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ABSTRACT

Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention due
to its outstanding performance and nonlinear application. However, most existing methods neglect that view-
private meaningless information or noise may interfere with the learning of self-expression, which may lead to the
degeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistency
and Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple views
and fuses them based on their discrimination, so that it can effectively explore consistent and complementary
information for achieving precise clustering. Specifically, the view-specific self-expression is learned by a self-
expression layer embedded into the auto-encoder network for each view. To guarantee consistency across views and
reduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastive
learning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according to
their discrimination. Then they are fused by convolution kernel to obtain consensus self-expression with maximum
complementarity of multiple views. Extensive experimental results on four benchmark datasets and one large-scale
dataset of the CCAC method outperform other state-of-the-art methods, demonstrating its clustering effectiveness.
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1 Introduction

The high-dimensional and complex big data create new challenges to traditional clustering
methods, such as hierarchical clustering [1], density clustering [2], and fuzzy clustering [3]. In particular,
the emergence of multi-view data has produced new requirements for clustering theory, models, and
algorithms. Multi-view data are the different descriptions of the same object. Multi-view clustering
(MVC) partitions the multi-view data by exploring consistent semantics with complementary infor-
mation, which can improve clustering performance and the effectiveness of unsupervised data analysis
[4,5]. Existing MVC can be roughly categorized as matrix factorization-based [6,7], graph-based
[8,9], subspace-based [10,11], and kernel-based methods [12,13]. The multi-view subspace clustering
(MVSC) methods have attracted more attention due to their easy implementation and outstanding
performance [14,15]. MVSC methods are based on the self-expression property that each sample data
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can be a linear or affine representation by others in the same subspace. They learn the consensus self-
expression to compute the affinity matrix of multi-view samples and then apply a spectral clustering
algorithm to obtain clustering results. The traditional MVSC methods explore the intrinsic subspace
self-expression by shallow model or linear embedding function. However, they can not be effectively
applied in some nonlinear or complex scenarios attributed to their limited representation ability.

Recently, deep multi-view subspace clustering (DMVSC) methods have been proposed due to
the powerful high-dimensional nonlinear representation ability [16,17]. DMVSC methods project
the high-dimensional nonlinear data into low-dimensional latent features by deep model and then
learn the consensus self-expression of multi-view data based on feature space. The consensus self-
expression should reflect the consistent semantics and the complementarity across views. Most
DMVSC methods learn the consensus self-expression by various fusion strategies at different stages,
which can be divided into early fusion of the low-dimensional latent features and late fusion of the
view-specific self-expressions, as shown in Fig. 1. In the early fusion, the latent features of all views
are concatenated or directly used to learn shared self-expression for exploring consistent semantics
by different diversity constraints. In the late fusion, the self-expression of each view is learned from
view’s latent features individually and then fused to get the consensus self-expression across views
for exploring the maximum complementarity. The fusion strategies contain average value, weighted
sum, concatenating, and attention mechanism-guided fusion. However, view-private meaningless
information or noise in view data may disturb the learning of consensus self-expression [18] and further
result in the degeneration of clustering performance. For example, face images with different details
can describe the same person, where the details can be different facial expressions, decorations, and
illumination conditions. Therefore, to reduce the effect of view-private meaningless information or
noise, an alignment strategy should be designed to satisfy the requirement of consistency across views
in DMVSC methods.

Figure 1: An illustration of fusion strategies in DMVSC methods

A novel framework of contrastive consistency and attentive complementarity (CCAC) for
DMVSC is proposed to fully explore consistent semantics and complementary information across
views by contrastive learning and attention mechanism, respectively. Specifically, we use an auto-
encoder to obtain the low-dimensional latent features of each view. View-specific self-expression is
learned from these features by a fully connected layer embedded into the auto-encoder. Subsequently,
all the view-specific self-expressions are aligned by contrastive learning to avoid the effect of view-
private meaningless information or noise. The aligned view-specific self-expressions are assigned
adaptive weights by attention mechanism and then fused by convolution kernel to achieve consensus
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self-expression for computing affinity matrix. Finally, a spectral clustering algorithm is conducted on
the affinity matrix to cluster multi-view data. The main contribution of our CCAC method can be
summed up as follows:

• We propose a contrastive alignment strategy based on multi-view self-expression space to avoid
the effect of view-private meaningless information or noise on exploring consistent semantic
information across views. Different from the previous contrastive alignment based on feature
space in deep clustering, the contrastive alignment module is directly oriented to the clustering
task, which can maximize the similarities of positive sample pairs while minimizing that of
negative sample pairs.

• Based on the aligned view-specific self-expression, we introduce an adaptive fusion strategy
guided by the channel attention mechanism and convolution kernel to learn consensus self-
expression of multi-view data, which can fully exploit the diverse complementary information
across views for further boosting clustering performance.

• Extensive experimental results on four benchmark datasets and one large-scale dataset verify
the effectiveness and excellent clustering performance of CCAC over other state-of-the-art
methods.

2 Related Work
2.1 Deep Multi-View Subspace Clustering

DMVSC has attracted more attention because of the outstanding performance and nonlinear
application, which focuses on learning a high-quality consensus subspace self-expression based on
deep learning. Inspired by the typical deep subspace clustering network [19], the unsupervised deep
auto-encoder is widely used to learn latent low-dimensional features of multi-view data. Then,
consensus self-expression is learned from the latent features. According to the strategy of learning
consensus self-expression, existing DMVSC methods can be roughly divided into two categories, i.e.,
early fusion of the latent features and late fusion of the view-specific self-expressions.

In the first category, consensus self-expression is learned via a shared fully connected layer from the
latent features with different diversity constraints. For example, different fusion functions, including
sum, max-pooling, and concatenation, are proposed to combine the latent features of all the views
for learning shared self-expression [20]. The t-SNE is used to supervise the latent features for learning
shared self-expression by considering the inter-view and intra-view distributions [21]. The spectral
clustering loss and classification loss are introduced and integrated into the deep auto-encoder network
to supervise the shared self-expression learning while considering the impact of noise [22]. Hadanard
product is proposed to constrain discrimination of low-dimensional latent features extracted by auto-
encoder for learning shared self-expression with the global and local structure [16]. The view-specific
latent features are weighted by the self-attention mechanism and fused to learn shared self-expression
by a fully connected layer [23].

In the second category, multiple fully connected layers are inserted into the auto-encoder to
learn self-expressions for multiple views, which are further fused to obtain consensus self-expression.
For instance, view-specific self-expressions are learned with the diversity constraint of the Hilbert
Schmidt Independence Criterion and aligned with common self-expression that is used for clustering
[24]. All the view-specific self-expressions are fused to obtain the consensus self-expression by a fully
connected layer [25]. In [17], the view-specific self-expressions are weighted by the channel attention
mechanism and fused by the convolution kernel to learn consensus self-expression with maximum
complementarity for precise clustering. Information bottleneck is extended to explore view-specific
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information in the latent feature space. After obtaining the view-specific self-expressions, the average
is regarded as the final result for clustering [26].

In the above methods for DMVSC, the early fusion strategy pursues consistent semantics, and
the late fusion strategy focuses on exploring complementary information. The DMVSC methods
can achieve superior clustering performance compared with traditional MVSC methods. However,
they suffer from the following limitations: 1) The view-private meaningless information or noise may
interfere with the quality of consensus self-expression learning, which further leads to the degeneration
of clustering performance; 2) They cannot fully explore consistent semantics and complementary
information across views in a unified optimization framework.

