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ABSTRACT

Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object
segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent
model. Due to its superior performance in general object segmentation, it quickly gained attention and interest.
This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial
scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown.
Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios,
namely strip steel surface defects, tile surface defects, and rail surface defects, to evaluate the segmentation
performance of SAM. Our results show that although SAM has great potential in general object segmentation,
it cannot achieve satisfactory performance in complex industrial scenes. Our test results are available at: https://
github.com/VDT-2048/SAM-IS.
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1 Introduction

The birth of foundation models signifies a paradigm shift in the field of artificial intelligence, and
sets a new tone for the direction of research. In the past several months, the emergence of ChatGPT,
a foundation model, has brought about a revolutionary change in the field of natural language
processing. ChatGPT quickly gained a substantial user base due to its outstanding performance
and user-friendly interface. Additionally, the encyclopedia-like summarization capabilities and the
powerful universality make it easy for people to believe that foundation models have virtually no
limitations in handling various problems.

People cannot help but wonder: Has the new era of artificial intelligence arrived? As illustrated
in Fig. 1, we present the developmental trajectory of the artificial intelligence. The ubiquitous
emergence of various foundation models appears to be steering a paradigm shift, marking 2023 as
the commencement of a new era.
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Figure 1: Development history of artificial intelligence

Recently, in the field of artificial intelligence, a foundation model called SAM [!] trained on a
large visual corpus has also rapidly drawn people’s attention. As a foundational model, SAM has
demonstrated powerful segmentation capabilities in various natural scenarios, astonishing researchers
with its remarkable performance. Many researchers have begun to try to extend SAM to the field
of medical images to solve some existing problems. However, researchers have found that SAM has
poor generalization ability when facing a variety of medical scenes, which makes people have to re-
discuss the segmentation performance of SAM. Therefore, in this context, it is crucial to investigate
reliable and efficient medical segmentation algorithms based on SAM models that can handle frequent
changes in medical scenarios. Researchers have tried to combine the SAM model with other theoretical
paradigms, and have achieved some encouraging results. As shown in Table 1, we show some improved
paradigms for medical images. In general, SAM has been successfully applied to the task of medical
image segmentation through fine-tuning, adaptation and direct improvement.

Table 1: Improvement and application of SAM method in medical images

Methods Theories Description

MedSAM [2]  Fine-tuning Fine-tuning SAM on a large-scale medical dataset creates an
extended method for general medical image segmentation.

AutoSAM [3]  Auxiliary prompt A fully automated prompt engineering oriented solution

encoder with fewer parameters.
3DSAM- Improved encoder To adapt 3D spatial information, 3DSAM proposes a
adapter [4] scheme to modify the image encoder so that the original 2D

converter can adapt to the volume input.

DeSAM [5] Improved decoder DeSAM proposes to split SAM’s mask decoder into two
subtasks: cue-dependent IOU regression and cue-invariant
mask learning.

MedLAM [6] Few-shot MedLLAM proposes a medical dataset annotation process
using SAM and introduces a small amount localization
framework that significantly reduces manual annotation
costs.
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The above improved methods have made some good progress in the medical field, but few
researchers extend it to the industrial defect detection field to verify the performance of SAM. The
ability of SAM to generalize to this specific scenario of industrial surface defect detection deserves
discussion and re-evaluation. Therefore, we focus on defect surface detection for the first time to
evaluate and validate the performance of SAM from several aspects. We also make discussions on
the future development direction of SAM in the field of defect detection based on the results of the
evaluation, which is also the motivation and potential significance of this research.

In this paper, we explore the segmentation capabilities of SAM compared with 13 state-of-the-
art models in the field of industrial surface defect detection. We conduct a quantitative comparison
and present visual results. The results show that SAM has limitations in industrial surface defect
detection and performs averagely in industrial settings. Furthermore, we believe that this provides
an opportunity for further research into how SAM can be better applied to industrial surface defect
detection tasks.

The main contributions of this paper are summarized as follows:

1. This paper engages in discussions regarding the effect of the paradigm shift brought about by
foundation models on the direction of defect detection. What’s more, in light of the new era of
SAM, we pioneer the analysis on how to use SAM to serve downstream defect detection tasks
with the aim of providing insights and assistance to future researchers.

