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ABSTRACT

Internet of Things (IoT) is vulnerable to data-tampering (DT) attacks. Due to resource limitations, many anomaly
detection systems (ADSs) for IoT have high false positive rates when detecting DT attacks. This leads to the
misreporting of normal data, which will impact the normal operation of IoT. To mitigate the impact caused by
the high false positive rate of ADS, this paper proposes an ADS management scheme for clustered IoT. First, we
model the data transmission and anomaly detection in clustered IoT. Then, the operation strategy of the clustered
IoT is formulated as the running probabilities of all ADSs deployed on every IoT device. In the presence of a high
false positive rate in ADSs, to deal with the trade-off between the security and availability of data, we develop a
linear programming model referred to as a security trade-off (ST) model. Next, we develop an analysis framework
for the ST model, and solve the ST model on an IoT simulation platform. Last, we reveal the effect of some factors on
the maximum combined detection rate through theoretical analysis. Simulations show that the ADS management
scheme can mitigate the data unavailability loss caused by the high false positive rates in ADS.
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1 Introduction

Internet of Things (IoT) as a bridge connecting the physical world with the digital world has
extensive applications in modern society [1,2] Due to the constrained computational power and
memory capacity of IoT devices, along with the limited bandwidth of wireless communications, IoT
are susceptible to a broad spectrum of cyber attacks [3–5]. In particular, the real data in IoT can
be tampered with through session hijacking [6] or physical capture [7], which may lead to serious
consequences [8–10]. Consequently, protecting IoT from data-tampering (DT) attacks is a major issue
in the domain of IoT security [11,12].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.048099
https://www.techscience.com/doi/10.32604/cmc.2024.048099
mailto:sunsong@cqnu.edu.cn


4050 CMC, 2024, vol.78, no.3

1.1 Anomaly Detection System

To protect IoT from DT attacks, defense techniques based on signature [13,14] or anomaly [15–
17] have been developed. Deploying anomaly detection systems (ADSs) in some or all nodes of IoT
proves to be an effective means of defending against DT attacks. Real-world IoT may contain many
resource-constrained devices that can only use lightweight ADSs to defend against DT attacks. When
confronted with sophisticated data tampering attacks, some of these lightweight ADSs may exhibit
high false positive rate. An ADS can be configured to operate in either active or passive mode. In the
active mode, a portion of authentic data may be discarded due to the false positive reports of an ADS.
On the other hand, in the passive mode, all false data will go unregulated and bring various security
issues to IoT. In practice, both discarding authentic data and accepting false data have negative impact.
Therefore, it is crucial to devise a strategy for managing the anomaly detection system to minimize the
impact of false data, while also accepting a low probability of discarding genuine data [18–20].

In this paper, we focus our attention on IoT of two types of nodes: sensing nodes used for collecting
the environmental data, and cluster heads used for forwarding the data coming from sensing nodes to
the data center. All the cluster heads are equipped with ADS and work in this way: First, conduct a
clustering operation on a set of data coming from different sensing nodes but with the same time stamp.
Second, identify all the outlier data as abnormal and discard them. Finally, encode all the remaining
data and deliver the encrypted data to the data center [21,22].

Currently, machine learning-based anomaly detection techniques are widely applied to IoT [23–
25]. These techniques can identify abnormal and malicious behavior by analyzing and learning from
normal network traffic and behavior patterns. For instance, employing machine learning algorithms
to analyze IoT data can help establish normal data patterns, triggering an alert in the event of any
anomalies. By applying machine learning-based anomaly detection techniques, cluster head nodes can
promptly detect potential intrusion behavior and take appropriate security measures to protect the
overall security of the IoT system. However, it is important to note that while this technique can help
identify potential malicious threats, it also has limitations and challenges. For instance, a significant
amount of labeled data is required for training in the machine learning process, which can be difficult
to obtain and label for real-time data in the IoT. Additionally, some machine learning algorithms are
not lightweight and may not be suitable for resource-constrained Io.

Although the operation of ADSs can enhance the security of IoT, the presence of high false
positive rates in some ADSs may result in authentic data being incorrectly identified as false data,
rendering it inaccessible and potentially disrupting the normal functioning of the IoT. This issue,
known as the security trade-off (ST) problem, presents a trade-off between the security and availability
of data in IoT. Therefore, it is crucial to find an effective ADS management scheme that maximizes
security performance without disrupting the normal operation of IoT. This paper aims to deal with
the problem.

1.2 Main Contributions

The main contributions of this paper are sketched as follows:

• The ST problem is modeled as a linear programming we refer to as the ST model, where the
objective function denotes the combined detection rate of the ADS bank in a running mode,
the constraint reflects the demand for a low combined false alarm rate of the ADS bank, and
an optimal solution stands for a running mode of the ADS bank that maximizes the combined
detection rate subject to a low combined false alarm rate.
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• The ST model is solved analytically, respectively, accompanied with a few numeric examples.
The effect of some factors on the maximum combined detection rate is revealed through
theoretical analysis. Simulations show that the ADS management scheme can mitigate the data
unavailability loss caused by the high false positive rates in ADSs.

