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ABSTRACT

Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights
into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness
caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing
and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount
significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring
Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet
is meticulously tailored to address the blurring in images capturing the microstructure of materials. The key
contributions include enhancing the NAFNet architecture for better feature extraction and representation, inte-
grating a novel soft attention mechanism to uncover important correlations between encoder and decoder, and
introducing new multi-loss functions to improve training effectiveness and overall model performance. We conduct
a comprehensive set of experiments utilizing the material blurry dataset and compare them to several state-of-the-
art deblurring methods. The experimental results demonstrate the applicability and effectiveness of MIDNet in the
domain of deblurring material microstructure images, with a PSNR (Peak Signal-to-Noise Ratio) reaching 35.26 dB
and an SSIM (Structural Similarity) of 0.946. Our dataset is available at: https://github.com/woshigui/MIDNet.
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1 Introduction

In the era of advanced imaging technology, modern material scientists delve into the microscopic
realm, exploring and analyzing intricate phenomena. Among the array of methodologies available,
scanning electron microscopy (SEM) emerges as a powerful tool for characterizing materials, and
uncovering their morphologies, crystal structures, and chemical compositions [1]. However, SEM
images are susceptible to distortion, arising from instrument settings or operator inexperience, leading
to blurred or defocused depictions that hinder research progress. When SEM images are blurry,
the microstructural information of the material, such as crystal morphology, particle size, and pore
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structure, becomes less distinct, posing challenges to the accurate analysis of the material’s structural
features. Additionally, the quantitative analysis of surface morphology, such as studying material
texture and roughness, is also limited by the quality of SEM images. In the case of composite
or multiphase materials, SEM images can reveal interface features between different phases. When
the images are blurry, the interface structure may not be visible, thereby affecting the analysis and
understanding of interface characteristics. SEM images are also employed for detecting defects in
materials, such as cracks, voids, and particle non-uniformity. If the images are blurry, these defects
may not be displayed, making defect detection and analysis difficult. The quest for effective deblurring
techniques becomes paramount in ensuring the integrity of subsequent image analyses, particularly
when grappling with suboptimal image quality. Our research is motivated by the imperative to
investigate the paramount importance of this field, acknowledging the substantial adverse impact
that blurry images can have on the further precise analysis of materials. Therefore, our study holds
significant relevance in addressing this issue. We emphasize the pressing need for innovative deblurring
solutions to address this issue effectively.

Traditional image restoration techniques often lean on deconvolution methods that presuppose
specific blur kernels, thereby crafting filters like local linear, nonlinear, non-local self-similarity, and
Bayesian image restoration filters [2,3]. However, their application in practical contexts remains chal-
lenging due to the prerequisite knowledge of blur kernels. The advent of deep learning revolutionizes
image restoration, harnessing the prowess of deep neural networks to learn nonlinear mappings
between degraded and sharp images, obviating the reliance on manually designed filters or blur kernels
[4,5]. Deep learning methods excel in preserving finer details, such as texture, edges, and structures,
during the image reconstruction process [6]. Furthermore, these methods demonstrate versatility in
handling different levels of degradation and types of noise, allowing for image recovery across various
scales [7]. Its application has further extended to microscopic systems for enhancing image quality,
encompassing optical microscopy [8], electromagnetic imaging, and scanning electron microscopy [9].

While previous research has improved the quality of microscopic images, further investiga-
tion is warranted to explore the integration of deep learning for deblurring low-quality material
microstructures. This inquiry begets key questions: (1) Can existing deblurring methods, which are
applicable in real-world scenarios, be directly extended to address material data with blurred attributes
using pre-trained weights? (2) Can retraining networks with material-specific blurry datasets lead to
improvements in deblurring efficacy? (3) How can novel algorithms be developed to maximize their
potential in enhancing the clarity of material microstructure images?

