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ABSTRACT

The quantization algorithm compresses the original network by reducing the numerical bit width of the model,
which improves the computation speed. Because different layers have different redundancy and sensitivity to data
bit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determine
the optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantization
can effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In this
paper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bit
width is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets the
constraints of hardware resources. In the state-space design, the standard deviation of weights is used to measure
the distribution difference of data, the execution speed feedback of simulated neural network accelerator inference
is used as the environment to limit the action space of the agent, and the accuracy of the quantization model after
retraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. The
experimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategy
under the condition that the computational resources are satisfied, and the model accuracy is effectively improved.
The proposed method has strong intelligence and certain universality and has strong application potential in the
field of mixed precision quantization and embedded neural network model deployment.
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1 Introduction

The quantization algorithm compresses the original network by reducing the numerical bit width
[1] and improving the computation speed on neural network accelerators [2]. On one hand, different
layers have different redundancy and accuracy requirements to bit width. Therefore, assigning the
same bit width to all layers will result in a loss of accuracy. On the other hand, when different layers
use flexible bit widths, the mixed-precision search space is exponential in the number of layers. It
is not realistic to search for the appropriate bit width for each layer and computation resource is
insufficient [3].
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Therefore, it is necessary to use mixed precision quantization for different layers to reduce the
computational resource while keeping the model accuracy basically unchanged, and effectively balance
the contradiction between accuracy and computational performance.

However, there is a lack of an effective approach to determine the bit widths of different parts
of the network. Traditional methods either examine only a small, artificially designed search space or
utilize tedious neural structure searches to explore huge search spaces. These methods are not effective
in obtaining optimal quantization schemes. So, it is necessary to automatically obtain the optimal bit
width assignment scheme through the automatic neural network model mixed precision computational
assignment technology.

So, there are two technical bottlenecks that need to be solved:

Technical Bottleneck 1: How to choose the appropriate bit width? The bit width should be set as low
as possible to reduce the computational cost.

Technical Bottleneck 2: How to improve the quantization accuracy? The loss of accuracy due to
quantization should be as small as possible.

Aiming at these two technical bottlenecks, this paper proposes a quantization strategy optimal
assignment algorithm for mixed precision, which uses reinforcement learning to automatically predict
the quantization bit width assignment strategy of each layer of a given model. The simulation software
that simulates neural network accelerator inference is used as an environment to obtain the execution
speed feedback of the model to guide the agent to meet the resource constraints. Finally, after
quantization retraining, different quantization strategy optimal assignment methods are realized, and
the quantization strategies suitable for all layers are output. The quantization strategy optimization
technology based on reinforcement learning can minimize computational resource consumption and
data access bandwidth requirements while maintaining computational accuracy.

2 Related Work

Quantization represents network weights with fewer bits, such as converting the data type
computed by an algorithm from 32-bit floating-point to 8-bit or 4-bit low-bit integers [4]. Quantization
algorithms quantize both parameters (i.e., weights) and activations of each layer in a neural network
model to reduce the total memory footprint of the model during inference [5–7]. Mixed precision
quantization designs a certain policy to reasonably allocate the weights and activations of each layer
of the model. This allows mixed precision quantization to achieve the best compromise between the
performance and accuracy of deep neural networks, and has therefore been widely studied.

The parameters of a neural network model are typically stored in a 32-bit floating-point data
format [8]. By converting floating-point parameters into 1, 2, 4, or 8-bit integer data, model operation
efficiency can be improved and model deployment can be promoted on embedded devices [9]. However,
the reduction of the data bit width leads to a loss of accuracy, and the lower the bit width, the
greater the accuracy loss. In addition, the parameters of different layers of the model have different
sensitivity to the data bit width, among which the parameters that contribute to the accuracy need a
higher quantization bit width, and the parameters that contribute less to the high accuracy can give a
lower bit width [10]. Given the overall accuracy requirements of the model, the bit width assignment
technology of the neural network model searches for and assigns appropriate bit widths to different
layers to achieve the optimal quantization effect. However, there are many convolutional weights and
activations in the model, and the number of bit widths can be selected, so the bit width search space
refers to orders of magnitude, and manual search is very difficult [11].
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Reinforcement Learning is a technique that directly learns control strategies from high-
dimensional raw data [12]. The machine trained by reinforcement learning has reached or exceeded
the level of human intelligence in many fields such as Alpha Go, video games, robotics, and ChatGPT.
Researchers in the field propose some hybrid bit width automatic search methods to solve this
problem, among which optimization-based methods/reinforcement learning-based methods and
gradient descent-based methods have received active attention from researchers.

