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ABSTRACT

Transformer-based models have facilitated significant advances in object detection. However, their extensive com-
putational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned
aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-
DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce
a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module
with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two
novel strategies to enhance detection performance without incurring additional inference computation. Query
filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar
queries with a training-aware non-maximum suppression. Adversarial denoising learning is a novel enhancement
method inspired by adversarial learning, which improves the detection of numerous small targets by counteracting
the effects of artificial spatial and semantic noise. Extensive experiments on the VisDrone and UAVDT datasets
substantiate the effectiveness of our approach, achieving a significant improvement in accuracy with a reduction
in computational complexity. Our method achieves 31.9% and 21.1% AP on the VisDrone and UAVDT datasets,
respectively, and has a faster inference speed, making it a competitive model in UAV image object detection.
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1 Introduction

Unmanned aerial vehicles (UAVs) are increasingly used for various purposes, such as disaster
relief, urban monitoring, and land protection, owing to their compact dimensions, cost-effectiveness,
and operational simplicity [1–4]. Fig. 1 shows that the object features in UAV vision are more complex
than those in normal vision. This complexity lies in the dense clutter and numerous small objects,
presenting challenges for object detection in UAV images [5].
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Figure 1: Comparative analysis of object characteristics in UAV and standard imagery. Panels (a) to
(c) depict representative samples from the VisDrone, UAVDT, and COCO datasets. Panel (d) presents
a statistical distribution chart of object sizes

The emergence of large-scale benchmark datasets has led to an innovative paradigm in object
detection using convolutional neural networks (CNNs) [6–8]. Detectors designed for UAV imagery
are usually modified on these CNN-based detectors and are broadly attributed to two kinds of
pipelines: multi-inference and single-inference [9]. Multi-inference detectors tend to use a coarse-
to-fine process to achieve higher accuracy, where coarse detectors are launched to localize dense
subregions, and subsequently, fine detectors are used to detect more minor instances [10–11]. However,
these multi-inference detectors result in significant latency, making them unsuitable for practical
application. Single-inference detectors are generally more efficient, requiring only one pass over the
image to generate predictions, although this efficiency often comes with trade-offs in accuracy [12–13].
Overall, existing CNN-based approaches exhibit limitations in reconciling efficiency with precision,
and designing an accurate and efficient UAV image detector remains an outstanding challenge.
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The advent of the transformer architecture, initially conceived for the natural language pro-
cessing domain, has subsequently been adapted for visual tasks, with notable success for its global
context awareness. In the object detection field, the DEtection TRansformer (DETR) leverages the
transformer architecture to create an end-to-end detector [14]. This approach has revolutionized the
standard workflow by dispensing with components such as predefined anchors and complex post-
processing, which has led to remarkable performance enhancements across many downstream tasks
[15–16]. However, it is paramount to acknowledge that existing DETRs are predominantly tailored
for natural imagery, which presents pronounced challenges when repurposed for UAV image analysis.

• The computational complexity of the transformer’s attention mechanism exhibits heightened
sensitivity to the length of the input sequences, making it face an intolerable computational burden
for processing high-resolution UAV images.

• Unlike CNNs, transformers inherently lack spatial inductive biases. They lack specific priors,
making it difficult to learn features in exceptional cases (e.g., densely distributed and numerous small
instances in the UAV view) without a large amount of data.

This work introduces a novel end-to-end transformer-based detector called the Hybrid DEtection
TRansformer (H-DETR). To mitigate the computational intensity when handling high-resolution
drone imagery, we present an improved transformer encoder, which optimizes the original attention-
only encoder by hybridizing an efficient CNN-based feature fusion network. To address the challenge
of dense object distributions, we embed a query filter process before query initialization to suppress
similar queries. To improve the detection accuracy of small objects, we include an adversarial learning
concept in the training scheme. With the above practices, we optimize the transformer-based model to
make it more suitable for UAV images and balance accuracy and efficiency, which the previous model
cannot achieve.

The primary contributions to this paper are as follows:

• We systematically analyze the transformer architecture’s functionality and propose the Hybrid
Transformer Encoder (HTE), designed to reduce the computational intensity of high-resolution UAV
image processing without sacrificing the accuracy benefits.

• We design a Query Filter (QF) that addresses the specific issue of prediction redundancy that
arises from dense clusters of similar objects in drone view.

• We introduce Adversarial Denoising Learning (ADL), an innovative enhancement technique
for small object detection. ADL leverages adversarial noise to improve the robustness of the model
against spatial and semantic perturbations commonly encountered in UAV image object detection.

• We conduct comprehensive evaluation experiments on the VisDrone and UAVDT datasets,
confirming the proposed method significantly improves accuracy while reducing computational com-
plexity. Our proposed H-DETR can balance detection accuracy and efficiency well, outperforming
previous CNN-based models.