To our knowledge, this is the first time the issue of protecting IoT from DT attacks is addressed
from a holistic perspective. The subsequent materials are organized in this fashion: Section 2 reviews
the related work. Section 3 reduces the ST problem to the ST model, Section 4 solves the ST model
analytically, and Section 5 solves the ST model using a network simulator. Section 6 reveals the effect
of some factors on the maximum combined detection rate. This work is summarized in Section 7.

2 Related Work

In the past decade, a multitude of anomaly-based detection techniques for IoT have been
developed. These detection techniques can be broadly classified into two categories: local agent-based
detection techniques, and global agent-based detection techniques. Below let us briefly review the two
types of detection techniques.

2.1 Local Agent-Based Detection Techniques

It is meant by local agent-based detection that ADSs are deployed in all nodes of an IoT,
and different ADSs cooperate to achieve a good detection performance [26]. This type of detection
technique comes at the cost of increased communication overhead.

Reference [27] proposes a localized algorithm for detecting insider attackers in IoT. Reference [28]
introduces a distributed ADS employing fog computing to identify DDoS attacks in IoT. Reference
[29] advises a host-based false data injection detection method for smart grid cyber-physical systems.
All these detection techniques require each node to broadcast its newest readings to its neighborhood
in a real-time manner, tremendously increasing the communication overhead.

Reference [30] develops a game theory-based, incentive-driven detection mechanism for IoT. This
mechanism can be used to protect free-riding attacks. Reference [31] suggests a game theory-based
collaborative security detection approach for IoT. These mechanisms require frequent information
exchange between different nodes, significantly increasing the communication overhead. Reference
[32] proposes an efficient ADS deployment architecture for multi-hop clustered wireless sensor
networks, and a resource allocation strategy was developed in this paper to improve the performance
of the ADS.

2.2 Global Agent-Based Detection Techniques

When it comes to global agent-based detection, ADSs are only deployed in cluster heads of an
IoT [33–35]. As compared with local agent-based detection techniques, the communication overhead
for this type of detection technique is alleviated significantly, at the expense of increased computation
overhead of cluster heads. Since the communication cost of an IoT is several orders of magnitude
higher than its computation cost, trading the latter for the former is favorable [36].

Reference [34] introduces a hierarchical framework for intrusion detection in industrial IoT.
Reference [37] suggests a detection mechanism for cluster-based IoT. Reference [38] presents a
distributed, cluster-based anomaly detection algorithm. Reference [39] proposes a fully distributed
general-anomaly-detection (GAD) scheme for networked industrial sensing systems. Reference [40]
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proposes a signaling game-based intrusion detection mechanism to identify malicious vehicle nodes
in Vehicular Ad-Hoc Networks (VANETs).

The management of ADS has recently received considerable interest. Reference [15] proposes a
Bayesian game approach for intrusion detection in Ad Hoc networks, reference [16] models the security
detection in cyber-physical embedded systems as a static game, and reference [17] develops a game
theoretical analysis framework for collaborative security detection in IoT systems. All of these studies
focus on designing a management and control scheme for individual IoT devices.

2.3 A Comparison with Our Work

Drawing inspiration from established detection techniques for IoT, this paper introduces a
management scheme for the anomaly detection system (ADS) in a two-hop IoT network, utilizing a
global agent-based detection approach. Unlike the methodologies outlined in references [13,14], which
primarily focus on defending against DT attacks using signature-based methods, this study introduces
an anomaly-based approach. Furthermore, our study diverges from [18–20] in that we endeavor to
propose an Anomaly Detection System (ADS) management scheme for the entire IoT system, whereas
their research centered on devising a management scheme for individual IoT devices. Our approach
guarantees the global optimality of the running mode for ADSs in an IoT. In contrast, their work may
lead to a locally optimal running mode when applied to two-hop IoT.

3 The Modeling of the ST Problem

This section is devoted to the modeling of the ST problem. First, we introduce basic terms and
notations. Second, we estimate the combined detection rate of the ADS bank in a running mode. Next,
we measure the combined false alarm rate of the ADS bank in a running mode. Finally, we finish the
modeling work.

3.1 Data Transmission and Anomaly Detection

Consider a two-hop IoT as was mentioned in Subsection 1.2. Let U = {u1, u2, · · · , uN} denote the
set of cluster heads of the IoT. Let V (u) denote the set of sensing nodes that are routed to the cluster
head u. Then u is the set of sensing nodes of the IoT. Let V = {V (u) : u ∈ U}. The topological structure
of the IoT can be characterized by the ordered pair (U ,V).