2. To verify the performance of SAM, we conduct a series of experiments on three industrial
benchmarks. Experimental results show that SAM has a substantial gap in performance
compared with state-of-the-art saliency detection methods. However, some positive cases also
illustrate the great potential of SAM for defect detection, which also proves that it is feasible
to improve the model based on SAM.

2 Related Work
2.1 Segment Anything Model

Meta recently released a groundbreaking model called the Segment Anything Model (SAM). As
the title suggests, the paper focuses on zero-shot segmentation, similar to how ChatGPT addresses
every query in natural language processing. SAM leverages interactive annotation data to construct
the largest existing dataset (SA-1B) with high-quality and diverse masks. The experimental results
demonstrate that SAM is effective in zero-sample instance segmentation, edge detection, and other
tasks. Additionally, Meta open-sourced the code and demo website in the original paper, allowing for
the prompt engineering or automatic generation strategies to be used to obtain desired segmentation
masks, as displayed in Fig. 2 on the demo website. The attained segmentation results clearly indicate
the immense potential of SAM.

However, segmentation is a vast field, with approaches such as interactive segmentation and edge
detection not being ideal for industrial surface defect detection tasks. As industrial production effi-
ciency improves, industrial surface defect detection must be carried out in real-time, making interactive
segmentation methods unfeasible. Furthermore, defect detection tasks typically only require defect
and background segmentation, thus rendering instance segmentation methods unsuitable. Therefore,
we use the strategy of SAM to generate masks automatically to obtain all segmentation results.



3956 CMC, 2024, vol.78, no.3
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Figure 2: We use several prompt projects to obtain the segmentation results on the demo website, and
the image is from the demo website publicly available by SAM

2.2 Zero-Shot Generalization

Zero-shot generalization aims to learn a model that is trained with a specific training data during
the training phase, while in the testing phase it generalizes this model to a new class of data that has not
been seen during the training phase. Due to the complexity and change of the industrial manufacturing
environment, there will always be various unknown types of defects. Therefore, this problem setting
has attracted a lot of attention from researchers.

For example, Li et al. [7] proposed a zero-shot surface defect recognition with class knowledge
graph framework to establish the relationship between base and novel defect classes. Zhu et al. [§]
integrated semantic attribute predictors with visual features during training, which achieved significant
improvements on multiple unseen classes. With the development of foundation models of visual
language, studies that exploit the zero-shot capability of large models have begun to emerge in the
field of defects. Yong et al. [9] combined a contrastive language image pre-training model with cue
engineering to enhance the zero-shot generalization ability of the model, showing that improvements
based on the foundational vision model are expected to be an alternative to existing defect detection
models under insufficient dataset. In addition, Manettas et al. [10] used a data simulation generation
framework to generate synthetic defect images to solve the problem of insufficient data sets in defect
detection, which improved the zero-shot training problem in the training phase.

2.3 Defect Saliency Detection

In recent years, network models based on convolution neural networks structures [I11] have
flourished in the salient object detection field with the rapid development of deep learning technology.
Wu et al. [12] proposed a novel Cascaded Partial Decoder framework (CPD) for fast and accurate
salient object detection. Inspired by edge mapping and segmentation, Wu et al. [13] proposed a
novel Stacked Cross Refinement Network (SCRN), aiming to refine salient objects and edge features
simultaneously. Pang et al. [14] proposed a multi-scale aggregation interaction strategy, which uses
consistency loss to highlight the difference between foreground and background. To address the dilu-
tion problem in the top-down process of high-level features, references [1 5—17] generated saliency maps
by progressive context-aware feature interactions. The above methods are all built using convolutional
neural networks, which have limitations in capturing global features. Therefore, researchers [18,19]
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began to use the advantages of transformer architecture to build saliency detection models, and achieve
more excellent results. However, the transformer architecture makes the model difficult to deploy due
to the huge number of parameters, so lightweight salient object detection models [20,21] have also been
widely explored to promote practical applications.

The success of saliency detection in natural images has brought great inspiration to researchers
in the industrial field. However, due to the significant disparities between defect images and natural
images, it can be challenging to achieve superior performance by directly applying methods from the
aforementioned fields to the industrial sector. In addition, with the rising demand for automation and
efficiency in industrial environments, there is a growing need for effective supervised testing. While
unsupervised zero-shot generalization holds great promise, supervised detection is more practical in
current industrial fields due to its higher accuracy and detection rate. For example, Song et al. [22
proposed an encoder-decoder residual network (EDRNet) architecture to solve the detection problem
of steel strip surface defects. Zhou et al. [23] used a cascade feature integration module to fuse multi-
branch features and then used an intensive attention mechanism to gradually restore spatial details to
obtain the final features, Therefore, the detection accuracy of defect images is effectively improved. In
order to solve the problem that existing defect saliency methods often only focus on feature interaction
and ignore edge information, Ding et al. [24] proposed a cross-scale edge purification network to
explore feature correlation at different scales and achieved state-of-the-art results on defect datasets.