In pursuit of these goals, we present a deep learning-based approach that combines soft attention
mechanisms with multifaceted loss functions, aiming to enhance image quality while preserving
intricate details. Our methodology tackles the challenge of image blurring in SEM images, arising from
inaccurate hardware calibration or automation glitches. With our approach, researchers can efficiently
rectify subpar images, saving significant time and resources that would otherwise be required for re-
scanning. This is particularly relevant for research projects that have limited budgets and require the
rapid processing of numerous material samples within tight timeframes. In such circumstances, where
image blurring continues to pose a recurring obstacle, our approach becomes especially crucial. In
the dynamic field of high-throughput materials research, our innovation has the potential to enhance
image quality and data fidelity, thereby accelerating the discovery and optimization of novel materials.
In light of this, our approach emerges as a pivotal contribution, poised to catalyze diverse applications
in the expanse of materials science research. The main contributions of this paper are as follows:
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(1) We propose a Material Images Deblurring Network (MIDNet) that specifically sharpens
blurred images of material microstructures and outperforms current SOTA deblurring networks.

(2) We introduce an attention mechanism that effectively mitigates the problem of inconsistent
feature distributions by attending to the most informative features in both the encoder and decoder.
This attention mechanism not only addresses the issue but also strengthens the interplay between
components, enhancing overall performance.

(3) We propose a novel multi-loss function that enhances the supervisory signal, thereby preserving
intricate details and texture features more effectively.

(4) Our MIDNet model’s superiority is thoroughly validated through rigorous experiments, both
quantitatively and qualitatively. Through ablation experiments, we reveal the impact of different loss
functions proposed in this paper on the model and demonstrate the effectiveness of constructing multi-
loss functions.

2 Related Work
2.1 Image Deblurring

Several studies have combined computer science and materials science, with a particular emphasis
on utilizing image processing methods for analyzing the microstructure images of materials. Varde [10]
proposed a computational estimation method called AutoDomainMine, based on graph data mining.
By integrating clustering and classification techniques, this method discovered knowledge from
existing experimental data and utilized it for estimation. The main objective of this framework was
to estimate the graphical results of experiments based on input conditions. Similar graph data mining
methods can be employed for image deblurring tasks to analyze and extract patterns and features from
image data to achieve image deblurring goals. Pan et al. [11] reviewed the evolution and impact of
material microstructures during cutting processes, presenting a thermal-force-microstructure coupled
modeling framework. They analyzed microstructural changes such as white layer formation, phase
transformation, and dynamic recrystallization under different materials and cutting conditions, as
well as the effects of these changes on cutting forces and surface integrity. Vibration of cutting tools
or materials can cause motion in image acquisition devices (such as cameras) during the capturing
process, resulting in image blurring. Therefore, studying the deblurring of material microstructures
holds significant importance.

Many traditional image enhancement methods employ regularization and manually crafted prior
images for blur kernel estimation [12]. Subsequent iterative optimization is used to gradually recover
a clear image. However, this conventional approach involves intricate blur kernel estimation, leading
to laborious sharpening, subpar real-time performance, and algorithmic limitations. To enhance the
quality of image deblurring, many methods based on convolutional neural networks (CNN) have
been proposed [13–15]. Chakrabarti [13] designed a neural network to generate a global blur kernel
for non-blind deconvolution. Song et al. [14] proposed a method using a neural network for reliable
detection of motion blur kernels to detect image forgeries. Wang et al. [15] proposed a network-based
framework that learned to remove raindrops by learning motion blur kernels. Sun et al. [16] predicted
the probability distribution of non-uniform motion blur using CNNs. However, most neural-network-
based methods still rely on blur models to solve the blur kernel, limiting their performance.

In recent years, with the development of deep learning, a series of methods based on deep learning
have been used for image deblurring [17,18]. Zhang et al. [19] proposed DMPHN, which is the first
multi-scale network based on the multi-patch method for single-image deblurring. Chen et al. [20]
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proposed HINet, a deep image restoration network based on the HIN block. Fanous et al. [5]
presented GANscan, a method for restoring sharp images from motion-blurred videos. The method
was applied to reconstruct tissue sections under the microscope. Liang et al. [21] directly deblurred raw
images using deep learning-based busy image-to-image blind-deblurring. DID-ANet [4] was designed
specifically for single-image blur removal caused by camera misfocus. MedDeblur [18] was developed
to remove blur in medical images due to patient movement or breathing. Xu et al. [22] proposed
a deep-learning-based knowledge-enhanced image deblurring method for quality inspection in yarn
production. Restormer [23] is an efficient transformer model that can be utilized for image restoration
tasks at high resolutions. This model is effective for restoring high-resolution images. Chen et al. [7]
found that nonlinear activation functions are not necessary and can be replaced or omitted, and
developed NAFNet for both image denoising and deblurring. Due to the impressive performance
of NAFNet in deblurring tasks, we are currently implementing modifications to its architecture.