Example 1. Fig. 1 displays the topological structure (U ,V) of a two-hop IoT. Here, U = {u1, u2, u3},
V (u1) = {v1, v2}, V (u2) = {v3, v4, v5}, V (u3) = {v6, v7, v8, v9, v10}, V = {V (u1) , V (u2) , V (u3)}.

Figure 1: The topology of a two-hop IoT. Here, each green circle denotes a sensing node, each blue
circle denotes a cluster head, and each arrow
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Let qTP denote the detection rate (equivalently, true positive rate) of the ADS deployed in all cluster
heads of the IoT. This implies the ADS identifies false data as abnormal (resp. normal) with probability
qTP (resp. 1−qTP). Let qFP denote the false alarm rate (equivalently, false positive rate) of the ADS. This
implies the ADS identifies real data as abnormal (resp. normal) with probability qFP (resp. 1 − qFP).

Let rv (bits per second) denote the predetermined data-collecting rate of the sensing node v. Then
the cluster head u receives data at a rate of

∑
v∈V(u)

rv bits per second. Let R denote the multiset of the data-

collecting rates of sensing nodes of the IoT, i.e., R = {rv : v ∈ V}. We refer to R as a data-collecting
scheme assigned to the IoT.

In view of the function of the IoT, we assume rv > 0 for all v ∈ V .

Example 2. Fig. 2 exhibits a data-collecting scheme assigned to the IoT topology shown in Fig. 1.

Figure 2: A data-collecting scheme assigned to the IoT topology shown in Fig. 1. Here, the number
next to each green circle denotes the data-collecting rate of the corresponding sensing node (unit: bit
per second)

Suppose the IoT is subjected to DT attack. Let pv denote the probability with which the real data
stored within the sensing node v are replaced with false data. Then the cluster head u receives real data
(resp. false data) at an average rate of

∑
v∈V(u)

(1 − pv) rv (resp.
∑

v∈V(u)

pvrv) bits per second, respectively. Let P

denote the multiset of the data-tampering probabilities associated with sensing nodes of the IoT, i.e.,
P = {pv : v ∈ V}. We refer to P as a data-tampering (DT) pattern.

Since the real data are vulnerable to data-tampering attack, we assume pv > 0 for all v ∈ V . On
the other hand, to avoid anomaly detection, the attacker would only tamper with a fraction of the real
data. Therefore, we assume pv < 1 for all v ∈ V . An ADS is effective if it has a large detection rate
and a small false alarm rate, i.e., it identifies most false data (resp. most real data) as abnormal (resp.
normal). Hence, it is appropriate to estimate pv (v ∈ V ) as the frequency of the data delivered by v
being identified as abnormal.

Example 3. Fig. 3 exhibits a DT pattern on the IoT topology shown in Fig. 1.

Combining the above discussions, we get that the IoT can be characterized by the 6-tuple
(U ,V , qTP, qFP,R,P).

Example 4. By combining Examples 1–3 and assuming qTP = 0.9, qFP = 0.15, we get the IoT
displayed in Fig. 4.

At the end of this subsection, let xi denote the running probability of the ADS deployed in the
cluster head ui. We refer to the vector

x = (x1, x2, · · · , xN) (1)

as a running mode of the ADS bank.



4054 CMC, 2024, vol.78, no.3

Figure 3: A DT pattern on the IoT topology shown in Fig. 1. Here, the number next to each arrowed
line denotes the data-tampering probability for the corresponding sensing node
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Figure 4: The IoT obtained by combining Examples 1–3 and assuming qTP = 0.9, qFP = 0.15

3.2 Combined Detection Rate

It follows from the notations introduced in the previous subsection that the cluster head ui receives
false data at an average rate of

∑
v∈V(ui)

pvrv bits per second, and identifies the received false data as

abnormal at an average rate of qTPxi

∑
v∈V(ui)

pvrv bits per second. So, the set of cluster heads as a whole

receives false data at an average rate of
N∑

i=1

∑
v∈V(ui)

pvrv bits per second, and identifies the received false

data as abnormal at an average rate of
N∑

i=1

qTPxi

∑
v∈V(ui)

pvrv bits per second. Hence, the average fraction

of the false data that are identified as abnormal in all false data is

D (x) =

N∑
i=1

qTPxi

∑
v∈V(ui)

pvrv

N∑
i=1

∑
v∈V(ui)

pvrv

. (2)

We refer to the quantity as the combined detection rate of the ADS bank in the running mode x.
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Let

ai =
qTP

∑
v∈V(ui)

pvrv

N∑
j=1

∑
v∈V(uj)

pvrv

, 1 ≤ i ≤ N. (3)

It follows from rv > 0 and 1 > pv > 0 that ai > 0, 1 ≤ i ≤ N. Let a = (a1, a2, · · · , aN). Then

D (x) =
N∑

i=1

aixi = axT . (4)

Hereafter, the superscript T stands for transpose.