3 Methods

This section describes the defect benchmark dataset used for performance evaluation, the Mask
selection strategy, and the evaluation metrics used.

3.1 Datasets

No Line breaks between paragraphs belonging to the same section. To evaluate the effectiveness
and the applicability of SAM, we conduct extensive and convincing experiments on three benchmark
datasets related to surface defects, including SD-saliency-900 dataset [25], Magnetic tile dataset (MT)
[26] and NRSD-MN dataset [27], whose details are shown in Table 2 and Fig. 3.

1) SD-saliency-900 dataset: It contains complex industrial images, such as challenging scenes
with low contrast and defect scale changes. To be specific, it contains three defect categories: patch,
inclusion, and scratch, where each one includes 300 images.

2) MT dataset: It contains 392 defective images with different resolutions and corrupted by
various factors such as illumination and textured background. We randomly divided training sets and
test sets in a 1:1 ratio to train and test all models.

3) NRSD-MN dataset: The NRSD-MN dataset is also regarded as an evaluation dataset for
validating the performance of saliency detection methods, which contain 2086 images for training
and 1130 images including 965 artificial images, which are more challenging to segment for testing.
Affected by different production processes and external factors, the surface of the rails has different
degrees of oxidation and corrosion.
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Table 2: Details of the three datasets used in the experiments

Dataset Product categories ~ Train ~ Test Resolution
SD-saliency-900 Strip steel 540 360 200 x 200
MT Magnetic tile 196 196 -
NRSD-MN Heavy rails 2086 1130 600 x 600
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3.2 Mask Selection Details

Figure 3: Examples of three datasets

Under the automatic generation strategy of SAM, multiple masks are generated for each image.
Given the specificity of industrial surface defect detection tasks, a single image commonly contains
multiple significant defects. Therefore, we employ a selection strategy that superimposes or negates
the multiple masks generated by SAM for each image to produce masks that are closest to the ground
truth. This strategy is more advantageous for SAM compared with simply selecting the mask with
the highest IOU or F-measure score among the multiple masks. As shown in Fig. 4, we show an
example of our process of selecting and selecting masks. For other state-of-the-art models, we use
masks automatically generated by their test code.

3.3 Evaluation Metrics

We use five evaluation measures to evaluate SAM and compare it with other salient object
detection methods, including Sa [28], MAE, max Em [29], Fw [30] and max Fm [31].
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S-measure (Sa, a = 0.5) It focuses on assessing structural similarity, which is closer to human
visual perception. The calculation formula is:

S, =as,+ (1 —a)s,

MAE (Mae) The MAE measures the dissimilarity between the normalized predicted saliency map
P and the ground truth G. We normalize P and G to [0; 1], so the MAE score can be computed as:

1 w H
W xH Z,\':l zlle |P(x’y) - G(X,y)|

E-measure (Em) capture image-level statistics and local pixel matching information. In our
experiment, we adopt maximum E-measure (max Em) as our evaluation metric:

1

Eg - W x H Zx:l Zy:l 0 (5)

Weighted F-measure (Fw) is a weighted version of traditional widely used F-measure, Thus, it
amends the interpolation, dependency, and equal importance flaws of MAE and F-measure, where
we set B° to 0.3 as suggested in [19]:

(1 4 B?) Precision” - Recall”
B*Precision” + Recall”

MAE =

Fe =

F-measure (Fim) is defined as a weighted harmonic mean of precision and recall for comprehen-
sively evaluating the quality of the saliency map. We adopt maximum F-measure (max Fm) as our
evaluation metric.

4 Experiments and Performance Evaluation

This section describes all the saliency detection methods compared and the results on the three
publicly available datasets. All methods are implemented on the PyTorch framework with one NVIDIA
GeForce RTX 3080 GPU (10 GB memory). For a fair comparison, all the experiments are carried out
in Ubuntu 20.04 + python 3.8 environments.

