. doi: 10.1109/ACCESS.2019.2962106.

[13] F. M. Alotaibi and F. M. Alotaibi, “Network intrusion detection model using fused machine learning
technique,” Comput. Mater. Contin., vol. 75, no. 2, pp. 2479–2490, 2023.

[14] B. Anderson, S. Paul, and D. McGrew, “Deciphering malware’s use of TLS (without decryption),” J.
Comput. Virol. Hacking Tech., vol. 14, pp. 195–211, 2018.

[15] M. J. D. Lucia and C. Cotton, “Detection of encrypted malicious network traffic using machine learning,”
in Proc. MILCOM 2019-2019 IEEE Military Commun. Conf. (MILCOM), Norfolk, VA, USA, 2019,
pp. 1–6.

[16] A. S. Shekhawat, F. D. Troia, and M. Stamp, “Feature analysis of encrypted malicious traffic,” Expert.
Syst. Appl., vol. 125, pp. 130–141, 2019. doi: 10.1016/j.eswa.2019.01.064.

[17] I. Torroledo, L. D. Camacho, and A. C. Bahnsen, “Hunting malicious TLS certificates with deep neural
networks,” in Proc. 11th ACM Workshop Artif. Intell. Secur., Toronto, Canada, 2018, pp. 64–73.

[18] T. Shapira and Y. Shavitt, “FlowPic: Encrypted internet traffic classification is as easy as image
recognition,” in Proc. IEEE INFOCOM 2019-IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Paris, France, 2019, pp. 680–687.

https://github.com/yungshenglu/USTC-TFC2016
https://doi.org/10.1016/j.jnca.2020.102538
https://doi.org/10.1145/3457904
https://doi.org/10.1016/j.hcc.2021.100033
https://doi.org/10.1109/ACCESS.2019.2962106
https://doi.org/10.1016/j.eswa.2019.01.064

3950 CMC, 2024, vol.78, no.3

[19] F. Jie, “Research on malicious TLS traffic identification based on hybrid neural network,” in Proc. 2020
Int. Conf. Adv. Ambient Comput. Intell. (ICAACI), Ottawa, ON, Canada, 2020, pp. 42–46.

[20] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted traffic classification with one-
dimensional convolution neural networks,” in Proc. 2017 IEEE Int. Conf. Intell. Secur. Inform. (ISI),
Beijing, China, 2017, pp. 43–48.

[21] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep packet: A novel approach for
encrypted traffic classification using deep learning,” Soft Comput., vol. 24, pp. 1999–2012, 2020. doi:
10.1007/s00500-019-04030-2.

[22] R. H. Hwang, M. C. Peng, C. W. Huang, P. C. Lin, and V. L. Nguyen, “An unsupervised deep learning
model for early network traffic anomaly detection,” IEEE Access, vol. 8, pp. 30387–30399, 2020. doi:
10.1109/ACCESS.2020.2973023.

[23] M. Chen, X. Wang, M. He, L. Jin, K. Javeed and X. Wang, “A network traffic classification model based on
metric learning,” Comput. Mater. Contin., vol. 64, no. 2, pp. 941–959, 2020. doi: 10.32604/cmc.2020.09802.

[24] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow sequence network for encrypted traffic
classification,” in Proc. IEEE INFOCOM 2019-IEEE Conf. Comput. Commun., Paris, France, 2019, pp.
1171–1179.

[25] K. Lin, X. Xu, and H. Gao, “TSCRNN: A novel classification scheme of encrypted traffic based on flow
spatiotemporal features for efficient management of IIoT,” Computer. Netw., vol. 190, pp. 107974, 2021.
doi: 10.1016/j.comnet.2021.107974.

[26] Z. Zou et al., “Encrypted traffic classification with a convolutional long short-term memory neural
network,” in Proc. 2018 IEEE 20th Int. Conf. High Perform. Comput. Commun.; IEEE 16th Int. Conf.
Smart City; IEEE 4th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Exeter, UK, 2018, pp. 329–334.

[27] X. Liu et al., “Attention-based bidirectional GRU networks for efficient HTTPS traffic classification,”
Inform. Sci., vol. 541, pp. 297–315, 2020. doi: 10.1016/j.ins.2020.05.035.