2 Related Work

Object detection has been a cornerstone of computer vision research, leading to a significant
body of literature. This section summarizes critical studies that have informed the development of
our proposed methodology.
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2.1 Visual Transformers

Transformer was proposed by Vaswani et al. [17] as a new attention-based building block for
machine translation. Attention mechanisms are neural network layers that aggregate information
from the entire input sequence. Transformers introduced a self-attention layer to scan each element
in the sequence and update it by aggregating global information. This ability was later shown to
capture complex spatial dependencies in images, critically needed for computer vision tasks. Vision
Transformer (ViT) [18] laid the groundwork by applying a pure transformer to sequences of image
patches, fostering the model’s ability to discern intricate patterns across the entire image. A notable
derivative is the swing transformer [19], which introduces a hierarchical structure with shifted windows,
enhancing the efficiency of the self-attention mechanism for dense prediction tasks. By their global
receptive fields, these architectures have been instrumental in surpassing previous state-of-the-art
methods across various vision tasks [20,21]. In our work, these seminal studies inform our architectural
choices. As a bridge between the underlying transducer model and UAV imaging applications, we
exploit the global modeling advantages of the transducer to improve object detection while mitigating
the computational intensity typically associated with such models.

2.2 General Object Detection

CNN-based object detection models can generally be classified as anchor-based or anchor-free
detectors. Anchor-based detectors can be further divided into two-stage and one-stage. Two-stage
detectors, such as Faster Region-based Convolutional Neural Network (Faster R-CNN) [6] and
Cascade R-CNN [22], generate the proposed region and then classify and regress the objects within
it. In contrast, one-stage detectors, such as You Only Look Once (YOLO) and Single Shot MultiBox
Detector (SSD) [23], can directly perform this classification and regression of objects within their
entire feature. Anchor-free detectors replace anchors, which can cause a significant computational
burden, with more efficient alternatives such as centerness constraints or heat maps [24]. DETR is a
significant innovation in object detection, utilizing a transformer architecture for end-to-end object
detection with a cleaner process and better generalization. However, despite its advantages, DETR
encounters optimization complexity and computational intensity. To alleviate these issues, conditional
DETR [25] reduces query optimization complexity by explicitly identifying the extremity region of an
object through a conditional space query. Sparse DETR [26] selectively updates the encoder tokens
expected to be referenced by the decoder, reducing computational overhead. These improvements
have enhanced the utility of DETR-like detectors, leading them to achieve excellent performance
in several benchmarks. Real-Time DEtection TRansformer (RT-DETR) improves the efficiency of
feature processing by decoupling the treatment of multi-scale features. Also, it proposes an IoU-aware
query selection method to improve the inconsistency in the distribution of raw query classification
scores and location confidence. However, the use of transformers in object detection is still a relatively
new concept, and the above work has mainly focused on natural images without adaptation to the
characteristics of drone view.

2.3 Object Detection in UAV Images

Advancements in object detection have been substantial, yet their application to drone-captured
imagery still presents unique challenges, such as small object instances. To address these challenges,
some studies have used a coarse-to-fine pipeline. Global-local Self-Adaptive Network (GSANet) [27]
filters out crowded sub-regions using a self-adaptive region selection algorithm. Then, it performs
detailed detection after improving the resolution of the small sub-regions using a local super-resolution
network. Unified Foreground Packing Multi-Proxy Detection (UFPMPDet) network [11] merges the
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unified foreground regions generated by a coarse detector into a mosaic image for detailed detection
and employs a multi-proxy detection network to handle the significant confusion between inter-class
similarities and intra-class variations of instances. The Clustered Detection (ClusDet) network [28]
unifies object clustering and detection in an end-to-end framework that sequentially finds clustered
regions and detects objects in those regions. Similarly, Zhang et al. [29] proposed an adaptive cropping
method based on a difficult region estimation network to enhance the detection of challenging targets.

These dual-stage processes, although precise, incur obvious computational penalties [30,31].
Recently, some efforts have converged on developing optimized single-inference models to reconcile
detection accuracy with operational practicality [32]. Hierarchical Shot Detector (HSD) [33] proposes
a new Reg-Offset-Cls module and stacking strategy to achieve higher accuracy and speed by summa-
rizing the drawbacks of single-stage detectors, such as the mismatch of bounding box classification
and the insufficient accuracy of one-shot regression. Du et al. [34] presented a novel global Context-
Enhanced Adaptive Sparse Convolutional (CEASC) network by optimizing sparse convolution, which
reduces the computational effort while improving accuracy. However, the accuracy of all the above
methods is not satisfactory. Capitalizing on their superior ability to capture global information,
several works have attempted to integrate transformers into detectors for UAV images. Zhu et al. [35]
merged a transformer-based prediction head with the YOLOv5 detection model, achieving remarkable
performance improvements in large-scale variations and high-density contexts. To recognize high-
level semantic information and enhance the perception of local geometric features, Multiple Attention
Mechanism Enhanced YOLOX (MAME-YOLOX) [36] integrates the Swin transformer into the neck
module of YOLOX. Due to the computationally intensive nature of the internal attention mechanisms
in transformers, prior efforts have employed it solely as a localized enhancement module within CNN-
based frameworks, thereby underutilizing its intrinsic global-aware capabilities. Instead, our approach
uses a DETR-like architecture dominated by a complete transformer structure. It has been optimized
for effectiveness and efficiency based on it, thus better unleashing the potential of the transformer in
object detection in UAV Images.