More specifically, we use the public source code settings of saliency detection methods and the
test results provided by the authors after training to ensure the comparability of results. Some publicly
available methods for natural images lack test results on the defect dataset provided by the authors, and
we conduct an adequate training process for these methods. We do not change the hyperparameters in
the public source code other than the batch size, as this tends to lead to worse detection results. For the
three defect saliency detection methods [29-31], we use the comparison results on the defect datasets
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provided by the authors themselves in the open literature. What’s more, we train each method three
times on each dataset to get a more effective result to eliminate randomness.

4.1 Comparison Methods

Tables 3—5 report the quantitative results on three industrial surface defect datasets, in which
thirteen representative detection methods are compared to verify the effectiveness of SAM, including
nine methods for saliency detection of natural scene (CPD [12], SCRN [13], MINet [14], GCPANet
[15], F3Net [16], C2FNet [17], VST [18], ICON [19] and EDN [20] and CorrNet [21]), three methods
for saliency detection of surface defects (EDRNet [22], DACNet [23] and CSEPNet [24]).

Table 3: Comparison results between SAM and 13 state-of-the-art methods on SD-saliency-900
dataset. The best results in each column are marked with red

Methods Pub. Tyepe Sat Mae| Em+t Fw1 Fm+
CPD CVPR NS. 0.865 0.027 0.946 0.820 0.850
SCRN ICCV NS. 0.863 0.030 0.946 0.776 0.850
MINet CVPR NS. 0.868 0.025 0.948 - 0.857
GCPANet AAAI NS. 0.858 0.025 0.965 - 0.871
F3Net AAAI NS. 0.867 0.028 0.954 0.818 0.864
VST ICCV NS. 0.862 0.028 0.950 0.810 0.856
C2FNet IICAI NS. 0.857 0.034 0.956 0.742 0.869
ICON PAMI NS. 0.879 0.025 0.963 0.844 0.880
EDN TIP NS. 0.857 0.033 0.949 0.758 0.865
CorrNet TGRS NS. 0.835 0.033 0.934 0.813 0.852
EDRNet TIM IS. 0.877 0.024 0.964 - 0.872
DACNet TIM IS. 0.875 0.024 0.964 - 0.870
CSEPNet Meas IS. 0.884 0.023 0.966 0.857 0.882
SAM arXiv - 0.668 0.172 0.729 0.599 0.628
Compared with the SOTA 24% 87% 25% 30% 29%

method

Table 4: Comparison results between SAM and 13 state-of-the-art methods on MT dataset. The best
results in each column are marked with red

Methods Pub. Tyepe Sat Mae| Em+1 Fw1 Fm4
CPD CVPR NS. 0.836 0.018 0.920 0.723 0.760
SCRN ICCV NS. 0.691 0.031 0.913 0.397 0.721
MINet CVPR NS. 0.713 0.055 0.773 0.541 0.588
GCPANet AAAI NS. 0.450 0.232 0.555 0.095 0.138
F3Net AAAI NS. 0.802 0.026 0.893 0.671 0.728
VST ICCV NS. 0.783 0.022 0.910 0.594 0.673

(Continued)
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Table 4 (continued)

Methods Pub. Tyepe Sat Mae| Em+ Fw1 Fm1
C2FNet IICAI NS. 0.628 0.066 0.892 0.293 0.703
ICON PAMI NS. 0.870 0.018 0.931 0.805 0.816
EDN TIP NS. 0.586 0.142 0.800 0.243 0.462
CorrNet TGRS NS. 0.615 0.057 0.780 0.275 0.606
EDRNet TIM IS. 0.874 0.018 0.935 0.797 0.815
DACNet TIM IS. 0.810 0.030 0.886 0.692 0.712
CSEPNet Meas IS. 0.822 0.018 0.916 0.722 0.736
SAM arXiv - 0.749 0.083 0.826 0.660 0.665
Compared with the 14% 78% 12% 18% 19%

SOTA method

Table 5: Comparison results between SAM and 13 state-of-the-art methods on NRSD-MN dataset.
The best results in each column are marked with red