[28] K. Wang, J. Gao, and X. Lei, “MTC: A multi-task model for encrypted network traffic classification
based on transformer and 1D-CNN,” Intell. Autom & Soft Comput., vol. 37, no. 1, pp. 619–638, 2023.
doi: 10.32604/iasc.2023.036701.

[29] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers
for language understanding,” arXiv:1810.04805, 2018.

[30] H. Y. He, Z. G. Yang, and X. N. Chen, “PERT: Payload encoding representation from transformer for
encrypted traffic classification,” in Proc. 2020 ITU Kaleidoscope: Ind.-Driv. Digital Transform. (ITU K),
Ha Noi, Vietnam, 2020, pp. 1–8.

[31] Z. Shi, N. Luktarhan, Y. Song, and G. Tian, “BFCN: A novel classification method of encrypted traffic
based on BERT and CNN,” Electron., vol. 12, no. 3, pp. 516, 2023. doi: 10.3390/electronics12030516.

[32] X. Meng, C. C. Lin, Y. Wang, and Y. Zhang, “NetGPT: Generative pretrained transformer for network
traffic,” arXiv:2304.09513, 2023.

[33] P. Wang, S. Li, F. Ye, Z. Wang, and M. Zhang, “PacketCGAN: Exploratory study of class imbalance for
encrypted traffic classification using CGAN,” in Proc. ICC 2020-2020 IEEE Int. Conf. Commun. (ICC),
Dublin, Ireland, 2020, pp. 1–7.

[34] M. Wankhade and A. C. S. Rao, “Opinion analysis and aspect understanding during COVID-
19 pandemic using BERT-Bi-LSTM ensemble method,” Sci. Rep., vol. 12, pp. 17095, 2022. doi:
10.1038/s41598-022-21604-7.

[35] R. Pandey and J. P. Singh, “BERT-LSTM model for sarcasm detection in code-mixed social media post,”
J. Intell. Inf. Syst., vol. 60, pp. 235–254, 2023. doi: 10.1007/s10844-022-00755-z.

[36] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light gated recurrent units for speech recognition,”
IEEE Trans. on Emerg. Topics Comput. Intell., vol. 2, pp. 92–102, 2018. doi: 10.1109/TETCI.2017.2762739.

[37] M. Pan, P. Wu, Y. Zou, C. Ruan, and T. Zhang, “An automatic vulnerability classification
framework based on BiGRU-TextCNN,” Procedia Comput. Sci., vol. 222, pp. 377–386, 2023. doi:
10.1016/j.procs.2023.08.176.

https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1109/ACCESS.2020.2973023
https://doi.org/10.32604/cmc.2020.09802
https://doi.org/10.1016/j.comnet.2021.107974
https://doi.org/10.1016/j.ins.2020.05.035
https://doi.org/10.32604/iasc.2023.036701
https://doi.org/10.3390/electronics12030516
https://doi.org/10.1038/s41598-022-21604-7
https://doi.org/10.1007/s10844-022-00755-z
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1016/j.procs.2023.08.176

CMC, 2024, vol.78, no.3 3951

[38] Q. Wang and Q. Qian, “Malicious code classification based on opcode sequences and textCNN network,”
J. Inform. Secur. Appl., vol. 67, pp. 103151, 2022. doi: 10.1016/j.jisa.2022.103151.

[39] Z. Zhao et al., “UER: An open-source toolkit for pre-training models,” arXiv:1909.05658, 2019.
[40] W. Wang, M. Zhu, X. W. Zeng, X. Z. Ye, and Y. Q. Sheng, “Malware traffic classification using

convolutional neural network for representation learning,” in Proc. 2017 Int. Conf. Inform. Netw. (ICOIN),
Da Nang, Vietnam, 2017, pp. 712–717.

[41] T. van Ede et al., “FlowPrint: Semi-supervised mobile-app fingerprinting on encrypted network traffic,” in
Proc. Netw Distrib. Syst. Secur. Symp. (NDSS), San Diego, California, USA, 2020.

https://doi.org/10.1016/j.jisa.2022.103151

	BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusion
	References