2.2 Attention-Based Deblurring Model

In recent years, attention mechanisms have proven to be highly effective in various computer
vision tasks [24,25]. As a result, attention-based methods have gradually been adopted for the task of
image deblurring [26,27]. MSAN [28] is a convolutional neural network architecture based on attention
that efficiently and effectively generalizes motion deblurring. D3-Net [26] can be used for deblurring,
dehazing, and object detection, with the addition of a classification attention feature loss to improve
deblurring and dehazing performance. Cui et al. [27] proposed a dual-domain attention mechanism
that enhances feature expression in both spatial and frequency domains. Ma et al. [29] proposed an
attention-based dehazing algorithm for deblurring to improve defect detection in inspection image
pipelines. Shen et al. [30] introduced a supervised human-perception attention mechanism model,
which performs exceptionally well in motion deblurring in an end-to-end manner. MALNET [31] is
a lightweight network based on attention mechanisms, which also performs well in image deblurring.
Zhang et al. [32] proposed an attention-based inter-frame compensation scheme for video deblurring.
In this work, we also incorporate attention mechanisms into our image deblurring network to improve
its deblurring capability.

3 Method
3.1 Architecture

The network structure of this paper is shown in Fig. 1. It follows a classical U-shape structure,
which is an improvement from NAFNet [7]. The structure comprises an encoder and a decoder, both
belonging to the MID-Block. An attention mechanism is introduced between the blocks to improve
the image restoration quality of the network.

3.2 MID-Block

MID-Block is the basic building block of MIDNet. To avoid high complexity between blocks,
MID-Block does not use any nonlinear activation functions such as ReLU, GELU, and Softmax. We
construct a MID-Block using analogies with NAFNet blocks, as illustrated in Fig. 2.

To stabilize the training process, the input is first passed through Layer Normalization. Next,
the input undergoes convolution operations and is then processed by SimpleGate (SG) [7], which is a
variant of Gated Linear Units (GLU) [33]. The GLU formula is as follows:

Gate (X, f , g, σ) = f (X) � σ (g (X)) (1)
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Figure 1: The MIDNet overview. The overall architecture of the network resembles a U-shape design,
which is composed of MID-block and attention block

1×1, conv

3×3, conv

LayerNorm

SimpleGate

SCA

1×1, conv
LayerNorm

1×1, conv

SimpleGate

1×1, conv

1×1, conv

Figure 2: Architecture of MID-block

In Eq. (1), X represents the feature map, f and g function as linear transformers, σ represents a
nonlinear activation function, such as Sigmoid, and � represents element-wise multiplication.

The GLU increases the intra-block complexity, which is not desirable. To remedy this issue, we
reconsider the activation function in the block, specifically GELU [34], which is expressed as:

GELU (x) = xφ (x) (2)

where φ represents the cumulative distribution function of the standard normal distribution. Accord-
ing to reference [34], it is suggested that the Gaussian Error Linear Unit (GELU) activation function
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can be effectively approximated and implemented by employing the following methodology:

0.5x
(

1 + tanh
[√

2/π
(
x + 0.044715x3

)])
(3)

In Eqs. (1) and (2), GELU is a specific case of GLU, where the activation functions f and g are
identity functions and the parameter σ is substituted with φ. The GLU incorporates nonlinearity and
is not reliant on the parameter σ . Even in the absence of the parameter σ , the expression Gate (X) =
f (X) � g (X) retains its nonlinearity. According to reference [7], we suggest a simple adjustment to
GLU: Split the feature map into two parts along the channel dimension and multiply them. This could
be done using a basic element-wise multiplication, which is represented by Eq. (4).