Methods Pub. Tyepe Sat Mae| Em1 Fw1 Fm4
CPD CVPR NS. 0.871 0.025 0.941 0.806 0.844
SCRN ICCV NS. 0.857 0.026 0.937 0.782 0.834
MINet CVPR NS. 0.864 0.024 0.940 0.807 0.842
GCPANet AAAI NS. 0.865 0.025 0.940 0.798 0.844
F3Net AAAI NS. 0.871 0.024 0.941 0.808 0.846
VST ICCV NS. 0.869 0.025 0.944 0.799 0.846
C2FNet 1ICAI NS. 0.852 0.028 0.942 0.764 0.843
ICON PAMI NS. 0.874 0.023 0.944 0.820 0.854
EDN TIP NS. 0.866 0.024 0.940 0.802 0.841
CorrNet TGRS NS. 0.861 0.026 0.935 0.796 0.832
EDRNet TIM IS. 0.869 0.025 0.927 0.798 0.834
DACNet TIM IS. 0.855 0.028 0.919 0.779 0.821
CSEPNet Meas IS. 0.871 0.023 0.941 0.815 0.844
SAM arXiv - 0.811 0.031 0.901 0.742 0.767
Compared with the 7% 26% 5% 10% 10%

SOTA method

4.2 Quantitative Evaluation

Taking the results of SD-saliency-900 dataset as an example, we show the performance of SAM
(VIT-H) and other 13 methods on five metrics denoted as Sa, MAE, max Em, Fw and max Fm as
reported in Table 3. Briefly speaking, the performance of SAM on three industrial benchmarks is
limited and still lags far behind state-of-the-art models. The best method CSEPNet outperforms SAM
by 24%, 87%, 25%, 30%, 29% on Sa, Mae, Em, Fw and Fm, respectively. Under the selection of strong
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human intervention in favor of SAM method, SAM still has a large gap compared to other state-of-
the-art (SOTA) methods. We can also draw this conclusion in the results in and 5, which also
proves the fact that SAM has relatively poor generalization in the defect domain. To some extent,
SAM is not able to segment arbitrary defects.

4.3 Qualitative Evaluation

As shown in , for an intuitive comparison of the performance of SAM, we provide
visualization results of SAM and several state-of-art methods on three datasets. It can be seen that
SAM is unable to segment defects in some challenging scenes, such as complex and low contrast images.
Even in the case of strong manual intervention of SAM, the existing state-of-the-art algorithms can
still achieve more competitive performance.

CSEPNet DACNet EDRNet CorrNet DN ICON F3Net C2FNet SCRN

Figure 5: Visual comparisons with nine SOTA methods on several challenging defect scenes

In addition, we conducted qualitative experiments on three datasets respectively. We selected five
representative methods as competitors to the SAM method.

1) Comparisons on the SD-saliency-900 dataset: As shown in , there are many different
defect types on the steel strip surface, and the segmentation effect is not the same when SAM faces
different types. When facing the inclusion defect with weak texture features, SAM is easy to segment
its boundary as a dividing line. This indicates that SAM has identified the defect, however there is an
ambiguity expression as to whether it should belong to the foreground or background. Secondly, SAM
can hardly identify the patch defects with extremely low contrast, so it will segment the whole image
into foreground. SAM can accurately mine the features of scratch defects, because scratch defects are
relatively bright in the figure. Scratch defects do not have features such as camouflage or low contrast,
and are closer to natural images, which is why SAM can segment them accurately. At the same time, it
can be observed in the last row that SAM can even segment some scratch defects that are not labeled
at the boundary position.
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Figure 6: Qualitative comparisons with five representative methods on the SD-saliency-900 dataset

2 ) Comparisons on the M T dataset: Asshownin Fig. 7, different from strip surface defects, magnet
tile defects contain more tiny defects and single defects. In fact, industrial scenarios often contain more
minor defects. Therefore, to some extent, the qualitative results of MT dataset can better reflect the
performance of SAM on defective surfaces. It can be seen in the first and second rows that the SAM
method can generalize well to a single defect in the tile defect when trained with zero defect samples. At
the same time, for slender and small defects, SAM can also achieve accurate segmentation. The results
in the third row show that SAM is even more accurate than manual annotation when segmenting
slender defects. However, when facing the uneven defects that often appear in the magnet and are
difficult to observe manually, SAM is difficult to predict the defect location. This indicates that SAM
has poor segmentation ability in the face of defect types with high similarity between foreground and
background.