3 The Proposed Method

In this section, we delineate the architecture of our proposed model, which is composed of a
backbone, an encoder, and a decoder augmented with prediction heads. The overarching configuration
is depicted in Fig. 2. Our design uses ResNet50 as the underlying backbone, with the outputs of its last
three stages providing input features to the converter. The subsequent HTE (described in Section 3.1)
is responsible for converting these multi-scale features into a sequence of features. The HTE is
ingeniously structured and composed of cross-scale fusion and semantic enhancement modules. The
latter, which processes solely the uppermost level features, is equipped with a self-attention layer and
a subsequent feed-forward layer. Subsequently, the QF (described in Section 3.2) performs a selective
refinement of the encoder feature sequence to extract a specified number of distinct queries, which are
used as the initial set for the transformer decoder. Here, we use the classical six-layer structure for the
transformer decoder. The filtered queries also pass through a self-attention layer before cross-attention
operation with the encoder features and then through a feed-forward layer. Mirroring the semantic
enhancement module, each progression of the filtered query is accompanied by layer normalization,
ensuring stability and improved convergence. During training, these filtered queries are iteratively
improved in the transformer decoder using the ADL method (described in Section 3.3). Finally, the
prediction head maps the final query to the corresponding bounding box and confidence score.
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Figure 2: Overview of the H-DETR. Initially, multi-scale features are extracted using a backbone and
then transformed into a sequence. Subsequently, a fixed number of queries are filtered out and fed into
the transformer decoder. In the terminal phase, the decoder with prediction heads iteratively optimizes
the queries and generates final predictions

3.1 Hybrid Transformer Encoder

To reduce the computational consumption of the transformer, our study first critically evaluates
the computational effort of each component of the DETR using Giga Floating Point Operations
(GFLOPs), a measure of the computational complexity of a neural network model, and the results
are shown in Fig. 3a. We find the transformer encoder to be the primary source of computational
effort and further investigate the effect of the encoder on the accuracy of object detection in UAV
images. Fig. 3b shows that the original encoder improves accuracy only slightly while almost doubling
the GFLOPs. The above analysis suggests optimizing the vanilla transformer encoder is the key to
mitigating the transformer’s intensive computation without causing performance degradation in UAV
image detection. We contend that the conventional encoder design incurs computational redundancy
primarily due to two factors:

Figure 3: Analysis of the DETR-like model in the VisDrone dataset. (a) The distribution of the
GFLOPs in the baseline model. (b) The AP and GFLOPs of baseline with various encoder layers
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• The low-level features’ intra-scale interactions, lacking in rich semantic content and high
resolution, contribute to unnecessary computational load.

• The indiscriminate inter-scale feature interactions across different scales may elevate the risk of
semantic ambiguity.

In response to these findings, we introduce the HTE, which hybridizes an attention-based semantic
enhancement module with a CNN-based cross-scale fusion module, as shown in Fig. 2. The semantic
enhancement module is modified based on the original encoder layer to process only high-level features
with more semantic information, which avoids intra-scale interactions of low-level features. At the
same time, we use the cross-scale fusion module to target the interactions between features at different
levels to make the feature fusion more discriminative and less computationally intensive.

In particular, we unbend the highest-level feature S5 as the initial Query, Key, and Value of
the attention operation in the semantic enhancement module. It is worth noting that multi-head
self-attention [17] replaces original deformable attention. We posit that applying self-attention to
semantically enriched high-level features can discern the nexus between conceptual entities within
the image. Moreover, multi-head attention divides tokens into multiple subspaces through distinct
mapping matrices to elicit more nuanced feature representations. This process can be formulated as
follows:

Q = K = V = Unbend (S5) (1)

Qi = QW Q
i , Ki = KW K

i , Vi = VW V
i where W Q

i , W K
i , W K

i ∈ R
dfeat×dk (2)

Here, i denotes the i-th subspace, where dfeat = dS5
= 256, dk = 32. Self-attention operations are

then performed within the subspaces to obtain the output headi, which can be formulated as:

headi = Attention (Qi, Ki, Vi) = Softmax
(

Qi (Ki)
T

√
dk

Vi

)
(3)

The results obtained from each head are concatenated and linearly mapped using the output
matrix to get the final output F5, as shown in Eq. (4). Here, I was set to 8, following the [14].