SimpleGate (X, Y) = X � Y (4)

In Eq. (4), X and Y represent feature maps of equal proportions.

The gating unit SG is a neural network component illustrated in Fig. 3, which is used in the
processing of feature maps. It operates by splitting the feature map into two parts along the channel
dimension, which is then multiplied to generate the final output. By splitting the feature map in this
manner, SG can selectively emphasize or de-emphasize specific channels in the feature map, which
can be useful for enhancing certain features or suppressing noise in the signal. This process is often
referred to as channel-wise gating.

H

W
C/2

H

WC/2

Figure 3: Simple gate as represented by Eq. (2). �: Element-wise

Our novel approach introduces Simplified Channel Attention (SCA) [7], a new component that
utilizes channel-wise attention to enhance relevant features in data. Compared to other approaches,
SCA has a simpler structure which offers ease of implementation. Additionally, it adds minimal
computational overhead to models, hence enhancing the efficiency of our approach. Please refer to
Fig. 4 for an illustration of SCA.
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Figure 4: Simplified channel attention (SCA). ∗: Channel-wise multiplication

SCA determines channel attention by computing the average of the feature map along the spatial
dimensions and applying a fully connected layer to generate a channel-wise attention vector. This
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attention vector is then multiplied with the original feature map to selectively amplify important
channels in the data while suppressing irrelevant or noisy channels.

Our experiments demonstrate that incorporating SCA into a standard convolutional neural
network yields improved performance, highlighting the efficacy of enhancing feature representation
using channel attention. SCA can be easily integrated into existing neural network architectures
and represents a useful tool for improving the performance of deep learning models in a variety of
applications.

SCA is derived from Channel Attention (CA) [35], which can be expressed by the Eq. (5).

CA (X) = X ⊗ σ (W2 max (0, W1pool (X))) (5)

In Eq. (5), X denotes the feature map, pool denotes the global average pooling operation, σ

denotes an activation function such as Sigmoid, W 1, and W 2 denote fully connected layers, and cross
multiplication is the channel multiplication operation. By simplifying the Eq. (5), we can finally obtain
SCA, as shown in Eq. (6).

SCA (X) = X ⊗ Wpool (X) (6)

3.3 Attention Mechanism

With the advancement of deep learning techniques, significant progress has been made in image
restoration. The NAFNet model, in particular, has shown significant performance in various appli-
cations. However, a limitation of NAFNet is that the skip connections used for feature aggregation
between the encoder and decoder have the potential to disrupt the feature distribution, resulting in
inconsistencies between these components. Another shortcoming of NAFNet is that it only employs
an intra-block attention mechanism and ignores attention-based skip connections.

To address these challenges, we introduce a soft attention mechanism to capture the latent
relationship between the encoder and decoder more adaptively. We refer to the proposed soft attention
mechanism as ATT. The architecture of the attention gate ATT is shown in Fig. 5. Specifically, the
proposed attention gate ATT aggregates features from different blocks using a weighting scheme based
on their relevance to the current image restoration task, instead of simple element-wise addition used
in conventional skip connections. This allows the model to selectively focus on the most informative
features while suppressing the irrelevant ones.

We: 1×1×1

We: 1×1×1

We: 1×1×1

Da×Ha×Wa×C

Db×Hb×Wb×C

xb

xa

Dinit×Hb×Wb×C 1×Hb×Wb×C

1Re LU ( )� 2Sigmoid ( )�
bx

Figure 5: The architecture of ATT

Moreover, our attention mechanism enables us to incorporate attention-based skip connections,
which further enhance the feature aggregation process. By attending to the most informative features
in the encoder and decoder, the model can effectively alleviate issues related to feature distribution
inconsistency and strengthen the correlation between these components. The formula of the soft
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attention mechanism can be expressed as follows:

Watt = ψT
(
σ1

(
Wa

Txa + Wb
Txb + bf

)) + bψ (7)

x̂b = σ2 (Watt) ∗ xb (8)

In Eqs. (7) and (8), σ1 and σ2 denote activation functions. The attention gate is represented by a
set of parameters through mathematical formulas, including linear transformations Wa, Wb, ψ , and
biases bf , bψ . The linear transformations are obtained by performing convolution operations on the
input tensors. The output of the attention gate is the product of the input feature map and the attention
coefficient.