3) Comparisons on the NRSD-MN dataset: Because the NRSD dataset contains some man-
made defects rather than natural defects, SAM produced better results when faced with this dataset.
Metrics such as Mae and Sa also have the lowest percentage compared to the most advanced methods
compared to the strip and magnetic tile datasets. Lines one through four of Fig. § also illustrate
this trend. However, when faced with ambiguous background and foreground, SAM still incorrectly
predicts the background as a defect, as shown in the fifth line of Fig. 8. This shows that the SAM
method has some limitations, but it also gives us a glimpse of the future potential of SAM in the
direction of defect detection.
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Figure 8: Qualitative comparisons with five representative methods on the NRSD-MN dataset

4.4 Good Cases

As shown in , we present example images demonstrating the accurate segmentation predic-
tions of SAM, where other state-of-the-art models failed to accurately segment these defects. It can
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be observed that SAM has a good zero-sample generalization ability in the face of tiny defect images.
This is because SAM is trained on large-scale instance segmentation datasets and has excellent fine-
grained instance partitioning ability. This ability enables SAM to segment multiple different instances,
including small defect instances and other interfering impurities, when faced with defect images. On
the other hand, other models are trained on smaller defect datasets and pay more attention to the
most significant defect regions. More importantly, it is easier for SAM to mine small defect features
due to the difference in the resolution of the input. Therefore, under the selection strategy with manual
intervention, SAM has good zero-shot generalization ability when facing small defect images. In fact,
tiny defect images tend to appear more frequently in industrial scenes than other defects. Meanwhile,
SAM can completely segment the defects in the face of some single defect images. These findings
indicate the significant potential of SAM in in the field of defect detection. It may be worth focusing
on refining SAM based on the large model for specific contexts to ensure that it is better suited for
downstream tasks. This is a direction that may require ongoing attention in the future.

Image SAM CSEPNet DACNet EDRNet CorrNet ICON A% F3Net SCRN

Figure 9: Some good cases of SAM on three industrial benchmarks

4.5 Extension Experiment on M T Dataset

To further evaluate the performance of SAM, we conduct detailed and rich experiments on MT
dataset. Specifically, since the MT dataset is not partitioned into training and test sets. Therefore, not
only following the 1:1 partition as in many literatures, we also repartition the training and test sets
according to the ratio of 7:3 commonly used in defect detection. We selected the three most advanced
methods in , namely ICON [22], EDRNet [23] and CSEPNet [24], for comparison with SAM.
As shown in , when the training and test sets are divided according to the ratio of 7 to 3, the
performance of all methods is improved to some extent. When the number of defect images involved
in training increases, the saliency detection algorithm has more prominent defect recognition ability.
However, there is still a large gap between SAM and the three most advanced models in various
indicators. This further indicates that SAM lacks zero-shot generalization ability to defects.
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Table 6: Comparison results between SAM and 3 state-of-the-art methods on MT dataset according
to the ratio of 7:3. The best results in each column are marked with red

Methods Pub. Tyepe Sat Mae| Em+ Fw4 Fm+t
ICON PAMI NS. 0.896 0.017 0.964 0.842 0.853
EDRNet TIM IS. 0.894 0.015 0.951 0.818 0.844
CSEPNet  Meas IS. 0.861 0.016 0.940 0.784 0.802
SAM arXiv - 0.742 0.078 0.834 0.647 0.650
Compared with the SOTA method 21% 81% 16% 30% 31%

5 Discussion
5.1 Limitations of Segment Anything Model

Segment anything model aims to advance segmentation to the era of foundation models, marking
a groundbreaking task. However, while the overall performance of SAM is satisfactory, there are
numerous limitations concerning its practical application to downstream defect detection tasks.

1) Limitations of real-time: In industry, real-time surface defect detection tasks are indispensable
to keep up with the growing demand for production efficiency. What’s more, the real-time requirements
in different industrial scenarios are usually different. Even though the SAM can process single-image
prompts in real-time, its collective performance is not in real-time. As shown in Table 7, we report the
average processing time of some representative on the three publicly available defect datasets. We use
the NVIDIA 3080 GPU for evaluation of all the methods to ensure a fair comparison. SAM has the
largest number of parameters compared to other saliency models. What’s more, the processing speed
of SAM is only 0.2 FPS, which is much lower than any of the saliency detection methods, indicating
that SAM does not have real-time processing ability.