F5 = Concat (head1 . . . headi . . . headI) W o where W O ∈ R
hdv×dfeat (4)

Subsequently, we perform a feature fusion operation on {S3, S4, F5} using a cross-scale fusion
module. The structure of the cross-scale fusion module resembled that of the Path Aggregation
Network (PANet) [37], as shown in Fig. 4, except that we introduced a Cross-Stage Partial Layer
(CSPLayer) to enhance the gradient performance and reduce the computational operations [38].
Moreover, a simple residual connection is employed to prevent any decline in performance that the
simultaneous operation of different mechanisms within the HTE might cause.

3.2 Query Filter

In the transformer, each query comprises a series of embedding vectors that the decoder can
optimize and subsequently map to classification scores and bounding boxes. Conceptually, a query
represents a potential instance within an image, functioning as a hypothetical object template. When
considering UAV imagery, the fact that objects are identical in densely distributed areas (e.g., vehicles
in parking lots or crowds in public squares) introduces additional challenges for the model, as these
conditions tend to result in queries consistent in spatial and semantic. This similarity between queries
produces redundant predictions in some scenarios, affecting object detection accuracy.
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Figure 4: Composition and data flow of cross-scale fusion module

To address the issue of query homogeneity, we design a QF, as shown in Fig. 5. Firstly, the
encoder features are passed through an ancillary prediction head parallel to the decoder, encompassing
classification and regression branches. After this, we employ class-agnostic non-maximum suppression
(NMS) on the resulting proposals, prioritizing selecting the top N proposals with the highest scores. In
contrast to the training-unknown NMS in conventional detectors, it does not directly impact the final
detection results and is training-aware, so we set a positive intersection over union (IoU) threshold
of 0.85. The coordinates of the top N proposals are then coded to produce positional embedding,
while the encoder features undergo a linear layer activation to generate the corresponding content
embedding. These content and positional embeddings are amalgamated to form the initial set of
queries for the decoder.

Figure 5: The structural details of the query filter

The function of QF is to map the query onto the practical proposals and perform pre-screening
before initialization. This prevents the generation of redundant predictions during subsequent detec-
tion. Besides, our QF employs NMS not just as a post-processing step but integrates it into both
the training and inference phases, thereby ensuring our model’s strict adherence to end-to-end design
principles.
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3.3 Adversarial Denoising Learning

As depicted in Fig. 6, the unique perspective afforded by drones can obscure the spatial localiza-
tion and semantic differentiation of objects, particularly those of smaller scale. To enhance the model’s
capability to discern features of small objects, we have integrated an ADL method, drawing inspiration
from the principles of adversarial training. Adversarial training is known to bolster network robustness
through the incorporation of synthetic samples that contain deliberately introduced noise. In our
methodology, we add spatial and semantic noise to instances in the image as synthetic samples.

Figure 6: Challenging small instances in the drone’s view

For a training image, the ground truth (GT) objects are denoted as G = {G0 . . . Gi . . . Gm-1}, where
m represents the count of GT objects, and Gi is defined by the tuple (xi, yi, wi, hi, ci), encapsulating the
center’s coordinates, width, height, and object category. To fabricate reconstructed objects with spatial
noise, we apply counter-directional perturbations as described below:

RP = {
RP

0 . . . RP
i . . . RP

m−1

}
where RP

i =
(

xi, yi, wi + α
λ1wi

2
, hi + α

λ1hi

2
, ci

)
(5)

RN = {
RN

0 . . . RN
i . . . RN

m−1

}
where RN

i =
(

xi, yi, wi + α
λ2wi

2
, hi + α

λ2hi

2
, ci

)
(6)

Here, we set two different levels of noise to wi and hi, which is to prevent the network from being
sensitive to too small perturbations and thus causing performance degradation. α is a predetermined
hyperparameter dictating the spatial noise’s intensity. λ1 and λ2 are stochastic variables indicative of
the noise magnitude, where λ1 ∈ (−0.25, 0.25) and λ2 ∈ (−0.5, −0.25] ∪ [0.25, 0.5). This boundary
condition ensures GT does not undergo a corner-point flip after adding the noise. Semantic noise
is introduced through label flipping, randomly reassigning categories to ci within RP

i and RN
i . The

hyperparameter β modulates the proportion of label flipping and the intensity of the semantic
disturbance. These adversarial perturbed constructs, RP

i and RN
i are encoded into queries, subsequently

processed by the transformer decoder for adversarial denoising, and then mapped by the detection
head. The associated loss is computed by juxtaposing the denoised predictions with the GT, as
expressed in the denoising loss function:
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LDE = 1
m

∑m

i=0
[Lreg

(
RP

i , Gi

) + Lcls

(
RP

i , Gi; RN
i ,∅

)
] (7)

The loss function comprises two components: regression loss for the bounding boxes and
classification loss. In this study, we adopted L1 and CIOU [39] losses for regression and focal loss
[40] for classification loss.

The spatial noise in ADL allows the model to learn more detailed spatial information, while the
semantic noise enables the model to learn label-boundary associations, driving the accuracy of the
model’s label predictions. The two synergies effectively improve the accuracy of small object prediction.