2.2 Contrastive Learning

Contrastive learning is a self-supervised representation learning for mapping similar samples close
and dissimilar samples far apart in the latent feature space. Thus, contrastive learning can maximize the
similarities of positive sample pairs and minimize that of negative sample pairs [27]. It has been applied
in existing deep MVC methods to explore consistency based on the latent feature space. The alignment
of view-specific latent features based on contrastive learning has been demonstrated due to the
excellent performance in deep multi-view clustering [18,28–30]. DMVSC methods based on contrastive
learning have been proposed for learning consensus self-expression. For example, contrastive learning
is used to obtain the common feature representation for self-expression learning [31]. The method can
explore the consistency across views, which can not achieve the maximum complementarity to boost
the clustering performance.

3 Proposed Method

To fully explore consistent semantics and complementary information across views, we propose
a novel framework of contrastive consistency and attentive complementarity (CCAC) for DMVSC,
which is implemented by a unified optimization network based on deep auto-encoder. The framework
of our CCAC method is shown in Fig. 2. It consists of the view-specific self-expression learning,
contrastive alignment, and adaptive fusion modules. In this paper, multi-view data denoted as{
Xv ∈ R

N×Dv}V

v=1
includes N samples of varying dimension Dv across V views.

3.1 View-Specific Self-Expression Learning Module

The unlabeled multi-view data are usually represented by high-dimensional features accompanied
by redundancy or random noise. As the unsupervised learning model for processing unlabeled data,
auto-encoder is widely used to obtain the low-dimensional features with semantic information by
filtering out the redundancy or random noise of original data. Therefore, we employ auto-encoder
to map the original view data into the latent feature space by minimizing reconstruction loss. The
auto-encoder is constructed by encoder and decoder with a symmetrical structure. Based on the latent
feature space, existing DMVSC methods have two strategies to learn the consensus self-expression for
clustering: 1) Early fusion. From the fusing latent features, the shared self-expression is learned by a
fully connected layer embedding into the auto-encoder; 2) Late fusion. View-specific self-expressions
are learned and then fused to obtain consensus self-expression. As analyzed above, the late fusion
strategy learns diverse view-specific self-expressions for exploring complementary information, while
the early fusion strategy only pursues consistency. Consequently, we adopt the late fusion strategy to
learn the consensus self-expression.
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Figure 2: The framework of our proposed CCAC method mainly consists of three modules: 1) view-
specific subspace self-expression learning module, which is constructed by multiple auto-encoders to
extract deep latent features of multi-view data and from them to learn view-specific self-expression
coefficient matrix by inserting a fully connected layer into each auto-encoder pair; 2) contrastive
alignment module, which uses contrastive learning to align view-specific self-expression coefficient
matrices of all views for achieving the consistency objective of multi-view data; and 3) adaptive
fusion module, which comprehensively explores the complementary information of multi-view data
by channel attentive mechanism guided fusion strategy

Specifically, taking the individual view Xv as the input, an encoder Ev
(
Xv; Θv

e

)
is employed to learn

the low-dimensional latent features Zv, i.e., Zv = Ev
(
Xv; Θv

e

)
, where Θv

e is the network parameter of the
encoder. We insert a fully connected layer without bias into the auto-encoder to obtain view-specific
self-expression. The parameter of the linear fully connected layer is denoted as the self-expression
coefficient matrix Cv ∈ R

N×N, which depicts the similar relationship among the samples in the view
data. Taking the ZvCv as the input, a decoder Dv

(
ZvCv; Θv

d

)
having a symmetrical structure with the

encoder is used to reconstruct data X̂
v
with the minimum error, i.e., X̂

v = Dv
(
ZvCv; Θv

d

)
, where Θv

d is the
network parameter of the decoder. Based on the self-expression property that one sample point can
be expressed as a combination of others in the same view, the relationship should be reflected in the
low-dimensional latent feature space, i.e., Zv = ZvCv. Therefore, the reconstruction error Xv − X̂

v
and

self-expression error Zv−ZvCv should be minimal to explore the self-expression relationship in the same
view. For all the views, we can obtain the self-expression coefficient matrices

{
Cv}V

v=1
by optimizing the

reconstruction error and self-expression error:

L1 =
V∑

v=1

‖Xv − X̂
v‖2

F +
V∑

v=1

‖Zv − ZvCv‖2
F +

V∑
v=1

‖Cv‖2
F , s.t. diag

(
Cv) = 0 (1)

where the last term is the regularization loss error to make Cv with block-diagonal structure by
Frobenius norm for spectral clustering. The constraint diag

(
Cv) = 0 can avoid the trivial solution

for Cv, i.e., all the samples are partitioned into the same clusters.
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3.2 Contrastive Alignment Module

Since the self-expression coefficient matrices
{
Cv}V

v=1
for all views obtained by Eq. (1) may receive

interference with the view-private meaningless information or noise, which shifts the self-expression
relationship that reflects consistent semantics across views, resulting in the degeneration of clustering
performance. Recently, contrastive learning has been widely applied to pursue the consistent semantic
objective in deep multi-view clustering methods [32–34]. They use contrastive learning to align the
latent features of multiple views to explore consistent features. Different from the contrastive alignment
based on the feature space, we use contrastive learning to align the

{
Cv}V

v=1
based on the self-expression

space to achieve the consistency objective, with the following two considerations: 1) The self-expression
coefficient matrices describe the similar relationship of samples in multiple views, which are direct for
clustering task; 2) The consistent objective of self-expression coefficient matrices can boost exploring
maximum complementary information across views.

Specifically, we select the view-specific self-expression coefficients of the same samples from
different views as the positive pairs, and the self-expression coefficients of different samples from
the same or different views as the negative pairs. For one sample in the self-expression coefficient
matrix

{
cv

i

}v=1,··· ,V

i,j=1,··· ,N
, there are (V − 1) positive sample pairs and V (N − 1) negative sample pairs. The

objective of contrastive learning based on self-expression is to maximize the similarities of positive
sample pairs while minimizing that of negative sample pairs. In our method, the similarities between
the view-specific self-expression coefficient matrices Cvand Cp are measured by cosine distance:

d
(
cv

i , cp
j

) = < cv
i , cp

j >

‖cv
i ‖‖cp

j ‖ , (2)

where < ·, · > is the dot product operator. The loss function of contrastive loss between arbitrarily
two view-specific self-expression coefficient matrices can be formulated as [18]:

�(v,p) = − 1
N

N∑
i=1

log
ed(cv

i ,c
p
i )/τ

N∑
j=1

∑
q=v,p

ed
(

cv
i ,c

q
j

)
/τ − e1/τ

, (3)

where τ is the temperature parameter. For the V views, the accumulated view-specific self-expression
contrastive loss across views can be denoted as:

L2 = 1
2

V∑
v=1

∑
p�=v

�(v,p) (4)

Based on the view-specific self-expression contrastive loss across views, the self-expression coef-
ficients of samples that belong to the same cluster will increase outstandingly, and oppositely, the
coefficients of the samples in different classes will decrease. To this end, the consistent semantics across
views can be mined, and the effect of view-private information or noise can be filtered out, which can
boost clustering performance.