3.3 Combined False Alarm Rate

It follows from the notations introduced in Subsection 3.1 that the cluster head ui receives real data
at an average rate of

∑
v∈V(ui)

(1 − pv) rv bits per second, and identifies the received real data as abnormal

at an average rate of qFPxi

∑
v∈V(ui)

(1 − pv) rv bits per second. So, the set of cluster heads as a whole receives

real data at an average rate of
N∑

i=1

∑
v∈V(ui)

(1 − pv) rv bits per second, and identifies the received real data

as abnormal at an average rate of
N∑

i=1

qFPxi

∑
v∈V(ui)

(1 − pv) rv bits per second. Hence, the average fraction

of the real data that are identified as abnormal in all real data is

A (x) =

N∑
i=1

qFPxi

∑
v∈V(ui)

(1 − pv) rv

N∑
i=1

∑
v∈V(ui)

(1 − pv) rv

. (5)

We refer to the quantity as the combined false alarm rate of the ADS bank in the running mode x.

Let

bi =
qFP

∑
v∈V(ui)

(1 − pv) rv

N∑
j=1

∑
v∈V(uj)

(1 − pv) rv

, 1 ≤ i ≤ N. (6)

It follows from rv > 0 and 1 > pv > 0 that bi > 0, 1 ≤ i ≤ N. Let b = (b1, b2, · · · , bN). Then

A (x) =
N∑

i=1

bixi = bxT . (7)
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3.4 The Linear Programming Modeling

We are ready to finish the modeling work. Let θ be the imposed upper bound on the combined
false alarm rate, i.e., A (x) ≤ θ . Based on the discussions in the previous two subsections, the ST
problem boils down to the following linear programming:

max D (x) =
N∑

i=1

aixi

s.t.

⎧⎨
⎩

N∑
i=1

bixi ≤ θ ,

0 ≤ xi ≤ 1, 1 ≤ i ≤ N.

(8)

We refer to this linear program as the running mode (RM) model. This model can be abbreviated
as

max D (x) = axT subject to bxT ≤ θ , x ∈ [0, 1]N . (9)

Additionally, this model can be characterized by the 7-tuple LP = (U ,V , qTP, qFP,R,P , θ).

According to linear programming theory, it can be inferred that the ST model is solvable in
polynomial time [38]. In practical applications, the ST model can be efficiently solved by leveraging
the optimization toolbox of MATLAB [39].

4 A Theoretical Study of the ST Model

In the preceding section, we introduced a mathematical model, referred to as the ST model. In this
section, we embark on a theoretical exploration of the ST model. Initially, we resolve the ST model
through analytical approach. Subsequently, we address a submodel derived from the ST model.

4.1 Basic Theorems

The following two theorems together offer a complete solution of the ST model:

Theorem 1. The linear program (8) with θ ≥ qFP admits x∗ = (1, · · · , 1) as the unique optimal
solution.

Proof: For each x ∈ [0, 1]N, we have A (x) =
N∑

i=1

bixi ≤
N∑

i=1

bi = qFP ≤ θ . So, [0, 1]N is the feasible set

of the linear program. For each x ∈ [0, 1]N, we have D (x) =
N∑

i=1

aixi ≤
N∑

i=1

ai = D (x∗). Hence, x∗ is an

optimal solution to the linear program. Since the equality in this inequality chain holds if and only if
x = x∗, x∗ is the unique optimal solution to the linear program. The proof is complete.

This theorem is elucidated as follows: when the upper bound on the combined false alarm rate of
the ADS bank exceeds or equals the false alarm rate of an individual ADS, all ADSs within the bank
should be programmed to operate continuously.

Theorem 2. Consider the linear program (8) with θ < qFP. Let k1, k2, · · · , kN be a permutation of
1, 2, · · · , N such that
ak1

bk1

≥ ak2

bk2

≥ · · · ≥ akN

bkN

. (10)
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Let i1 = min
{

j :
j∑

i=1

bki > θ

}
and

x∗ = (
x∗

1, · · · , x∗
N

)
, (11)

where x∗
ki

= 1 for 1 ≤ i ≤ i1 − 1, and x∗
ki

= 0 for i1 + 1 ≤ i ≤ N, and x∗
ki1

= 1
bki1

(
θ −

i1−1∑
i=1

bki

)
. Then the

linear program admits x∗ as an optimal solution. Furthermore, if
aki1−1

bki1−1

>
aki1

bki1

>
aki1+1

bki1+1

, (12)

x∗ is the unique optimal solution to the linear program.

Proof: First, since
N∑

i=1

bki = qFP > θ , i1 is well defined. Second, for a pair of feasible solutions,

y = (y1, · · · , yN) and z = (z1, · · · , zN), to the linear program, define the distance between them as

d (y, z) =
N∑

i=1

|yi − zi| . Obviously, d (y, z) = 0 if and only if y = z.