4 Experiments
4.1 Datasets and Evaluation Metrics

We evaluated our method using two widely used benchmarks: VisDrone [41] and UAVDT [42].

The VisDrone dataset encompasses 8,599 high-resolution images from diverse UAV-mounted
cameras across multiple environments, ranging from urban to rural scenes. The dataset includes
6,471 images in the training set, 548 in the validation set, and 1,580 in the test set. It spans ten
object categories: pedestrian, people, bicycle, car, van, truck, tricycle, awning tricycle, bus, and
motor. Following previous studies [11,13,43], we used 6,471 and 548 images for training and testing,
respectively.

The UAVDT dataset consists of 23,258 images used for training and 15,069 for testing, following
the previous work [11]. These images were captured at a resolution of 1,080 × 540 using a drone flying
at low altitudes over urban areas. The tags include three types of vehicles: cars, buses, and trucks.

Accuracy is quantified using the AP along with AP at 0.5 (AP50) and 0.75 (AP75) IoU thresholds.
Furthermore, we employed size-specific metrics—APL, APM, and APS—to evaluate detection efficacy
across various object scales, where these metrics correspond to large, medium-sized, and small
objects, respectively. Higher values in AP, AP50, AP75, APL, APM, and APS indicate superior detection
performance. For efficiency, we use GFLOPs and frames per second (FPS) as metrics to provide a
holistic view of the model’s performance.

4.2 Implementation Details

Baseline model: DeNoising-DETR [44] with a pre-trained ResNet50 backbone is selected as our
foundational model due to its rapid and reliable optimization, significantly reducing our training
expenditures.

Training and testing strategies: The model is trained on the VisDrone dataset for 24 epochs
with the AdamW optimizer, starting with a learning rate of 0.0002, which is reduced tenfold post-
20 epochs. On the UAVDT dataset, the training lasts 12 epochs, with the learning rate following a
similar reduction schedule after ten epochs. Consistent with [14], the learning rate for the backbone is
set at 1 × 10−5. In our ADL approach, the hyperparameters α and β are set to 0.5 and 0.3, respectively.
All training is performed on two NVIDIA A100 GPUs, with inference speed tests conducted on a
single A100 GPU. The input resolutions we use in the VisDrone and UAVDT datasets are 1,333 × 800
and 800 × 800, while no test-time augmentation methods are used.
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4.3 Quantitative Analysis

This section quantitatively assesses our proposed methodology against recent state-of-the-art
(SOTA) models utilizing two benchmark datasets for UAV-based object detection. To ensure a fair
and comprehensive evaluation, we evaluate the models not only in terms of accuracy but also in terms
of efficiency.

4.3.1 Comparison with Other SOTA Models

In our evaluation, we employed precision metrics (AP, AP50, and AP75) to assess the overall
accuracy of our method on the VisDrone and UAVDT datasets. We benchmarked against other SOTA
models, as depicted in Tables 1 and 2.

Table 1: Comparison with SOTAs on the validation set of the VisDrone dataset

Model Source Backbone AP AP50 AP75

Cascade RCNN [22] CVPR2018 ResNet50 24.0 39.0 25.0
YOLOv5-x [45] GitHub2020 CSPDarknet53 24.1 44.0 15.2
GFL [46] CVPR2021 ResNet50 25.9 41.7 27.2
�ClusDet [28] ICCV2019 ResNet50 26.7 50.6 24.7
QueryDet [13] CVPR2022 ResNet50 28.3 48.1 28.7
CEASC [34] CVPR2023 Resnet18 28.7 50.7 28.4
�DMNet [47] CVPRW2020 ResNeXt101 29.4 49.3 30.6
SDPNet [48] TGRS2023 ResNet50 30.2 52.5 30.6
DSHNet [49] WACV2021 ResNet50 30.3 51.8 30.9
�GLSAN [27] TIP2021 ResNet50 30.7 55.4 30.0
RT-DETR-X Arxiv2023 HGNetv2 31.0 52.0 30.9
�CZDet [10] CVPRW2023 ResNet50 33.2 58.3 33.2
�UFPMPDet [11] AAAI2022 ResNet50 36.6 62.4 36.7
Our method – Resnet50 31.9 53.6 32.3
Note: The “�” indicates that the detector uses a coarse-to-fine pipeline.

Table 2: Comparison with SOTA models on the test set of the UAVDT dataset

Model Source Backbone AP AP50 AP75

�ClusDet [28] ICCV2019 ResNet50 13.7 26.5 12.5
�DMNet [47] CVPRW2020 ResNet50 14.7 24.6 16.3
YOLOv5-x [45] GitHub2020 CSPDarknet53 14.9 25.1 14.7
GFL [46] CVPR2021 ResNet50 15.7 28.1 16.5
Cascade R-CNN [22] CVPR2018 ResNet50 16.0 28.0 17.4
�GLSAN [27] TIP2021 ResNet50 17.0 28.1 18.8
CEASC [34] CVPR2023 Resnet18 17.1 30.9 17.8

(Continued)
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Table 2 (continued)

Model Source Backbone AP AP50 AP75

DSHNet [49] WACV2021 ResNet50 17.8 30.4 19.7
�UFPMPDet [11] AAAI2022 ResNet50 24.6 38.7 28.0
Our method – Resnet50 21.1 36.3 22.8

Note: The “�” indicates that the detector uses a coarse-to-fine pipeline.