3.3 Adaptive Fusion Module

After aligning the self-expression coefficient matrices, they are fused to obtain the consensus self-
expression with the complementary information across multiple views. Existing DMVSC methods
adopt average, weighted sum, or concatenation strategies to fuse the self-expression coefficient
matrices. However, they neglect the discriminative relationship among the self-expressions and the
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different contributions to consensus self-expression varying by each coefficient matrix. Inspired by the
work in [35], we use the channel attention mechanism to weigh the multiple self-expression coefficient
matrices according to their discriminative contribution. Then the weighted matrices are fused by
convolution kernel to obtain the final self-expression coefficient matrix for spectral clustering.

Specifically, we stack the aligned
{
Cv}V

v=1
along the channel dimension as a three-order tensor C.

The channel attention mechanism is employed on C to explore the high-order relationships among{
Cv}V

v=1
. The relationships of

{
Cv}V

v=1
are mapped to the weights to scale the self-expression tensor

along the channel dimension. The channel attention mechanism network consists of one global average
pooling (GAP) and two fully connected layers. The process is formulated as:

Cs = σ

(
θ2δ

(
θ1

1
N × N

N∑
i=1

N∑
j=1

C(i, j)

))
· C, (5)

where the formula
1

N × N

N∑
i=1

N∑
j=1

C (i, j) is a descriptor with the global distribution of each channel in

the self-expression tensor, which is implemented by GAP layer. θ1 and θ2 are the parameters of two
fully connected lays without bias. The two fully connected layers δ (·) and σ (·), which can capture the
dependencies among the self-expressions, are used to excite the descriptors into weight scalars to scale
the tensor along the channel. The first layer is to reduce the dimensions, and oppositely, the second
layer is for recovering the dimensions.

Subsequently, we use a convolution kernel k to fuse the scaled tensor Cs for obtaining the
consensus self-expression coefficient matrix C of multi-view data, which can achieve the maximum
complementarity across views.

C = k ∗ Cs (6)

Finally, the consensus self-expression coefficient matrix C is used to calculate the affinity matrix
of multi-view data for obtaining the final clustering results. Therefore, the Cshould be constrained by
the block-diagonal structure. As in Eq. (1), we use the Frobenius norm to form the regularization loss
on C.

L3 = ‖C‖2
F , s.t. diag (C) = 0 (7)

3.4 Loss Objective and Optimization

In consequence, the loss functions of the three modules, including view-specific self-expression
learning (L1), contrastive alignment (L2), and adaptive fusion (L3), are integrated as the objective loss
of our CCAC method, which is formulated as:

min
C

L =
V∑

v=1

‖Xv − X̂
v‖2

F︸ ︷︷ ︸
Reconstruction loss

+ λ1 ·

⎛
⎜⎜⎜⎜⎝

V∑
v=1

‖Zv − ZvCv‖2
F︸ ︷︷ ︸

Self −expression loss

+
V∑

v=1

‖Cv‖2
F + ‖C‖2

F︸ ︷︷ ︸
Regularization loss

⎞
⎟⎟⎟⎟⎠

− λ2 · 1
2N

V∑
v=1

∑
p�=v

N∑
i=1

log
ed(cv

i ,c
p
i )/τ

N∑
j=1

∑
q=v,p

ed
(

cv
i ,c

q
j

)
/τ − e1/τ

︸ ︷︷ ︸
Contrastive loss

, s.t. diag
(
Cv) = 0, diag (C) = 0, (8)
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where λ1 and λ2 are the hyperparameters for balancing the consistency and complementarity across
views.

Algorithm 1: The optimization process of CCAC

Input: Multi-view vectors
{
Xv ∈ R

N×Dv}V

v=1
; Number of clusters K; Temperature parameters τ ; Hyper-

parameters λ1 and λ2; Maximum number of epochs T1 and T2 for pre-training and fine-tuning stages.
1: While t1 + + < T1 do
2: Train encoder and decoder to initialize

{
Θv

e

}V

v=1
and

{
Θv

d

}V

v=1
by minimizing

∑V

v=1 ‖Xv − X̂
v‖2

F .
3: End while
4: While t2 + + < T2 do
5: Fine-tune network to lean consensus self-expression C by Eq. (8).
6: End while
7: Compute affinity matrix by W = (|C| + |C|�)/2.
8: Cluster multi-view data by applying spectral clustering algorithm on W.

Output: The clustering results.

Algorithm 1 gives the optimization process of CCAC, including the pre-training and fine-tuning
stages. In the pre-training stage, we use the loss

∑V

v=1 ‖Xv − X̂
v‖2

F to train the encoder and decoder for
obtaining their initial parameters. In the fine-tuning stage, Eq. (8) is used to fine-tune the pre-trained
encoder and decoder by embedding multiple self-expression learning layers for learning consensus
self-expression C with contrastive alignment and adaptive fusion strategies. Finally, the affinity matrix
is obtained by W = (|C| + |C|�)/2, and the clustering results are obtained by applying the spectral
clustering algorithm on W.

4 Experiments
4.1 Experimental Setup

Datasets. We conduct experiments on four benchmark datasets: BBCSport1, Extended Yale B2,
COIL203, UCI digits4, and one large-scale dataset: Caltech101-all5. BBCSport depicts 5 topical sports
news of 544 samples by two publishers. Extended Yale B consists of 38 people faces and each face takes
64 images under different illumination. The top 10 classes of three feature views are selected in our
experiments. COIL20 contains 20 object images of 1440 samples with three feature views. UCI digits
dataset shows the handwritten digit images of 2000 samples with three different views. Caltech101-all
is a large-scale dataset, which consists of 101 object categories images and a background class with
9144 image samples. Each image is extracted with five image features to form different views. The
sample data in the five datasets are reshaped into vectors. Table 1 summarizes the details of the five
datasets.

Comparison methods. Our CCAC method is compared with the state-of-the-art multi-view cluster-
ing methods, including LRR [2013, TPAMI] [36], DiMSC [2015, CVPR] [37], LTMSC [2015, ICCV]
[38], AWP [2018, SIGKDD] [39], t-SVD-MSC [2018, IJCV] [40], ELTMSC [2019, TIP] [41], SCMV-
3DT [2019, TNNLS] [42], LMSC [2020, TPAMI] [43], MCLES [2020, AAAI] [44], TRPCA [2020,

1 http://mlg.ucd.ie/datasets/segment.html
2 http://cvc.cs.yale.edu/cvc/projects/yalefacesB/yalefacesB.html
3 https://www.cs.columbia.edu/CAVE/software/softlib/
4 http://archive.ics.uci.edu/dataset/72/multiple+features
5 https://data.caltech.edu/records/mzrjq-6wc02

http://mlg.ucd.ie/datasets/segment.html
http://cvc.cs.yale.edu/cvc/projects/yalefacesB/yalefacesB.html
https://www.cs.columbia.edu/CAVE/software/softlib/
http://archive.ics.uci.edu/dataset/72/multiple+features
https://data.caltech.edu/records/mzrjq-6wc02
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TPAMI] [45], CDIMC-net [2020, IJCAI] [46], DMSC-UDL [2021, TMM] [16], SSSL-M [2022, TIP]
[47], MDMVSC [2023, ESWA] [17], DeepMVC [2023, CVPR] [30], and ESCC [2023, TKDE] [48].