Let y = (y1, · · · , yN) be an optimal solution to the linear program. If y = x∗, we are done with our

proof. Now, assume y �= x∗. Let i2 = min
{

i : yki �= x∗
ki

}
. We proceed by distinguishing four possibilities.

Case 1: i2 > i1. Then, yki = x∗
ki

for 1 ≤ i ≤ i2 − 1, yki2
> 0 = x∗

ki2
, and yki ≥ 0 = x∗

ki
for i2 ≤ i ≤ N.

So, A (y) =
N∑

i=1

bki yki >
N∑

i=1

bki x
∗
ki

= θ , violating the feasibility of y. Hence, this possibility is ruled out.

Case 2: i2 = i1, yki2
> x∗

ki2
. Then, yki = x∗

ki
for 1 ≤ i ≤ i2 − 1. yki ≥ 0 = x∗

ki
, for i2 ≤ i ≤ N.

So, A (y) =
N∑

i=1

bki yki >
N∑

i=1

bki x
∗
ki

= θ , violating the feasibility of y. Hence, this possibility is ruled out

as well.

Case 3: i2 = i1, yki2
< x∗

ki2
. Then there exists i3 > i2 such that yki3

> x∗
ki3

. Otherwise, D (y) =
N∑

i=1

aki yki <
N∑

i=1

aki x
∗
ki

= D (x∗), violating the optimality of y. Let

Δ = min

{
bki2

bki3

(
x∗

ki2
− yki2

)
, yki3

− x∗
ki3

}
. (13)

Then Δ > 0. Let z = (z1, · · · , zN), where zki2
= yki2

+ bki3

bki2

Δ, zki3
= yki3

− Δ, and zki = yki for all

i �= i2, i3. It is easily verified that z ∈ [0, 1]N, and A (z) =
N∑

i=1

bki zki =
N∑

i=1

bki yki = A (y) ≤ θ . So, z is a

feasible solution to the linear program. Since

D (z) =
N∑

i=1

aki zki =
N∑

i=1

aki yki +
(

aki2
bki3

bki2

− aki3

)
Δ ≥

N∑
i=1

aki yki = D(y), (14)
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it follows from the optimality of y that (a) z is an optimal solution to the linear program, and (b)

aki2
/bki2

= aki3
/bki3

. Since d (z, x∗) = d (y, x∗)−
(

bki3
/bki2

+ 1
)

Δ < d (y, x∗), we get an optimal solution

z that is closer to x∗ than y. By applying the above argument repeatedly, we finally get that x∗ is an
optimal solution to the linear program.

Case 4: i2 < i1. By an argument similar to that for Case 3, we get that x∗ is an optimal solution to
the linear program.

Suppose the equality in Eq. (14) holds. On the contrary, suppose the linear program admitted an
optimal solution y �= x∗. It follows from the above argument that the linear program would admit a
feasible solution z that is superior to y, violating the optimality of y. Hence, x∗ is the unique optimal
solution to the linear program. The proof is complete.

Upon careful examination of the rationale behind Theorem 2, particularly Eq. (14), we can derive
all optimal solutions for the linear program (8).

The theorem is elucidated as follows: when the upper bound on the combined false alarm rate
of the ADS bank is lower than the false alarm rate of an individual ADS, certain ADSs within the
bank must be configured to operate continuously, while others should always remain inactive. The
remaining ADSs should be programmed to operate with a probability ranging from 0 to 1.

Example 5. Consider the IoT shown in Fig. 5 and let θ = 0.2. The corresponding ST model is

max D (x) = axTsubject to bxT ≤ 0.2, x ∈ [0, 1]4 ,

where a = (0.2605, 0.1868, 0.1881, 0.2647), b = (0.0349, 0.0255, 0.0303, 0.0592). Since θ ≥ qFP, it
follows from Theorem 1 that the linear program admits x∗ = (1, 1, 1, 1) as the unique optimal solution.
Solving the linear program with MATLAB, we get this optimal solution.

Figure 5: The IoT considered in Example 5

Example 6. Consider the IoT shown in Fig. 6 and let θ = 0.1. The corresponding ST model is

max D (x) = axTsubject to bxT ≤ 0.1, x ∈ [0, 1]4 ,

where a = (0.4037, 0.1876, 0.1815, 0.1272), b = (0.0533, 0.0317, 0.0317, 0.0332). Since θ < qFP,
a1/b1 > a2/b2 > a3/b3 > a4/b4, it follows from Theorem 2 that the linear program admits x∗ =
(1, 1, 0.47, 0) as the unique optimal solution. Solving the linear program with MATLAB, we get this
optimal solution.
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Figure 6: The IoT considered in Example 6

Example 7. Consider the IoT shown in Fig. 7 and let θ = 0.1. The corresponding ST model is

max D (x) = axTsubject to bxT ≤ 0.1, x ∈ [0, 1]4 ,

where a = (0.4565, 0.0983, 0.1966, 0.1485), b = (0.0566, 0.0185, 0.0369, 0.0380). Since θ < qFP,
a1/b1 > a2/b2 = a3/b3 > a4/b4, it follows from Theorem 2 and Remark 6 that the linear program
admits

S = {x = (1, x2, x3, 0) : 0 ≤ x2, x3 ≤ 1, 0.0185x2 + 0.0369x3 = 0.1}
as the set of optimal solutions. Solving the linear program with MATLAB, we get the optimal solution
x∗ = (1, 0.74, 0.8, 0) ∈ S.