VisDrone. For the VisDrone dataset, our method’s detection performance is cataloged in Table 1,
juxtaposed with other cutting-edge models. Relative to general detectors such as Cascade R-CNN,
YOLOv5-x, and Generalized Focal Loss (GFL), our approach achieves superior AP enhancements
of 7.9%, 7.8%, and 6.0%, respectively. These improvements underscore the inadequacy of general-
purpose models in UAV-based image detection tasks.

Furthermore, we contrasted our method with UAV-specific detection models. Against transformer-
based QueryDet, our proposed solution achieves advancements of 3.6% in AP, 4.6% in AP50, and
5.5% in AP75. With Dual Sampler and Head Network (DSHNet), designed to address the long-tail
distribution in UAV imagery, our method surpasses it by 1.6% in AP, 1.8% in AP50, and 1.4% in AP75.
Against the recent innovations CEASC and Scale Decoupled Pyramid Network (SDPNet), utilizing
the same ResNet50 backbone, our method demonstrates higher performance by 3.2% in AP, 2.9% in
AP50, and 3.9% in AP75; and 1.7% in AP, 1.1% in AP50, and 1.7% in AP75, respectively. Even with the
Density-Map guided object detection Network (DMNet), which employs the extensive ResNeXt101
backbone, our method maintains a lead of 2.5% in AP, 4.3% in AP50, and 1.7% in AP75. Notably,
for multi-inference detectors ClusDet, DMNet, and GLSAN, which adopt a coarse-to-fine strategy,
our method prevails with accuracies exceeding 5.2%, 2.5%, and 1.2% in AP. Compared to the latest
research RT-DETR, our approach is 0.9% higher in AP, even when comparing variants with the largest
sizes.

Our method does not obscure its comparative disadvantage in accuracy against the latest multi-
inference detectors, lagging behind UFPMPDet and Cascaded Zoom-in Detector (CZDet) by 4.5%
and 1.3% in AP, respectively. However, this precision is achieved at the expense of computational
efficiency. UFPMPDet necessitates foreground packing before subsequent fine detection, and CZDet
employs a higher test-time resolution (1,500 × 1,500) with adaptive cropping. We eschewed these
operations to avoid compromising detection efficiency, aligning with our initial objective to design a
practical detector. This trade-off will be examined in greater detail in the subsequent efficiency analysis.

UAVDT. The results for the UAVDT dataset are shown in Table 2. Our approach achieves
satisfactory detection performance despite the UAVDT dataset containing a wide variety of scene
images, and the data could be more unbalanced, leading to the unstable performance of many
algorithms. When positioned against generic models like YOLOv5-x, GFL, and Cascade R-CNN,
our proposed approach registers an improvement of AP: 6.2%, AP: 5.4%, and AP: 5.1%, respectively.
Compared to the UAV image detectors CEASC and DSHNe, the approach we proposed has a higher
AP: 4.0%, AP50: 5.4%, AP75: 5.0% than CEASC; higher AP: 3.3%, AP50: 5.9%, AP75: 3.1% than
DSHNet. Compared with the existing superior multi-inference detectors, including ClusDet, DMNet,
and GLSAN, the AP of our method is improved by 7.4%, 6.4%, and 4.1%. However, our approach is
still 3.5% inferior on AP compared to UFPMPDet, in line with the VisDrone dataset.
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Compared to other methods, our model achieves stable and consistent performance on both
datasets, demonstrating the generality of our approach across different distributions.

4.3.2 Comparison of Multiscale Objects

It is worth noting that the UAV images have a more pronounced multiscale problem due to altitude
variations and viewpoint offsets. Thus, the model must be robust to detect targets at multiple scales.
To better demonstrate the effectiveness of our approach to the scale challenge, as shown in Table 3, we
compare it with other methods through quantitative experiments at multiple scales.

Table 3: Multiscale comparison with other SOTA models on the validation set of the VisDrone dataset

Model Backbone Resolution AP APS APM APL

Cascade RCNN [22] ResNet50 1,333 × 800 24.0 16.6 37.0 39.5
YOLOv5-x [45] CSPDarknet53 1,333 × 800 24.1 15.3 35.6 38.4
GFL [46] ResNet50 1,333 × 800 25.9 16.9 37.3 41.4
�ClusDet [28] ResNet50 1,000 × 600 26.7 19.1 40.8 54.4
�DMNet [47] ResNeXt101 1,000 × 600 28.2 21.6 41.0 56.9
QueryDet [13] ResNet50 2400 × 2400 28.3 17.9 30.4 36.7
SDPNet [48] ResNet50 1,333 × 800 30.2 22.6 39.6 39.8
�CZDet [10] ResNet50 1,500 × 1,500 33.2 26.1 42.6 43.4
Our method Resnet50 1,333 × 800 31.9 23.2 42.9 51.0
Note: The “�” indicates that the detector uses a coarse-to-fine pipeline.