Table 1: The details of the five datasets

Datasets BBCSport Extended Yale B COIL20 UCI digits Caltech101-all

Types Text Face image Object image Handwritten
digit image

Object image

Views 2 3 3 3 5
Samples 544 640 1440 2000 9144
Classes 5 10 20 10 102
Dimensions {3183, 3203} {2500, 3304, 6750} {1024, 3304,

6750}
{216, 76, 64} {40, 254, 1984,

512, 928}

Implementation details. CCAC is implemented by PyTorch framework based on the code of
DMSC-UDL, which is optimized by adaptive moment estimation optimizer. The encoder and decoder
are constructed by a three-layer fully connected neural network with symmetrical structure. In the pre-
training stage, the learning rate is set to 0.001 on five datasets. For the fine-tuning stage, it is set to 0.001
on BBCSport and COIL20, and 0.0001 on UCI digits, Extended Yale B, and Caltech101-all datasets.
In the adaptive fusion module, the size of convolution kernel is set as k = 3×3 to fuse the scaled view-
specific self-expression tensor for obtaining the consensus self-expression on all datasets. The optimal
hyperparameters λ1 and λ2 are selected by grid search strategy in a range of {0.01, 0.1, 1, 10, 100}. The
temperature parameter τ is determined in a range of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The
detailed network structure and parameters are summarized in Table 2.

Table 2: The detailed network parameters of the CCAC method. Lr and T denote the learning rate
and the number of epochs

Datasets Auto-encoder Pre-training Fine-tuning

Lr1 T1 Lr2 T2 λ1 λ2 τ

BBCSport [256, 64, 64, 256] 0.001 2000 0.001 160 1 100 0.1
Extended Yale B [256, 64, 64, 256] 0.001 2000 0.0001 950 100 0.01 0.4
COIL20 [512, 512, 512, 512] 0.001 2000 0.001 320 0.1 1 0.5
UCI digits [256, 256, 256, 256] 0.001 2000 0.0001 70 10 0.01 0.5
Caltech101-all [256, 128, 128, 256] 0.001 1000 0.0001 400 1 100 0.5

Evaluation metrics. Following the convention of clustering evaluation metrics [14,15], the six
widely used performance metrics, including accuracy (ACC), normalized mutual information (NMI),
adjusted rand index (ARI), F-score, precision, and recall, are used to fully evaluate the clustering
performance and effectiveness of our CCAC method.

4.2 Experimental Comparative Result Analysis

Tables 3–7 give the comparative results with the 16 multi-view clustering methods on the five
datasets in terms of the six evaluation metrics. The best performance results are highlighted in bold
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and the second in underline. To objectively exhibit the clustering performance of CCAC method, we
perform experiments on large-scale Caltech101-all dataset 5 times and on other four datasets 30 times.
The mean and standard deviation of clustering results are given in the tables.

Table 3: Clustering performance comparison on BBCSport dataset

Methods ACC NMI ARI F-score Precision Recall

LRR 0.836 ± 0.001 0.698 ± 0.002 0.705 ± 0.001 0.776 ± 0.001 0.768 ± 0.001 0.784 ± 0.001
AWP 0.700 ± 0.000 0.675 ± 0.000 0.507 ± 0.000 0.659 ± 0.000 0.510 ± 0.000 0.929 ± 0.000
DiMSC 0.877 ± 0.000 0.749 ± 0.001 0.792 ± 0.001 0.842 ± 0.001 0.841 ± 0.001 0.842 ± 0.001
LTMSC 0.476 ± 0.030 0.230 ± 0.018 0.178 ± 0.031 0.432 ± 0.010 0.335 ± 0.020 0.615 ± 0.038
SSSL-M 0.933 ± 0.200 0.945 ± 0.500 0.927 ± 0.003 0.915 ± 0.050 0.946 ± 0.002 0.968 ± 0.005
t-SVD-MSC 0.949 ± 0.000 0.894 ± 0.000 0.918 ± 0.000 0.938 ± 0.000 0.935 ± 0.000 0.940 ± 0.000
LMSC 0.855 ± 0.002 0.749 ± 0.003 0.754 ± 0.005 0.813 ± 0.004 0.805 ± 0.004 0.822 ± 0.004
ETLMSC 0.934 ± 0.000 0.827 ± 0.000 0.840 ± 0.000 0.877 ± 0.000 0.901 ± 0.000 0.855 ± 0.000
MCLES 0.856 ± 0.066 0.722 ± 0.061 0.683 ± 0.090 0.765 ± 0.062 0.718 ± 0.089 0.826 ± 0.043
SCMV-3DT 0.881 ± 0.001 0.789 ± 0.002 0.817 ± 0.002 0.861 ± 0.002 0.852 ± 0.002 0.871 ± 0.002
DMSC-UDL 0.965 ± 0.004 0.889 ± 0.002 0.908 ± 0.004 0.929 ± 0.004 0.942 ± 0.005 0.916 ± 0.005
TRPCA 0.976 ± 0.000 0.924 ± 0.000 0.931 ± 0.000 0.947 ± 0.000 0.951 ± 0.000 0.944 ± 0.000
CDIMC-net 0.980 ± 0.000 0.928 ± 0.020 0.935 ± 0.005 0.950 ± 0.010 0.956 ± 0.000 0.959 ± 0.000
MDMVSC 0.978 ± 0.000 0.925 ± 0.000 0.942 ± 0.000 0.957 ± 0.000 0.957 ± 0.000 0.957 ± 0.000
DeepMVC 0.971 ± 0.010 0.940 ± 0.000 0.957 ± 0.005 0.948 ± 0.000 0.965 ± 0.050 0.960 ± 0.000
ESCC 0.980 ± 0.010 0.946 ± 0.001 0.961 ± 0.002 0.954 ± 0.001 0.972 ± 0.001 0.968 ± 0.001
CCAC 0.983 ± 0.000 0.947 ± 0.000 0.949 ± 0.000 0.967 ± 0.000 0.967 ± 0.000 0.967 ± 0.000