Figure 7: The IoT considered in Example 7

4.2 A Submodel of the ST Model

We refer to the ST model (8) satisfying ai/bi = c (1 ≤ i ≤ N) as the RM∗ model. The following
theorem provides a solution of this model.

Theorem 3. The linear program (8) with ai/bi = c (1 ≤ i ≤ N) and θ < qFP admits{
x ∈ [0, 1]N : axT = qTP

qFP

θ

}
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as the set of optimal solutions.

Proof . Since c =
N∑

i=1

ai/
N∑

i=1

bi = qTP/qFP, we have bxT = qFP/qTPaxT . Hence, the linear program

reduces to the following linear program:

max D (x) = axTsubject to axT ≤ qTP/qFPθ , x ∈ [0, 1]N .

The claim follows.

This theorem has the following useful corollary:

Corollary 1. The linear program (8) with rv = r (v ∈ V) and pv = p (v ∈ V) and θ < qFP admits{
x ∈ [0, 1]N : axT = qTP

qFP

θ

}

as the set of optimal solutions.

Proof . It is easily verified that ai/bi = qTP/qFP (1 ≤ i ≤ N). The claim follows from Theorem 3.

Example 8. Consider the IoT shown in Fig. 8 and let θ = 0.1. The corresponding linear program is

max D (x) = axTsubject to bxT ≤ 0.1, x ∈ [0, 1]4 ,

where a = (0.2571, 0.1929, 0.1286, 0.3214), b = (0.0429, 0.0321, 0.0214, 0.0536). The two conditions
in Corollary 1 are met. So, the linear program admits

S = {
x = (x1, x2, x3, x4) ∈ [0, 1]4 : 0.2571x1 + 0.1929x2 + 0.1286x3 + 0.3214x4 = 0.6

}
as the set of optimal solutions. Solving the linear program with MATLAB, we get the optimal solution
x∗ = (0.68, 0.67, 0.64, 0.67) ∈ S.

Figure 8: The IoT considered in Example 8

5 Experiments

In the preceding section, we analytically resolved the ST model. In this section, we address the ST
problem by employing a widely recognized network simulator, known as ns-3 [41].
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5.1 The Layout of Three Two-Hop IoT

For our purpose, let us generate the layout of three two-hop IoT by following four steps as follows:

Step 1: For each of the three IoT, let all the radio model parameters be the same as those given in
[42]. In particular, let the communication radius of a node be 80 m.

Step 2: The areas covered by the three IoT networks are square, with dimensions of 100 m ×
100 m, 150 m × 150 m, and 200 m × 200 m, respectively. In each IoT network, the base station is
positioned at the center of the corresponding square.

Step 3: The three IoT networks consist of 100, 300, and 500 nodes, respectively. In each scenario,
the nodes are uniformly and randomly distributed within the respective square.

Step 4: A fraction of 5% nodes in each IoT network will serve as cluster heads. The LEACH
routing protocol [42] will be employed to select the cluster heads and assign sensing nodes to each of
the cluster heads. The topological structure of the three networks is shown in Fig. 9.

(a) (b) (c)

Figure 9: The layout of three two-hop IoT. Here, each of the three square areas is divided into a number
of subfields, each of these subfields contains a single cluster head, and all the sensing nodes in the same
subfield are routed to the cluster head located within the subfield

5.2 Experimental Results

Experiment 1. Consider the IoT layout shown in Fig. 9a. Let qTP = 0.9, qFP = 0.15, and θ = 0.1.
Generate a data-collecting scheme R in this way: for each sensing node v, let rv be an integer chosen
randomly and uniformly from the interval [100, 500], Generate a DT pattern P in this way: for each
sensing node v, let pv be a number chosen randomly and uniformly from the interval (0, 0.2]. Now, we
get a ST model. Solving the model with MATLAB, we get an optimal running mode of the ADS bank,
denoted x∗, which is shown in Fig. 10a. Randomly and uniformly generate a set of 100 feasible running
modes of the ADS bank, denoted X = {xk : 1 ≤ k ≤ 100}. Fig. 10b exhibits D (x), x ∈ X ∪ {x∗}. It is
seen that D (x∗) > D (x) , x ∈ X . This corroborates the optimality of the running mode x∗.