For Cascade RCNN, YOLOv5-x, and GFL, which use the same resolution input as us, our method
has a significant advantage in accuracy on multiple scales. For both ClusDet and DMNet addressing
the object scale variable distribution problem in UAV images, our accuracy exceeds both detectors
by AP: 5.2% and AP: 3.7%. Our method performs better for QueryDet and SDPNet, which address
the small object problem. On the small object subset, our method outperforms these two models by
APS: 5.3% and APS: 0.6%, respectively. Our method achieves higher accuracy on medium and large
targets beyond CZDet but lags a bit on small targets because CZDet uses a larger resolution and image
cropping. In summary, our approach achieves satisfactory detection results on multiple scales, which
shows that our model can cope well with scale variation challenges.

4.3.3 Comparison of Computational Complexity

To judge the superior performance of our method more comprehensively, we evaluated its compu-
tational complexity. The evaluation metric of inference speed can accurately reflect the computational
complexity of the model; therefore, we use the inference speed FPS on the same hardware as a metric
to compare with other works in this section, and the results are shown in Fig. 7.
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Figure 7: Comparison of accuracy and FPS of different models

Our method has higher accuracy and inference speed than the general detectors YOLOv5-x,
Cascade RCNN, and GFL. Compared to the latest high-performance UAV image detector, CEASC,
we achieve an FPS lead of 1.3, while the accuracy is 3.2% higher. At the same time, our method has a
significant speed advantage over models that use a coarse-to-fine approach. The GLSAN requires an
additional super-resolution procedure for densely populated regions, and ClusDet mandates multiple
reviews of the segmented chips. Compared to these two models, our proposed method has higher
accuracy and is about 12× and 5× faster in inference speed. Compared to UFPMNDet and CZDet,
our method achieves about 25× and 6× speedups, respectively, thanks to our lightweight design and
end-to-end pipeline. In contrast, the multi-inference step and large input resolution in UFPMNDet
and CZDet increase the detection accuracy, making it impossible to achieve real-time detection (even
on the high-performance A100 GPU).

The previous comparison highlights our contribution to UAV image detection. In UAV image
detection, the balance between speed and accuracy is crucial, and our approach maximizes this
balance, outperforming existing detectors.

4.4 Ablation Study

A series of ablation studies are performed to elucidate the impact of individual modifications
within the comprehensive model. Detailed findings from these studies are systematically compiled
and presented in Table 4.

Table 4: Ablation studies about detection results on the validation set of VisDrone

Method N AP AP50 AP75 APs APM APL GFLOPs FPS

Baseline 900 28.3 49.3 27.9 20.5 38.3 44.3 280.58 41.0
Variant A 900 26.4 46.3 25.7 19.4 36.7 44.4 143.36 49.5

(Continued)
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Table 4 (continued)

Method N AP AP50 AP75 APs APM APL GFLOPs FPS

Variant B 900 27.2 48.1 26.4 18.8 37.4 46.6 174.08 47.3
Variant C 900 28.5 50.6 28.0 19.8 39.1 46.4 149.50 48.2
HTE 900 28.9 50.8 28.5 20.4 39.6 45.3 149.52 50.5
+QF 900 29.9 52.0 29.5 21.0 40.0 52.3 149.41 51.9
+ADL 900 31.2 53.3 31.2 22.4 40.1 50.7 149.41 51.9
+Queries 1200 31.9 53.6 32.3 23.2 42.9 51.0 153.60 51.3
+Queries 1500 31.7 54.1 31.8 23.1 42.4 53.0 160.77 45.7

4.4.1 Effect of HTE

To validate the superiority of our HTE, we experimented with a series of encoder designs,
culminating in the HTE, as shown in Fig. 8. Compared to the original encoder, our Variant A slashes
GFLOPs by 78% with a mere 1.9% drop in accuracy, revealing the baseline’s inefficiency. Introducing
a cross-scale fusion module, Variant B boosts accuracy by 0.8% over Variant A, confirming the merit
of merging convolution with attention mechanisms. Variant C increases AP by 1.9% while cutting
GFLOPs by 16.9%, supporting our design ideas in Section 3.1. Adding residual connectivity prevents
possible performance degradation while improving accuracy by 0.4%. Compared to the baseline, our
final HTE model cuts GFLOPs by an impressive 87% while raising accuracy by 0.6%, showing marked
improvements in efficiency and performance.