Table 4: Clustering performance comparison on Extended Yale B dataset

Methods ACC NMI ARI F-score Precision Recall

LRR 0.615 ± 0.013 0.627 ± 0.040 0.451 ± 0.002 0.508 ± 0.004 0.481 ± 0.002 0.539 ± 0.001
AWP 0.514 ± 0.000 0.567 ± 0.000 0.197 ± 0.000 0.313 ± 0.000 0.213 ± 0.000 0.588 ± 0.000
DiMSC 0.615 ± 0.003 0.636 ± 0.002 0.453 ± 0.005 0.504 ± 0.006 0.481 ± 0.004 0.534 ± 0.004
LTMSC 0.626 ± 0.010 0.637 ± 0.003 0.459 ± 0.030 0.521 ± 0.006 0.485 ± 0.001 0.539 ± 0.002
SSSL-M 0.821 ± 0.001 0.850 ± 0.001 0.873 ± 0.002 0.860 ± 0.001 0.863 ± 0.005 0.884 ± 0.003
t-SVD-MSC 0.668 ± 0.008 0.696 ± 0.006 0.513 ± 0.008 0.563 ± 0.007 0.539 ± 0.007 0.590 ± 0.008
LMSC 0.472 ± 0.002 0.438 ± 0.004 0.187 ± 0.002 0.283 ± 0.002 0.237 ± 0.002 0.353 ± 0.003
ETLMSC 0.325 ± 0.011 0.307 ± 0.021 0.179 ± 0.019 0.262 ± 0.017 0.257 ± 0.017 0.267 ± 0.017
MCLES 0.426 ± 0.001 0.420 ± 0.001 0.129 ± 0.001 0.240 ± 0.001 0.185 ± 0.001 0.344 ± 0.001
SCMV-3DT 0.410 ± 0.001 0.413 ± 0.002 0.185 ± 0.002 0.276 ± 0.001 0.244 ± 0.002 0.318 ± 0.001
DMSC-UDL 0.775 ± 0.004 0.764 ± 0.002 0.657 ± 0.001 0.600 ± 0.001 0.674 ± 0.001 0.711 ± 0.001
TRPCA 0.682 ± 0.003 0.699 ± 0.004 0.534 ± 0.005 0.581 ± 0.005 0.560 ± 0.005 0.605 ± 0.004
CDIMC-net 0.710 ± 0.000 0.720 ± 0.050 0.550 ± 0.020 0.600 ± 0.000 0.600 ± 0.000 0.620 ± 0.005
MDMVSC 0.997 ± 0.000 0.993 ± 0.000 0.993 ± 0.000 0.994 ± 0.000 0.994 ± 0.000 0.994 ± 0.000
DeepMVC 0.910 ± 0.005 0.880 ± 0.020 0.885 ± 0.006 0.872 ± 0.001 0.860 ± 0.001 0.872 ± 0.001
ESCC 0.935 ± 0.001 0.900 ± 0.001 0.905 ± 0.002 0.890 ± 0.001 0.885 ± 0.001 0.902 ± 0.002
CCAC 0.991 ± 0.001 0.981 ± 0.001 0.980 ± 0.001 0.982 ± 0.001 0.982 ± 0.001 0.982 ± 0.001
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Table 5: Clustering performance comparison on COIL20 dataset

Methods ACC NMI ARI F-score Precision Recall

LRR 0.761 ± 0.003 0.829 ± 0.006 0.720 ± 0.020 0.734 ± 0.006 0.717 ± 0.003 0.751 ± 0.002
AWP 0.896 ± 0.000 0.968 ± 0.000 0.892 ± 0.000 0.897 ± 0.000 0.847 ± 0.000 0.954 ± 0.000
DiMSC 0.778 ± 0.022 0.846 ± 0.002 0.732 ± 0.005 0.745 ± 0.005 0.739 ± 0.007 0.751 ± 0.003
LTMSC 0.804 ± 0.011 0.860 ± 0.002 0.748 ± 0.004 0.760 ± 0.007 0.741 ± 0.009 0.776 ± 0.006
SSSL-M 0.844 ± 0.050 0.874 ± 0.005 0.821 ± 0.018 0.759 ± 0.050 0.794 ± 0.025 0.882 ± 0.005
t-SVD-MSC 0.836 ± 0.007 0.924 ± 0.002 0.799 ± 0.011 0.810 ± 0.010 0.759 ± 0.021 0.869 ± 0.003
LMSC 0.736 ± 0.017 0.807 ± 0.013 0.661 ± 0.022 0.670 ± 0.021 0.640 ± 0.024 0.715 ± 0.017
ETLMSC 0.956 ± 0.037 0.977 ± 0.012 0.950 ± 0.035 0.952 ± 0.033 0.937 ± 0.049 0.969 ± 0.019
MCLES 0.706 ± 0.026 0.740 ± 0.019 0.521 ± 0.032 0.553 ± 0.029 0.505 ± 0.036 0.611 ± 0.021
SCMV-3DT 0.761 ± 0.011 0.857 ± 0.004 0.707 ± 0.013 0.722 ± 0.013 0.685 ± 0.017 0.764 ± 0.010
DMSC-UDL 0.797 ± 0.017 0.913 ± 0.011 0.977 ± 0.005 0.841 ± 0.013 0.834 ± 0.015 0.847 ± 0.011
TRPCA 0.853 ± 0.018 0.906 ± 0.004 0.818 ± 0.016 0.827 ± 0.015 0.805 ± 0.021 0.851 ± 0.080
CDIMC-net 0.870 ± 0.000 0.910 ± 0.005 0.820 ± 0.020 0.829 ± 0.010 0.817 ± 0.015 0.860 ± 0.000
MDMVSC 0.773 ± 0.002 0.910 ± 0.001 0.973 ± 0.000 0.854 ± 0.000 0.819 ± 0.000 0.894 ± 0.001
DeepMVC 0.930 ± 0.000 0.929 ± 0.050 0.916 ± 0.000 0.920 ± 0.000 0.890 ± 0.050 0.884 ± 0.002
ESCC 0.950 ± 0.001 0.947 ± 0.001 0.905 ± 0.001 0.912 ± 0.003 0.874 ± 0.002 0.900 ± 0.001
CCAC 0.993 ± 0.001 0.988 ± 0.001 0.985 ± 0.002 0.986 ± 0.002 0.986 ± 0.002 0.986 ± 0.002

Table 6: Clustering performance comparison on UCI digits dataset

Methods ACC NMI ARI F-score Precision Recall

LRR 0.871 ± 0.001 0.768 ± 0.002 0.736 ± 0.002 0.763 ± 0.002 0.759 ± 0.002 0.767 ± 0.002
AWP 0.871 ± 0.000 0.899 ± 0.000 0.835 ± 0.000 0.835 ± 0.000 0.783 ± 0.000 0.937 ± 0.000
DiMSC 0.867 ± 0.001 0.782 ± 0.002 0.747 ± 0.002 0.772 ± 0.002 0.769 ± 0.002 0.775 ± 0.002
LTMSC 0.792 ± 0.009 0.762 ± 0.009 0.707 ± 0.014 0.737 ± 0.013 0.724 ± 0.012 0.749 ± 0.013
SSSL-M 0.972 ± 0.001 0.940 ± 0.001 0.950 ± 0.001 0.932 ± 0.005 0.956 ± 0.001 0.952 ± 0.002
t-SVD-MSC 0.966 ± 0.001 0.934 ± 0.001 0.928 ± 0.001 0.935 ± 0.001 0.933 ± 0.001 0.936 ± 0.001
LMSC 0.899 ± 0.000 0.819 ± 0.000 0.795 ± 0.000 0.816 ± 0.000 0.812 ± 0.000 0.819 ± 0.000
ETLMSC 0.941 ± 0.023 0.970 ± 0.013 0.933 ± 0.029 0.936 ± 0.027 0.935 ± 0.031 0.938 ± 0.024
MCLES 0.941 ± 0.004 0.891 ± 0.008 0.877 ± 0.009 0.889 ± 0.008 0.885 ± 0.008 0.894 ± 0.007
SCMV-3DT 0.919 ± 0.001 0.850 ± 0.001 0.833 ± 0.001 0.849 ± 0.001 0.847 ± 0.001 0.852 ± 0.001
DMSC-UDL 0.969 ± 0.000 0.926 ± 0.000 0.912 ± 0.000 0.935 ± 0.000 0.926 ± 0.000 0.936 ± 0.000
TRPCA 0.977 ± 0.000 0.948 ± 0.000 0.949 ± 0.000 0.954 ± 0.000 0.954 ± 0.000 0.955 ± 0.000
CDIMC-net 0.979 ± 0.020 0.950 ± 0.000 0.952 ± 0.001 0.958 ± 0.020 0.959 ± 0.000 0.958 ± 0.050
MDMVSC 0.986 ± 0.000 0.966 ± 0.000 0.969 ± 0.000 0.973 ± 0.000 0.973 ± 0.000 0.973 ± 0.000
DeepMVC 0.980 ± 0.005 0.968 ± 0.025 0.960 ± 0.010 0.978 ± 0.000 0.948 ± 0.000 0.959 ± 0.015
ESCC 0.990 ± 0.001 0.975 ± 0.001 0.967 ± 0.001 0.997 ± 0.000 0.960 ± 0.002 0.970 ± 0.001
CCAC 0.994 ± 0.000 0.984 ± 0.001 0.986 ± 0.001 0.988 ± 0.001 0.988 ± 0.001 0.988 ± 0.001