Experiment 2. Consider the IoT layout shown in Fig. 9b. Let qTP = 0.9, qFP = 0.15, and θ = 0.1.
Generate a data-collecting scheme R in this way: for each sensing node v, let rv be an integer chosen
randomly and uniformly from the interval [100, 500], Generate a DT pattern P in this way: for each
sensing node v, let pv be a number chosen randomly and uniformly from the interval (0, 0.2]. Now,
we get a ST model. Solving the model with MATLAB, we get an optimal running mode of the ADS
bank, denoted x∗, which is displayed in Fig. 11a. Randomly and uniformly generate a set of 100 feasible
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running modes of the ADS bank, denoted X = {xk : 1 ≤ k ≤ 100}. Fig. 11b plots D (x) , x ∈ X ∪ {x∗}.
It is seen that D (x∗) > D (x) , x ∈ X . This validates the optimality of the running mode x∗.

Figure 10: The results in Experiment 1: (a) the optimal running mode x∗, (b) a comparison of D (x∗)
with D (x), x ∈ X

Figure 11: The results in Experiment 2: (a) the optimal running mode x∗, (b) a comparison of D (x∗)
with D (x), x ∈ X

Experiment 3. Consider the IoT layout shown in Fig. 9c. Let qTP = 0.9, qFP = 0.15, and θ = 0.1.
Generate a data-collecting scheme R in this way: for each sensing node v, let rv be an integer chosen
randomly and uniformly from the interval [100, 500], Generate a DT pattern P in this way: for each
sensing node v, let pv be a number chosen randomly and uniformly from the interval (0, 0.2]. Now,
we get a ST model. Solving the model with MATLAB, we get an optimal running mode of the ADS
bank, denoted x∗, which is exhibited in Fig. 12a. Randomly and uniformly generate a set of 100 feasible
running modes of the ADS bank, denoted X = {xk : 1 ≤ k ≤ 100}. Fig. 12b shows D (x), x ∈ X ∪{x∗}.
It is seen that D (x∗) > D (x), x ∈ X . This corroborates the optimality of the running mode x∗.

Figure 12: The results in Experiment 2: (a) the optimal running mode x∗, (b) a comparison of D (x∗)
with D (x), x ∈ X
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6 The Effect of Some Factors on the Maximum Combined Detection Rate

In this section, we discuss the effect of some factors on the maximum combined detection rate
(i.e., the maximum value for the linear program (8)).

Theorem 4. Let Dmax denote the maximum value for the linear program (8). The following claims
hold true:

(i) Dmax is increasing with θ .

(ii) Dmax is increasing linearly with qTP.

(iii) Dmax is decreasing with qFP.

Proof . (i) Consider a pair of linear programs as follows:

LPk = (U ,V , qTP, qFP,R,P , θk) , k = 1, 2,

where θ1 > θ2. Let Dmax
k denote the maximum value for LPk, k = 1, 2. Since the objective functions

of the two linear programs are identical, and the feasible set of LP1 includes that of LP 2, we get
Dmax

1 ≥ Dmax
2 . The claim is proven.

(ii) Consider a pair of linear programs as follows:

LPk = (
U ,V , q(k)

TP, qFP,R,P , θ
)

, k = 1, 2, (15)

where q(1)

TP = α · q(2)

TP, α > 1. Let Dmax
k denote the maximum value for LPk, k = 1, 2. Let Dk (x) denote

the objective function of LPk, k = 1, 2. Since the feasible sets of the two linear programs are identical,
and D1 (x) = α · D2 (x), we get Dmax

1 = α · Dmax
2 . The claim is proven.

(iii) Consider a pair of linear programs as follows:

LPk = (
U ,V , qTP, q(k)

FP,R,P , θ
)

, k = 1, 2, (16)

where q(1)

FP > q(2)

FP. Let Dmax
k denote the maximum value for LPk, k = 1, 2. Since the objective functions

of the two linear programs are identical, and the feasible set of LP1 is included in that of LP2, we get
Dmax

1 ≤ Dmax
2 . The claim is proven.

This theorem is explained as follows. The first claim demonstrates that the maximum combined
detection rate of the ADS bank can only be enhanced at the cost of an enhanced combined false
alarm rate. The second claim tells us that enhancing the detection rate of a single ADS with a fixed
false alarm rate is always helpful to enhance the maximum combined detection rate of the ADS bank.
The third claim shows that reducing the false alarm rate of a single ADS with a fixed detection rate
always contributes to the enhancement of the maximum combined detection rate of the ADS bank.