Table 7: Model size, parameters, and speed comparison of some representative models on three publicly
available defect datasets

Methods CPD GCPANet MINet VST C2FNet ICON EDRNet DACNet CSEPNet SAM

Model (MB) 117.0 268.7 190.6 1784 1143 76.8 157.6 393.9 75.5 1228.8
Params (M) 29.2 67.1 46.6 446 2064 19.2 393 98.4 18.8 635.9
Speed (FPS) 50 60 27 55 48 46 32 27 45 0.2

2 ) Limitations of the task attribute: SAM is designed to be versatile and broadly applicable, instead
of being specifically tailored for semantic segmentation or saliency detection tasks. The automatic
generation strategy of SAM will produce multiple masks when processing each image, necessitating
manual intervention to select the most effective mask, which is impractical for industrial defect
detection tasks. The image-level method for real-time identification of suspected defect images and
some rough localization methods, such as object detection, are more suitable in some cases.

3) Limitations of specific scenarios: In fact, each mask generated by SAM only encapsulates one
defect, which makes it difficult to apply SAM to the downstream task of defect detection under the
existing framework. To optimize the performance of SAM in saliency detection tasks, we resort to post-
processing the masks. However, this manual intervention strategy still fails to meet the performance of
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SAM in specific defect detection scenarios, such as low contrast, cluttered background, and multiple
significant defect regions. More importantly, the screening strategy in this paper is to more effectively
tap the potential of SAM in challenging industrial scenarios. Therefore, the limitations of SAM when
facing real specific defect tasks are greater than the results presented in this paper.

5.2 The Application Prospect of Segment Anything Model

Assuming the training and testing images have the same distribution, existing saliency detection
algorithms demonstrate remarkable accuracy. However, in practical detection, defect images in differ-
ent industrial settings exhibit significant distributional diversity due to varying production conditions
and product types, which requires researchers to design network architectures tailored to specific
industrial scenarios. Furthermore, due to the rarity of defect images in industrial settings and the
diversity of detection conditions, it is impossible to collect and label defect samples from all industrial
settings.

Although SAM does not exhibit the best performance under the current framework, the zero-
shot transfer learning approach suggests tremendous potential for the application of SAM in defect
detection. Additionally, as shown in Fig. 6, some promising examples indicate that SAM has already
surpassed the best methods in predicting the integrity of small and hidden defects. In future defect
detection research, several potential improvement directions can be pursued based on SAM. 1) Fine-
tuning or improving SAM model enhance its fitting ability to defect data, and 2) using it as a
foundation model to construct new network that train defect data and adapt to downstream defect
detection tasks, such as saliency detection, domain generalization and other industrial detection tasks.

In the field of medical image, there have been many successful improvement cases, but there is still
no clear and effective improvement method in the field of defect detection. The application of basic
large model in the field of defect detection is most urgent to solve the problem of parameter quantity,
so as to promote the development of real-time. It is an improved idea to try to replace VIT-H with
VIT-Tiny as encoder with a smaller number of parameters, and combine knowledge distillation theory
to realize lighter MobileSAM. Secondly, in the face of extremely scarce defect images, it is effective
to construct a defect-oriented high-precision defect detection model by combining the small-sample
theory and domain generalization theory for transfer learning training. It has been proved in many
literatures that the theory of small sample learning and domain generalization is feasible in the field
of defect detection.

In addition, based on the unique interaction characteristics of SAM and the integration of
expert knowledge to fine-tune the model, a defect SAMPrompter method is generated to remove the
cumbersome annotation steps. Finally, modifying the image encoder to construct a defect 3DSAM
system suitable for the defect video volume input can accelerate the efficiency of some industrial defect
detection tasks in some specific scenarios.

Overall, although the current framework of SAM is still insufficient for defect detection scenarios,
it paves the way for a new solution in future automated defect detection. Based on the basic large
model theory and combined with different industrial scenarios and advanced theories, the multi-task
oriented intelligent industrial defect detection model under the guidance of multiple theories will be
the development direction of defect tasks in the future.

6 Conclusion

This paper evaluates the performance of SAM in defect detection tasks. The experiments indicate
that the performance of SAM in defect detection falls far behind that of state-of-the-art models.
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However, it can be inferred from some positive outcomes that SAM has great potential in the field
of defect detection. We hope that our paper can provide help and insights for future researchers.

It is foreseeable that researchers would need to focus on making targeted improvements to the
foundation model SAM or utilizing its exceptional features to make it suitable for downstream tasks
in the future. The combination of large model and various advanced theories is one of the development
directions of defect detection in the future. This direction of research merits ongoing attention.
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