3.4 Multi-Loss Function

The paper utilizes multi-loss functions, as shown in Eq. (9), which comprise the deblurring loss,
edge loss, and FFT loss. The hyperparameters λ1 and λ2 are assigned the values of 0.05 and 0.01,
respectively.

L = Ld + λ1Le + λ2Lf (9)

3.4.1 Deblurring Function

The deblurred image is compared with its ground truth in the spatial domain, using the standard
l1 loss as shown in Eq. (10). We do not use l2 loss because it sometimes over-penalizes errors and leads
to poor deblurring performance.

Ld = 1
N

n∑
i=1

||xi
gt − MIDNet

(
xi

blur
) ||1 (10)

In Eq. (10), xi
gt denotes the ground truth of clear images, xi

blur represents the output of the blurry
image after passing through the MIDNet network proposed in this paper.

3.4.2 Edge Function

To restore the high-frequency details of the image, we introduce an edge loss function. It aims to
focus on the gradient information of the image and enhance the edge texture features. The edge loss
function of this paper is as follows:

Le

(
Ir, Igt

) =
√

||� (Ir) − �
(
Igt

) ||2 + ε2 (11)

In Eq. (11), Ir represents the reconstructed image, Igt represents the clear ground truth image and
� denotes the Laplacian operator.

3.4.3 FFT Loss

The FFT loss is a type of loss function based on the Fourier transform that is used for image
restoration tasks. It aims to penalize the discrepancy between the reconstructed image and the ground
truth image in the frequency domain. The FFT loss is represented as follows:

Lf = 1
W × H

W∑
i=1

H∑
j=1

wi,j

∥∥F (Ir) − F
(
Igt

) · H
∥∥2

i,j
(12)
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In Eq. (12), the variables W and H refer to the width and height of the image being analyzed.
The function F represents the Fourier transform of the image, which is a mathematical technique
used to analyze its frequency components. Where wi,j represents the weight corresponding to the
Fourier coefficient, and H represents the frequency response of the degradation function in the Fourier
domain.

Specifically, the FFT loss can be calculated as the weighted sum of the squared Euclidean distance
between the discrete Fourier transform coefficients of the reconstructed image and the ground truth
image. The weight factors, which correspond to different Fourier coefficients, are used to emphasize
the importance of different frequencies in the loss function, allowing it to focus more on the crucial
parts of the reconstructed image spectrum. In the Fourier domain, high-frequency information such
as edges and textures has a more significant impact on the visual quality of the reconstructed image.
Therefore, incorporating the FFT loss can help the network better preserve these details, ultimately
leading to an improvement in the image quality.

4 Experiments
4.1 Dataset

We utilize a dataset containing 120 paired images with both low and high quality to investigate
material microstructure fuzziness. Specifically, low-quality images in this dataset are directly obtained
from observations captured through the SEM rather than artificially blurred using blur kernels
or algorithms. This approach replicates real-world scenarios more accurately while simultaneously
presenting greater challenges for the process of deblurring. When low-quality images are captured
in practice, operators take repeated images until high-quality ones are achieved. Consequently, we
meticulously selected 120 matching low and high-quality images that met stringent criteria. All images
are subsequently adjusted to 256 ∗ 256 pixels. Several cropped images are displayed in Fig. 6. The
dataset is randomly divided into a training set comprising 108 image pairs and a test set containing 12
image pairs.

4.2 Experiment Parameters

We optimize the model using Adam (β1 = 0.9, β2 = 0.999) for 200 K iterations with a cosine
annealing schedule that decreases the learning rate from 10–3 to 10–7. We crop the images to a size of
256 ∗ 256 pixels and apply rotation and flipping as data augmentation techniques. We employed the
skip-init method to ensure stable training and implemented our code in the PyTorch framework. We
evaluate our model using peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics.
All experiments are conducted on an NVIDIA Tesla V100 GPU.