154 CMC, 2024, vol.79, no.1

Table 7: Clustering performance comparison on Caltech101-all dataset. The term - indicates that no
available results have been reported

Methods ACC NMI ARI F-score Precision Recall

LRR 0.103 ± 0.001 0.290 ± 0.000 0.055 ± 0.001 0.032 ± 0.050 0.030 ± 0.002 0.061 ± 0.000
AWP 0.080 ± 0.000 0.281 ± 0.000 0.049 ± 0.012 0.030 ± 0.001 0.024 ± 0.000 0.085 ± 0.001
DiMSC 0.120 ± 0.001 0.350 ± 0.015 0.061 ± 0.000 0.035 ± 0.000 0.036 ± 0.001 0.069 ± 0.000
LTMSC 0.115 ± 0.010 0.317 ± 0.005 0.059 ± 0.002 0.033 ± 0.010 0.031 ± 0.000 0.085 ± 0.010
SSSL-M 0.130 ± 0.000 0.370 ± 0.001 0.068 ± 0.000 0.039 ± 0.010 0.037 ± 0.005 0.092 ± 0.010
t-SVD-MSC 0.147 ± 0.005 0.392 ± 0.000 0.073 ± 0.000 0.046 ± 0.000 0.040 ± 0.000 0.106 ± 0.001
LMSC 0.120 ± 0.001 0.320 ± 0.000 0.063 ± 0.050 0.037 ± 0.000 0.039 ± 0.000 0.073 ± 0.000
ETLMSC 0.150 ± 0.004 0.395 ± 0.002 0.076 ± 0.000 0.049 ± 0.000 0.046 ± 0.010 0.110 ± 0.000
MCLES 0.113 ± 0.005 0.308 ± 0.000 0.056 ± 0.001 0.031 ± 0.020 0.030 ± 0.000 0.082 ± 0.005
SCMV-3DT 0.127 ± 0.000 0.325 ± 0.000 0.066 ± 0.010 0.039 ± 0.010 0.042 ± 0.010 0.077 ± 0.000
DMSC-UDL - - - - - -
TRPCA 0.157 ± 0.000 0.400 ± 0.002 0.072 ± 0.001 0.045 ± 0.000 0.046 ± 0.000 0.120 ± 0.001
CDIMC-net 0.160 ± 0.001 0.430 ± 0.000 0.078 ± 0.000 0.047 ± 0.000 0.048 ± 0.000 0.014 ± 0.015
MDMVSC 0.239 ± 0.001 0.390 ± 0.002 0.090 ± 0.002 0.288 ± 0.002 0.253 ± 0.002 0.333 ± 0.004
DeepMVC 0.179 ± 0.000 0.495 ± 0.010 0.120 ± 0.000 0.054 ± 0.000 0.062 ± 0.010 0.018 ± 0.000
ESCC 0.170 ± 0.001 0.492 ± 0.000 0.115 ± 0.005 0.053 ± 0.003 0.060 ± 0.000 0.019 ± 0.010
CCAC 0.291 ± 0.006 0.517 ± 0.006 0.036 ± 0.003 0.460 ± 0.009 0.346 ± 0.009 0.684 ± 0.006

From the tables, it can be observed that CCAC achieves better clustering performance than most
state-of-the-art multi-view clustering methods. Specifically, the observations can be summarized as
follows:

1. The clustering results of our CCAC method exceed other comparison methods on BBCSport,
COIL20, UCI digits, and Caltech101-all datasets. Especially, On the COIL20 dataset, CCAC
is superior to the suboptimal method ETLMSC, improving the clustering results by 3.9%,
1.1%, 3.7%, 3.6%, 5.2%, and 1.7% in terms of ACC, NMI, ARI, F-score, precision, and recall
metrics. The clustering results of CCAC on the Extended Yale B dataset are close to the optimal
clustering performance. It is one of the two methods that can achieve more than 99% clustering
performance.

2. Compared with the deep MVC methods (SSSL-M, CDIMC-net, DeepMVC), our proposed
CCAC method can obtain superior clustering results. CCAC integrates the advantages of
deep learning and subspace learning to obtain a high-quality cross-view affinity matrix for
clustering. Moreover, compared with the DMVSC methods (DMSC-UDL and MDMVSC),
the CCAC method also performs well. For example, the clustering results of CCAC achieve
above 98% on Extended Yale B, COIL20, and UCI digits datasets of all evaluation metrics.
The outstanding clustering performance is attributed to the following observations. In DMSC-
UDL, the Hadanard product is used to constrain discrimination of low-dimensional features
to learn shared self-expression with the global and local structure. In MDMVSC, all the view-
specific self-expressions are fused to obtain the consensus self-expression by channel attention
mechanism and convolution kernel, which can explore the maximum complementarity of
different views for precise clustering. However, it neglects the consistency across views for
clustering. Compared with the two DMVSC methods, we use contrastive learning to align
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the view-specific self-expressions and channel attention mechanism to fuse the aligned self-
expressions, respectively. Therefore, CCAC can comprehensively explore the consistency and
complementarity across views to improve clustering performance.

3. Our CCAC method can obtain the best clustering performance on large-scale Caltech101-
all dataset among all methods. However, we can observe that the clustering results of all
methods on this large-scale dataset are not as outstanding as other small-scale datasets.
Moreover, the running time and memory space of CCAC and other subspace-based clustering
methods increase with the number of multi-view data samples. It is because the subspace-based
clustering methods learn the affinity matrix of multi-view and apply spectral clustering to
obtain the final results, which need the running time of O

(
N3

)
and memory space of O

(
N2

)
at

least. Therefore, we will optimize the CCAC method with learning-based anchors to improve
efficiency and extend the application.

4.3 Model Analysis

Ablation studies. In this section, we perform ablation experiments to verify the effectiveness of
contrastive alignment and adaptive fusion modules in CCAC. Taking the BBCSport dataset as an
example, the clustering results of ablation experiments are given in Table 8. If the adaptive fusion
module is not used, as in model A, we average the view-specific self-expression as consensus self-
expression. Compared to B with A, contrastive alignment of the view-specific self-expressions can
improve clustering performance by 6.3%, 4.4%, 4.8%, 6.6%, 2.9%, and 4.7% in terms of ACC, NMI,
AR, F-score, precision, and recall. In model C, we use adaptive fusion instead of average values to
further boost clustering performance. According to models C and A, we can observe that the adaptive
fusion module plays the most important role in performance improvement of 12.1%, 21.4%, 20.1%,
18.2%, 13.9%, and 16.0%. From the clustering performance improvement comparison by contrastive
alignment and adaptive fusion, we can observe that adaptive fusion outperforms contrastive alignment
for enhancing performance. This can be attributed to the following reasons. Multi-view data are
the different descriptions of the same object, including consistent and complementary information.
In this paper, contrastive alignment aims to obtain consistent information, and adaptive fusion can
fully mine the complementary information. Compared with consistent information, complementary
information is the main reason for multi-view learning working and an important factor in improving
the performance of multi-view clustering. When the two modules work together, the CCAC method
achieves outstanding clustering results.