Example 9. Consider the IoT shown in Fig. 13 and let θ ∈ Θ = {0.01, 0.02, · · · , 0.2}. The
corresponding ST models are

max D (x) = axTsubject to bxT ≤ θ , x ∈ [0, 1]4 ,

where a = (0.2787, 0.1695, 0.1536, 0.2981), b = (0.0422, 0.0327, 0.0248, 0.0503), and θ ∈ Θ. Solving
the linear programs with MATLAB, we get their respective maximum values, denoted Dmax (θ) , θ ∈ Θ.
Fig. 14 shows Dmax (θ) vs. θ . It is evident that Dmax (θ) is increasing with θ , agreeing with Theorem 4(i).
In particular, Dmax (θ) = qTP if θ ≥ qFP, conforming to Theorem 1.

Example 10. Consider the set of IoT shown in Fig. 15, where qTP ∈ Q = {0.8, 0.81, · · · , 0.99}. Let
θ = 0.1. Then the corresponding linear programs are

max D (x) = a (qTP) xTsubject to bxT ≤ 0.1, x ∈ [0, 1]4 ,
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where b = (0.037, 0.047, 0.012, 0.055), a (qTP) = (0.2753qTP, 0.2545qTP, 0.0872qTP, 0.3830qTP), qTP ∈
Q. Solving the linear programs with MATLAB, we get their respective maximum values, denoted
Dmax (qTP), qTP ∈ Q. Fig. 16 shows Dmax (qTP) vs. qTP. It can be seen that Dmax (qTP) is increasing linearly
with qTP, according with Theorem 4(ii).

Figure 13: The IoT considered in Example 9

Figure 14: Dmax (θ) vs. θ for Example 9

Figure 15: The set of IoT considered in Example 10
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Figure 16: Dmax (qTP)vs. qTP for Example 10

Example 11. Consider the set of IoT shown in Fig. 17, where qFP ∈ Q = {0.01, 0.02, · · · , 0.3}. Let
θ = 0.9. Then the corresponding linear programs are

max D (x) = axTsubject to b (qFP) xT ≤ 0.1, x ∈ [0, 1]4 ,

where a = (0.233, 0.112, 0.170, 0.385), b (qFP) = (0.2782qFP, 0.1500qFP, 0.2043qFP, 0.3675qFP), qFP ∈
Q. Solving the linear programs with MATLAB, we get their respective maximum values, denoted
Dmax (qFP), qFP ∈ Q. Fig. 18 shows Dmax (qFP) vs. qFP. The simulation results show that Dmax (qFP) is
decreasing with qFP, in agreement with Theorem 4(iii). In particular, Dmax (qFP) = qTP if qFP ≤ θ ,
according with Theorem 1.

Figure 17: Dmax (qFP) vs. qFP for Example 11

Based on theoretical analysis and simulation results, we can summarize the following three key
findings: (1) when the upper bound on the combined false alarm rate of the ADS bank is equal to or
greater than the false alarm rate of an individual ADS, all ADSs in the ADS bank should be activated;
(2) when the upper bound on the combined false alarm rate of the ADS bank is lower than the false
alarm rate of an individual ADS, some ADSs in the ADS bank require activation, while others need
to remain inactive, and the remaining ADSs are to be activated with a certain probability; (3) the
maximum value of combined detection rate of the ADS bank is increasing with the upper bound of
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combined detection rate, increasing linearly with detection rate qTP, and decreasing with false alarm
rate qFP.

Figure 18: Dmax (qFP) vs. qFP for Example 11

7 Conclusion and Future Work

This paper has tackled the challenge of optimizing the performance of the anomaly detection
system (ADS) network in a two-hop IoT environment. This problem has been modeled as a linear
programming (i.e., the running mode (RM) model), which has been resolved analytically. This is
the first time the defense of IoT against data-tampering attacks has been studied from a holistic
perspective. The ADS management scheme proposed in this paper effectively resolves the issue of
data unavailability caused by high false-positive rates in existing ADS algorithms.

In the future, several noteworthy issues merit investigation. Firstly, many real-world IoT systems
operate with more than two hops, (real or false) data that pass through intermediate sensing nodes
may be tampered with, which hinders the detection of false data. The study of the ST problem for
multi-hop IoT poses a substantial challenge and merits comprehensive investigation. Secondly, the
data-tampering pattern considered in this paper is assumed to be fixed. However, in practice, the
data-tampering pattern is highly likely to vary over time. Under these circumstances, the ST model
must be updated frequently to maximize the real combined detection rate of the ADS bank. In
this situation, the choice of the update frequency is a problem. To characterize the data-tampering
pattern, in the future, pattern recognition [43] may be used to further explore this issue. Thirdly,
as blockchain technology [44] can be utilized to establish an anti-tampering mechanism, it holds
tremendous potential in addressing DT attacks and warrants in-depth exploration. Furthermore, in
the case where the network administrator of the IoT is strategic but the attacker is non-strategic, the
ST problem may be studied through an optimal control approach [45]. Finally, in the case where the
network administrator and the attacker are both strategic, it is appropriate to deal with the ST problem
in the framework of game theory.
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