4.3 Experiments on SOTA Algorithms

PSNR and SSIM are employed as quantitative evaluation metrics, with larger values indicating
superior image quality. They are calculated according to Eqs. (13) and (14).

PSNR = 10 · log10

(
MAX2

MSE

)
(13)

SSIM (x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) (14)
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Low-quality Images   High-quality Images

Figure 6: A few sample images from our dataset. Column 1 shows the low-quality images, whereas
Column 2 shows the high-quality images

In Eq. (13), MAX represents the maximum pixel value of the image, typically 255 when each pixel
is represented by an 8-bit binary. MSE (Mean Squared Error) is the mean squared error value between
the blurred image and the clear image. In Eq. (14), x and y denote the original image and the deblurred
image, respectively. μx and μy represent the mean pixel values of images x and y, σx and σy represent the
standard deviations of pixel values in images x and y, and σxy is the covariance between the pixel values
of the two images. C1 and C2 are constants introduced to prevent division by zero in the denominator.

To assess the generalizability of models trained on natural images to material microstructure
fuzziness data, we conduct a series of relevant studies. Specifically, we employ pre-trained weights from
the original papers of DMPHN, HINet, Restormer, and NAFNet methods to conduct inference on
material blurry images. The deblurred images are displayed in Fig. 7, while the corresponding PSNR
and SSIM values are summarized in Table 1.

As observed in Fig. 7, these methods exhibit certain levels of processing applied to the blurry
images. However, their ability to achieve satisfactory deblurring outcomes remains limited, with min-
imal improvement over the initial blurry images. By referring to Table 1, the PSNR and SSIM values
of both the original blurry and clear images are provided in the input row. Notably, these methods
yield relatively low PSNR and SSIM scores, with instances where deblurred images demonstrate worse
performance compared to their initial states.
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PSNR
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21.64 dB

Blurry Image

21.34 dB

HINet

20.52 dB

Restormer

21.20 dB

NAFNet

20.89 dB

DMPHN

Figure 7: Image deblurring performance on the material blurry dataset is evaluated using several SOTA
algorithms with pre-trained weights

Table 1: Results of image deblurring by using pre-trained weights

Method PSNR SSIM

Blurry 21.64 0.577
Restormer 20.27 0.34
DMPHN 20.85 0.475
HINet 21.27 0.515
NAFNet 20.28 0.732

Interestingly, these methods have demonstrated proficiency on the GoPro dataset and have
exhibited effective deblurring outcomes on real-world blurry images. Consequently, we postulate that
their subpar performance on material images may be attributed to external factors rather than the
inherent limitations of the methods themselves.

Upon meticulous scrutiny of the GoPro dataset, a notable distinction emerges in the PSNR
values of its blurry images, which average approximately 23. In contrast, the blurry images originating
from our material microstructure exhibit a lower PSNR value of approximately 21. Building upon
these observations, a hypothesis arises: The relatively lower quality of material images, resulting in
reduced information content, poses a heightened challenge for the deblurring process. Consequently,
this challenge could potentially contribute to network degradation and the suboptimal performance
observed.

Furthermore, an additional factor potentially influencing the subpar deblurring results is the
unique visual characteristics inherent to material microstructures, setting them apart from real-world
blurry images. This disparity in appearance might contribute to reduced reliability in the neural
network’s performance when confronted with material microstructure fuzziness data. To address
this challenge, we advocate for a proactive solution: Retraining and fine-tuning these methods using
material blurry images. Our approach involves freezing the majority of the model layers and selectively
unfreezing a small subset for training purposes. We apply data augmentation techniques, such as
flip and rotate, to the dataset during the training process. Hyperparameters, including learning rate,
batch size, and number of iterations, are adjusted based on the specific model to achieve optimal
performance. Additionally, appropriate regularization strategies are employed to mitigate overfitting
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problems. Such an approach holds the promise of enhancing the network’s capability to effectively
restore blurry images of materials. In line with this recommendation, we embarked on the process of
retraining and fine-tuning these methods. To gauge the efficacy of this intervention, we present the
deblurring outcomes in Fig. 8.