Table 8: Ablation experiment results

Model Modules BBCSport

Contrastive
alignment

Adaptive fusion ACC NMI ARI F-score Precision Recall

A 0.860 0.732 0.766 0.789 0.819 0.804
B √ 0.914 0.764 0.803 0.841 0.843 0.842
C √ 0.965 0.889 0.920 0.933 0.933 0.933
D √ √ 0.983 0.947 0.949 0.967 0.967 0.967

Parameter sensitivity analysis. There are two hyperparameters λ1 and λ2 in our CCAC method to
balance the contribution of consistency and complementarity for multi-view clustering. The parameter
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sensitivity experiments are performed to evaluate the effect of hyperparameters in the range of {0.01,
0.1, 1, 10, 100}, which are implemented by the grid search strategy. The experimental results of NMI
with respect to λ1 and λ2 on four datasets are shown in Fig. 3. It is observed that CCAC method is
insensitive to the two hyperparameters within a certain range, especially hyperparameter λ2. The NMI
metric decreases on BBCSport when λ1 is from 0.01 to 0.1. It is affected on Extended Yale B when λ1

is from 10 to 100. The NMI metric of CCAC on the UCI digits and COIL20 datasets always keeps
stable with λ1 and λ2 in the range of {0.01, 0.1, 1, 10, 100}. It further verifies the parameter insensitivity
and effectiveness of our CCAC method.

(a) BBCSport (b) Extended Yale B

(c) COIL20 (d) UCI digits

Figure 3: Parameter sensitivity analysis of λ1 and λ2 on the four datasets

Furthermore, the effect of temperature parameter τ in the contrastive alignment module on
clustering performance is evaluated by experiments. Fig. 4 shows the parameter sensitivity results of
ACC on the four datasets. We can observe that the clustering results of CCAC are insensitive to the
choice of τ on BBCSport, COIL20, and UCI digits. There is a slight fluctuation of ACC on Extended
Yale B, but the clustering performance is stable when the τ is from 0.3 to 0.6.

(a) BBCSport (b) ExtendedYaleB (c) COIL20 (d) UCI digits

Figure 4: Parameter sensitivity analysis of temperature τ on the four datasets

Convergence analysis. We analyze the convergence of CCAC by plotting the changes of loss
function logarithmic value and evaluation metrics with epoch on four datasets, as shown in Fig. 5.
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We can see the logarithmic value of loss monotonically descends until convergence, oppositely, the six
clustering performance evaluation metrics increase rapidly and keep stable on the four datasets. For
example, the convergence of CCAC on UCI digits is the fastest in the four datasets, which converges
in 50 epochs with such stable clustering performance. Meanwhile, the clustering performance also
increases at the highest rate on this dataset and remains stable over the epochs. CCAC on Extended
Yale B shows the slowest convergence, and the clustering performance rises to the best values after
1600 epochs.

Figure 5: Convergence analysis on the four datasets

5 Conclusion

In this paper, we propose a novel framework of contrastive consistency and attentive comple-
mentarity for DMVSC. The auto-encoder is employed to learn the low-dimensional latent features of
each view by reconstructing the original view data. Then, multiple self-expression learning layers are
inserted into the auto-encoder to learn the view-specific self-expression. To fully explore the consistent
semantics, all the view-specific self-expressions are aligned through contrastive learning to avoid the
effect of view-private information. According to the diverse relationship, the aligned view-specific
self-expressions are assigned adaptive weights and fused to obtain the consensus self-expression by
channel attention mechanism and convolution operator, aiming at maximizing the complementarity
of multiple views. Experimental results demonstrate the outstanding clustering performance and
effectiveness of our method.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.



158 CMC, 2024, vol.79, no.1

Author Contributions: Jiao Wang: Methodology, Software, Validation, Writing—original draft. Bin
Wu: Supervision, Methodology. Hongying Zhang: Investigation, Writing—review & editing.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. K. Reddy and B. Vinzamuri, “A survey of partitional and hierarchical clustering algorithms,” in Data

Clustering, Chapman and Hall/CRC, pp. 87–110, 2018.
[2] R. J. Campello, P. Kröger, J. Sander and A. Zimek, “Density-based clustering,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 10, no. 2, pp. e1343, 2020.
[3] S. Qaiyum, I. Aziz, M. H. Hasan, A. I. Khan and A. Almalawi, “Incremental interval type-2 fuzzy clustering

of data streams using single pass method,” Sensors, vol. 20, no. 11, pp. 3210, 2020.
[4] X. Jia, X. Jing, X. Zhu, S. Chen, B. Du et al., “Semi-supervised multi-view deep discriminant representation

learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 7, pp. 2496–2509,
2021.

[5] N. Mushtaq, A. Khan, F. Khan, M. Ali, M. M. Shahid et al., “Brain tumor segmentation using multi-view
attention based ensemble network,” Computers, Materials & Continua, vol. 72, no. 3, pp. 5793–5804, 2022.

[6] C. Zhang, S. Wang, J. Liu and S. Zhou, “Multi-view clustering via deep matrix factorization and partition
alignment,” in Proc. of the 29th ACM Int. Conf. on Multimedia, Chengdu, China, pp. 4156–4164, 2021.

[7] B. Li, Z. Shu, Y. Liu, C. Mao, S. Gao et al., “Multi-view clustering via label-embedded regularized NMF
with dual-graph constraints,” Neurocomputing, vol. 551, pp. 126521, 2023.

[8] H. Wang, Y. Yang and B. Liu, “GMC: Graph-based multi-view clustering,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 6, pp. 1116–1129, 2019.

[9] Y. Du, G. Lu and G. Ji, “Robust and optimal neighborhood graph learning for multi-view clustering,”
Information Sciences, vol. 631, pp. 429–448, 2023.

[10] H. Li, Z. Ren, M. Mukherjee, Y. Huang, Q. Sun et al., “Robust energy preserving embedding for multi-view
subspace clustering,” Knowledge-Based Systems, vol. 210, pp. 106489, 2020.

[11] W. Guo, Z. Wang, Z. Chi, X. Xu, D. Li et al., “Scalable one-stage multi-view subspace clustering with
dictionary learning,” Knowledge-Based Systems, vol. 259, pp. 110092, 2023.

[12] Z. Ren, H. Li, C. Yang and Q. Sun, “Multiple kernel subspace clustering with local structural graph and
low-rank consensus kernel learning,” Knowledge-Based Systems, vol. 188, pp. 105040, 2020.

[13] Y. Zhao, W. Liang, J. Lu, X. Chen and N. Kong, “Trade-off between efficiency and effectiveness: A late
fusion multi-view clustering algorithm,” Computers, Materials & Continua, vol. 66, no. 3, pp. 2709–2722,
2021.

[14] X. Si, Q. Yin, X. Zhao and L. Yao, “Consistent and diverse multi-view subspace clustering with structure
constraint,” Pattern Recognition, vol. 121, pp. 108196, 2022.