Figure 8: The evolution process of the HTE. (a) Baseline’s encoder, (b)–(d) Encoder variants and (e)
HTE

4.4.2 Effect of QF

To visually encapsulate the impact of the QF, Fig. 9 contrasts the predictive outcomes before
and after QF implementation, offering a tangible illustration of its capacity to minimize superfluous
predictions of the model. The integration of the QF proved instrumental in excluding redundant
predictions, thereby refining the precision of the model as quantified by enhancements in the mean AP,
AP50, and AP75 metrics by 1.0%, 1.2%, and 1.0%, respectively. Additionally, the QF facilitates a more
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streamlined initialization of queries compared to the baseline methodology, which has the ancillary
benefit of incrementally boosting the FPS.

Figure 9: Visualization of the effect of query filter

4.4.3 Effect of ADL

Another approach we propose for improving small object detection in UAV images is ADL. As
evidenced by the data in row 7 of Table 4, the integration of ADL furnishes a notable uplift in the
model’s performance metrics, with an increase in AP by 1.3%, AP50 by 1.3%, and AP75 by 1.7% across
the entire dataset. More specifically, AP has a 1.4% enhancement for the subset of small objects. The
ADL’s deployment thus emerges as a pivotal modification, endowing the model with a heightened
sensitivity to the nuanced characteristics of smaller instances and translating into a discernible leap in
overall detection accuracy.

4.4.4 Effectiveness of Additional Queries

Our investigation into the influence of query quantity reveals that an augmentation by 300 queries
(to N =1200) yields a 0.7% ascension in accuracy, alongside a tolerable increase in computational
load of 4.19 GFLOPs. Conversely, an escalation to 1500 queries results in a marginal 0.2% regression
in accuracy and a 7.17 GFLOP hike in computational demand. This diminishment is ascribed to the
confounding effects of excessive queries on the model’s one-to-one matching capability. Consequently,
the optimal model employs a query tally of N = 1200, striking a reasonable balance between precision
and computational expenditure.

4.5 Qualitative Analysis

4.5.1 Visualization of Different Detectors

To facilitate a more direct comparison of model performance, we visualize the predictions of some
selected models, as shown in Fig. 10.

The first image, depicting a scene with minimal and conspicuous objects, reveals that the Cascade
RCNN and CEASC models exhibit instances of missed detections. Conversely, models like YOLOv5-
x, GFL, and QueryDet display a spectrum of false positives. Meanwhile, our model provides the most
accurate predictions. The subsequent image presents a complex scenario with numerous small, densely
clustered objects. All models, except ours, struggle with significant miss detection for small instances,
including the latest iterations like CEASC. However, our method discerns the most challenging small
objects at an equivalent input resolution.
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Figure 10: Visualization of comparative prediction outcomes among other models

In summary, our approach manifests superior detection proficiency in environments with sparse
and dense object distributions, particularly distinguishing itself in accurately identifying small objects
commonly elusive to conventional detection methods, which may be attributed to the global-aware
attentional and the proposed modification.

4.5.2 Visualization in Challenging Scenes

To more explicitly demonstrate the efficacy of our methodology, we present the detection results
across various datasets in Fig. 11. It is observable that our detector consistently achieves high-
performance detection across a multitude of intricate scenarios characterized by varying times of
day (including day, dusk, and night), diverse perspectives (including side, frontal, and top views),
and fluctuating lighting conditions (including low illumination and overexposure). Despite these
complexities, our approach maintains commendable detection outcomes.
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Figure 11: Detection results for different challenge scenarios. (a) VisDrone dataset. (b) UAVDT dataset

5 Conclusions

In this study, we have developed H-DETR, an end-to-end detector tailored for UAV image object
detection. By hybridizing the attention-only encoder with a cross-scale fusion network, we designed
HTE, which significantly simplifies the computation of the transformer. Supplementary to this, we
propose the QF and the ADL to address the challenges posed by dense, small objects prevalent
in UAV imagery. The QF leverages a training-aware non-maximum suppression to alleviate query
consistency issues from density distribution in drone images. At the same time, the ADL augments the
network’s capacity to distinguish and extract discriminating features from small instances. Extensive
experimental analyses on two distinct datasets have been conducted to ascertain the efficacy of
our proposed approaches. Our model demonstrates superior detection speed on both datasets,
achieving AP of 31.9% and 21.2%, respectively. Compared to more accurate models, our model
attains speed improvements by 25× and 6×. This achievement underscores our model’s unparalleled
balance between precision and computational efficiency, surpassing existing CNN-based methods.
Furthermore, our approach provides valuable insight for further integrating transformer architectures
into UAV image analysis. However, it is essential to note that the currently available computational
resources on UAV platforms are exceedingly limited, hindering our model’s effective deployment on
mobile platforms. As we look ahead, our research will aim to reduce computational requirements
through strategies such as model pruning and knowledge distillation. Our ultimate objective is to
realize the deployment of our model on UAV platforms in real-world scenarios, thereby facilitating
further practical applications.
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