DMPHN HINet

Restormer NAFNet

Figure 8: The outcomes of deblurring upon the retraining and fine-tuning of these methods with our
blurry dataset

This study utilizes a dataset of material blurry images to conduct a detailed analysis of the
deblurring capability of the original method compared to the retraining and fine-tuning methods.
The outcomes of this comparison reveal a significant enhancement in deblurring quality for material
images through retraining and fine-tuning, surpassing the performance of the no-training scenario
and yielding satisfactory results. Notably, the process of retraining and fine-tuning contributes to
the restoration of intricate features within material images, underscoring the pivotal role of material-
specific data in optimizing deblurring effectiveness. These findings offer fresh insights into the efficacy
of retraining and fine-tuning strategies in effectively addressing the intricate deblurring challenges
posed by material images. Furthermore, they provide valuable guidance for the future development
of more potent deblurring methodologies within the domain of material science and engineering.
Importantly, this study also serves as a demonstration of the potential of deep learning techniques
in enhancing the quality of visual data across a wide spectrum of scientific and industrial applications.

4.4 Comparative Experiment

4.4.1 Qualitative Results

We undertake a comparative evaluation of MIDNet alongside several SOTA deblurring methods
that have undergone retraining and fine-tuning, as discussed in the previous section. The deblurring
outcomes produced by each of these methods are depicted in Fig. 9. Within this array of tested
approaches, Restormer’s results exhibit a residual blurriness accompanied by unclear edges, which
implies a limited restorative impact. The HINet method, employing a patch-based testing strategy,
manifests noticeable stripe artifacts, possibly attributed to boundary discontinuities. The DMPHN
approach, although improved, still retains a degree of blurriness that hampers its ability to achieve
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significant image enhancement. The NAFNet method, while competent, sacrifices certain fine image
details. In stark contrast, our proposed MIDNet method achieves a further elevation in image quality,
facilitating the restoration of additional structural details without introducing any artifacts or related
issues. By observing the image, we note that our method exhibits significantly clearer microstructural
contours compared to other approaches, as indicated by the red arrow in Fig. 9. This enhanced clarity
allows for a more accurate analysis of the material’s surface morphology and structural features based
on these finer details.

PSNR

Reference

21.64 dB

Blurry Image

26.77 dB

Restormer

27.36 dB

HINet

31.02 dB

DMPHN

32.41 dB

NAFNet

35.26 dB

MIDNet(ours)

Figure 9: Qualitative comparison of image deblurring methods on the dataset

The comparison between the original image and the deblurred image obtained through the model
proposed in this study is illustrated in Fig. 10. In Fig. 10a, we present the original image, while Fig. 10b
depicts the image after being processed by the model. Through visual observation, it is evident that
the proposed model exhibits excellent deblurring performance. The outcomes of our study highlight
the exceptional capabilities of MIDNet in effectively recovering intricate structures and details within
material images. This showcases its potential as a promising solution for tackling intricate deblurring
issues within the realm of materials science and engineering.

4.4.2 Quantitative Results

Table 2 outlines the quantitative findings of several deblurring techniques applied to material
microstructure images. Our evaluation of image quality relies on two objective metrics: PSNR and
SSIM, where higher values denote enhanced performance. Significant enhancements in PSNR are
observed across HINet, Restormer, DMPHN, and NAFNet after the process of retraining and
fine-tuning. The respective gains in PSNR are 7.89, 9.43, 10.13, and 13.53 dB. These compelling
outcomes underscore the considerable potential of deep learning in addressing the intricate challenges
associated with deblurring material microstructure images. This progress lays the foundation for
practical applications within this domain.