[15] N. Zhao and J. Bu, “Robust multi-view subspace clustering based on consensus representation and
orthogonal diversity,” Neural Networks, vol. 150, pp. 102–111, 2022.

[16] Q. Wang, J. Cheng, Q. Gao, G. Zhao and L. Jiao, “Deep multi-view subspace clustering with unified and
discriminative learning,” IEEE Transactions on Multimedia, vol. 23, pp. 3483–3493, 2021.

[17] J. Wang, B. Wu, Z. Ren, H. Zhang and Y. Zhou, “Multi-scale deep multi-view subspace clustering with
self-weighting fusion and structure preserving,” Expert Systems with Applications, vol. 213, pp. 119031,
2023.

[18] J. Xu, H. Tang, Y. Ren, L. Peng, X. Zhu et al., “Multi-level feature learning for contrastive multi-view
clustering,” in IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA,
USA, pp. 16030–16039, 2022.



CMC, 2024, vol.79, no.1 159

[19] P. Ji, T. Zhang, H. Li, M. Salzmann and I. Reid, “Deep subspace clustering networks,” in Advances in
Neural Information Processing Systems, Long Beach, CA, USA, vol. 30, 2017.

[20] M. Abavisani and V. M. Patel, “Deep multimodal subspace clustering networks,” IEEE Journal of Selected
Topics in Signal Processing, vol. 12, no. 6, pp. 1601–1614, 2018.

[21] Q. Wang, W. Xia, Z. Tao, Q. Gao and X. Cao, “Deep self-supervised t-SNE for multi-modal subspace
llustering,” in Proc. of the 29th ACM Int. Conf. on Multimedia, China, pp. 1748–1755, 2021.

[22] X. Sun, M. Cheng, C. Min and L. Jing, “Self-supervised deep multi-view subspace clustering,” in Asian
Conf. on Machine Learning, Nagoya, Japan, pp. 1001–1016, 2019.

[23] R. Lu, J. Liu and X. Zuo, “Attentive multi-view deep subspace clustering net,” Neurocomputing, vol. 435,
pp. 186–196, 2021.

[24] P. Zhu, B. Hui, C. Zhang, D. Du, L. Wen et al., “Multi-view deep subspace clustering networks,” arXiv
preprint arXiv:1908.01978, 2019.

[25] B. Cui, H. Yu, L. Zong and Z. Cheng, “Self-guided deep multi-view subspace clustering network,” in IEEE
Int. Conf. on Multimedia and Expo (ICME), Shenzhen, China, pp. 1–6, 2021.

[26] S. Wang, C. Li, Y. Li, Y. Yuan and G. Wang, “Self-supervised information bottleneck for deep multi-view
subspace clustering,” IEEE Transactions on Image Processing, vol. 32, pp. 1555–1567, 2023.

[27] P. H. Le-Khac, G. Healy and A. F. Smeaton, “Contrastive representation learning: A framework and
review,” IEEE Access, vol. 8, pp. 193907–193934, 2020.

[28] Y. Tian, D. Krishnan and P. Isola, “Contrastive multiview coding,” in European Conf. Computer Vision
(ECCV), Glasgow, UK, pp. 776–794, 2020.

[29] D. J. Trosten, S. Løkse, R. Jenssen and M. Kampffmeyer, “Reconsidering representation alignment
for multi-view clustering,” in IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, pp. 1255–1265, 2021.

[30] T. Daniel, L. Sigurd, J. Robert and K. Michael, “On the effects of self-supervision and contrastive alignment
in deep multi-view clustering,” in IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
Vancouver, BC, Canada, pp. 23976–23985, 2023.

[31] L. Cheng, Y. Chen and Z. Hua, “Deep contrastive multi-view subspace clustering,” in Int. Conf. on Neural
Information Processing (ICONIP), New Delhi, India, pp. 692–704, 2022.

[32] G. Ke, G. Chao, X. Wang, C. Xu, Y. Zhu et al., “A clustering-guided contrastive fusion for multi-view
representation learning,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.

[33] W. Yan, Y. Zhang, C. Lv, C. Tang, G. Yue et al., “GCFAgg: Global and cross-view feature aggregation
for multi-view clustering,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), Vancouver, BC, Canada, pp. 19863–19872, 2023.

[34] R. Lin, Y. Lin, Z. Lin, S. Du and S. Wang, “CCR-Net: Consistent contrastive representation network for
multi-view clustering,” Information Sciences, vol. 637, pp. 118937, 2023.

[35] J. Hu, L. Shen and G. Sun, “Squeeze-and-excitation networks,” in IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 7132–7141, 2018.

[36] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu et al., “Robust recovery of subspace structures by low-rank
representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 171–184,
2013.

[37] X. Cao, C. Zhang, H. Fu, S. Liu and H. Zhang, “Diversity-induced multi-view subspace clustering,” in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp.
586–594, 2015.

[38] C. Zhang, H. Fu, S. Liu, G. Liu and X. Cao, “Low-rank tensor constrained multiview subspace clustering,”
in Proc. of the IEEE Int. Conf. on Computer Vision, Santiago, Chile, pp. 1582–1590, 2015.

[39] F. Nie, L. Tian and X. Li, “Multiview clustering via adaptively weighted procrustes,” in Proc. of the 24th
ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, New York, NY, USA, pp. 2022–2030,
2018.

[40] Y. Xie, D. Tao, W. Zhang and Y. Liu, “On unifying multi-view self-representations for clustering by tensor
multi-rank minimization,” International Journal of Computer Vision, vol. 126, no. 11, pp. 1157–1179, 2018.



160 CMC, 2024, vol.79, no.1

[41] J. Wu, Z. Lin and H. Zha, “Essential tensor learning for multi-view spectral clustering,” IEEE Transactions
on Image Processing, vol. 28, no. 12, pp. 5910–5922, 2019.

[42] M. Yin, J. Gao, S. Xie and Y. Guo, “Multiview subspace clustering via tensorial t-product representation,”
IEEE Transactions on Neural Networks Learning Systems, vol. 30, no. 3, pp. 851–864, 2019.

[43] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie et al., “Generalized latent multi-view subspace clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 1, pp. 86–99, 2020.

[44] M. Chen, L. Huang, C. Wang and D. Huang, “Multi-view clustering in latent embedding space,” Proc. of
the AAAI Conf. on Artificial Intelligence, vol. 34, no. 4, pp. 3513–3520, 2020.

[45] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin et al., “Tensor robust principal component analysis with a new
tensor nuclear norm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp.
925–938, 2020.

[46] J. Wen, Z. Zhang, Y. Xu, B. Zhang, L. Fei et al., “CDIMC-net: Cognitive deep incomplete multi-view
clustering network,” in Proc. of the Int. Joint Conf. on Artificial Intelligence, Yokohama, Japan, pp. 3230–
3236, 2020.

[47] Y. Qin, H. Wu, X. Zhang and G. Feng, “Semi-supervised structured subspace learning for multi-view
clustering,” IEEE Transactions on Image Processing, vol. 31, pp. 1–14, 2022.

[48] Y. Qin, N. Pu and H. Wu, “Elastic multi-view subspace clustering with pairwise and high-order correla-
tions,” IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 2, pp. 556–568, 2024.


	Contrastive Consistency and Attentive Complementarity for Deep Multi-View Subspace Clustering
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Experiments
	5 Conclusion
	References