The insights provided by Table 2 highlight the substantial advancement brought forth by MIDNet,
when compared with NAFNet, evaluated through both PSNR and SSIM metrics. Compared to
NAFNet, MIDNet achieved an improvement of 1.45 dB in PSNR and 0.01 in SSIM. This indicates
that our proposed method has an advantage in image deblurring. The efficacy of MIDNet in the
deblurring task can be attributed to its integrative employment of an attention mechanism and a
combination of diverse loss functions.
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Figure 10: Comparison between original images and deblurred images

Table 2: Quantitative comparison of our proposed network with previous methods

Method PSNR SSIM Param (M) FLOPs (G)

HINet 29.16 0.905 88.6 170.7
Restormer 29.70 0.904 25.31 87.7
DMPHN 30.98 0.915 21.7 678.5
NAFNet 33.81 0.936 16.0 17.1
MIDNet (ours) 35.26 0.946 17.3 23.3

The attention mechanism significantly enhances the network’s ability to focus on pivotal features,
leading to elevated deblurring performance. Our experiment results affirm that the simultaneous
utilization of multiple loss functions empowers the network with enhanced image reconstruction
supervision, consequently elevating image quality and augmenting fine detail preservation.
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4.4.3 Ablation Experiment

To validate the efficacy of the newly introduced edge loss and FFT loss within the training process,
we conduct ablation experiments. The outcomes of these experiments are meticulously presented
in Table 3, showcasing the computed PSNR and SSIM values corresponding to each experimental
configuration. The objective behind these ablation studies is to discern the impact and contribution
of individual loss functions toward the process of image restoration. To achieve this, we train our
model under different scenarios, each characterized by a distinct combination of loss functions. This
systematic approach enables us to gain insights into the relative importance and effectiveness of each
loss function in driving the enhancement of image quality.

Table 3: Ablation experiments: We train our model using different combinations of loss functions to
understand the importance of individual losses for image restoration

Ld Le Lf PSNR SSIM
√ × × 34.22 0.939√ √ × 35.00 0.945√ × √ 35.12 0.945√ √ √ 35.26 0.946

In this study, we undertake a series of ablation experiments with the intent of examining the impact
of integrating various loss functions during the training phase. To maintain consistency, the Ld loss
function, which plays a pivotal role in image restoration, is kept constant across all experiments. The
outcomes of these ablation studies are summarized in Table 3. We observe that the inclusion of the Le

loss function results in noticeable improvements in both PSNR and SSIM metrics. This suggests that
the network effectively retains more intricate edge details through the utilization of this loss function.
Furthermore, the inclusion of Lf loss further improves the image quality by providing more structural
guidance to the network solution, as observed in row 3. It is worth noting that by combining all the
loss functions during training, the network achieved its best performance. These findings highlight the
importance of the proposed multi-loss functions in enhancing image restoration capabilities and offer
valuable insights for the advancement of effective image restoration methods.

5 Conclusion and Future Work

In this study, we propose a method named MIDNet to address the issue of blurry images in
material microstructures. MIDNet is an end-to-end deblurring network that enhances the clarity of
blurry images in material microstructures by incorporating an attention mechanism and introduc-
ing multiple loss functions. Thorough qualitative and quantitative analysis indicates that MIDNet
surpasses other approaches in terms of the quality of reconstructed images, marked by enhanced
clarity and texture richness. Ablation experiments have also showcased the effectiveness of different
loss functions within the network. Our work has the potential to encourage the extended use of deep
learning within materials science and promote advancements in the mutually beneficial partnership
between computer science and materials science.

The dataset utilized in this study comprises actual experimental material microstructural images.
However, we acknowledge that the dataset size is relatively limited, which may potentially impact the
accuracy of image deblurring when extrapolating our method to diverse materials. To address this



1202 CMC, 2024, vol.79, no.1

limitation, our future research will emphasize the collection of SEM images encompassing a broader
range of alloy materials, thereby expanding the dataset size. Through these endeavors, we aim to
enhance the performance and adaptability of our model in the context of deblurring microstructural
images across various materials. Our future work will be primarily focused on developing a video
deblurring method that is specifically tailored to the demands of material science applications. Given
the unique challenges posed by the complex and dynamic nature of material structures, a robust and
effective video deblurring method would be of great value in enabling researchers to visualize and
analyze material properties more accurately.
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