For example, a Lagrange multiplier [13] has been proposed for mixed precision search, which treats
mixed precision quantization as an extreme value problem of function f(x1, x2,...) under the constraint
of g(x1, x2,...) = 0. Each channel in a single layer is solved according to the Lagrange multiplier
method. However, this method can only be used for each layer, and secondly, it cannot be allocated
according to the specified optional quantization bit width, but only according to the calculated
quantization bit width. Wang et al. of Massachusetts Institute of Technology (MIT) proposed a
Hardware-Aware Automated Quantization (HAQ) method based on reinforcement learning [14]. For
a certain layer of convolution, the delay and energy feedback provided by the hardware are included in
the reward function based on reinforcement learning through the hardware accelerator. When looping,
the quantization bit width is updated once in each reinforcement learning action according to the
reward to make the bit width accuracy better than the bit width generated by the previous action. The
gradient descent-based method also achieves good results. For example, Yu et al. of the University of
Science and Technology Beijing proposed a new Differentiable Neural Architecture Search (DNAS)
framework [15]. During the training process, the weights and activations of different layers are adjusted
in their respective bit width search spaces, and their optimal bit widths are automatically explored
based on the gradient descent of complexity loss. Compared with the reinforcement learning-based
method, this method improves the bit width search speed and avoids separate training structures, but
does not explore the root cause of the sensitivity of different layers of the model to bit width sensitivity,
which may lead to suboptimal results.

To sum up, there are some challenges in these methods:

Challenge 1: Most of the methods do not consider the adaptability to the hardware.

Challenge 2: These methods either still require a lot of computational resources or are very sensitive
to hyperparameters or even initialization.

Above all, we added a table comparing key characteristics and limitations of Lagrange multiplier,
HAQ and DNAS to highlight their differences and limitations. At the same time, the descriptions of
the potential shortcomings of our framework have also been addressed in the comparison table, which
is shown in Table 1.

Table 1: Comparison of key characteristics and limitations of prior work

Type Framework Characteristics Limitations

Optimization-based Lagrange multiplier The method treats mixed
precision quantization as an
extreme value problem under
the constraint.

(1) It only be used for
each layer.

(2) It only can be assigned
according to the
calculated quantization
bit width.

(Continued)
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Table 1 (continued)

Type Framework Characteristics Limitations

Reinforcement learning-based HAQ Quantization bit width is
updated once in each
reinforcement learning action
according to the reward to
make the bit width accuracy
better than the bit width
generated by the previous
action.

Direct feedback (latency,
energy consumption)
from different hardware
accelerators is difficult to
determine.

Gradient descent-based DNAS Optimal bit widths are
automatically explored based
on the gradient descent of
complexity loss.

It does not explore the
root cause of the
sensitivity of different
layers of the model to bit
width sensitivity, which
may lead to suboptimal
results.

Ours / It is a general quantization
method that can use many of
the quantization strategies
described earlier.

Offline quantization
training is complex and
time-consuming.

Because the operation efficiency and accuracy of the quantized neural network model on different
accelerators may be quite different, it is necessary to incorporate the accuracy and speed feedback of
hardware feedback into the optimization function of bit width search. Therefore, this paper proposes
a simple and fast mixed precision search technique.

3 Proposed Algorithm

The mixed precision automatic bit width assignment technology sets different quantization bit
widths for the convolution weights and activations of different layers of the model to achieve the
optimal balance between model accuracy and efficiency. Traditional neural network model quanti-
zation methods adopt uniform quantization bit widths for the weights and activations of the entire
network model. However, the contribution of the internal layers of the neural network model to the
prediction is not exactly the same, so it is necessary to adopt different quantization bit widths for
different convolutional layers with different accuracy requirements to achieve the best balance between
accuracy and efficiency.

The proposed method determines a hardware-aware mixed precision quantization strategy
adapted to low bit width. Since a brute force approach is not feasible for deep networks, as the search
space for mixed precision is exponential complexity in the number of layers. The proposed algorithm
is a novel solution which uses mixed precision quantization to reduce the parameter size as well as
computational complexity of neural network models. Our challenge is a similar factorial complexity
for determining layer-wise finetuning order when quantizing the model to a target precision. Our
works use execution speed feedback as metrics to measure computation complexity.
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3.1 Structure

In this paper, a mixed precision quantization bit width assignment framework adapted to low bit
widths is proposed, and reinforcement learning is used to automatically predict mixed precision that
satisfies hardware resource constraints.

For each layer, the standard deviation of the weights is used in the state-space design to measure
the distribution difference of the data, and the agent receives the layer configuration and statistical
information feedback from the hardware as an observation, and then outputs the action behavior of the
layer, that is, the quantization bit width of the weight and activation. When all layers are quantified, the
execution speed feedback of simulated neural network accelerator inference is used as an environment
to limit the action space of the agent to guide the agent to meet resource constraints. Then, according
to the new quantization width, the model is briefly retrained to restore performance, and the accuracy
of the retrained quantization model is used as the reward function to guide the agent to carry out deep
reinforcement learning training. Finally, different quantization width optimal assignment methods
are realized after training, and the quantization accuracy suitable for all layers is output. The overall
structure is shown in Fig. 1.

Figure 1: Overall structure

As shown in Fig. 1, this paper uses reinforcement learning to automatically search for a large
quantization design space in a loop. Given the number of computing resources of the neural network
accelerator, an optimal quantization strategy selection method is proposed. The agent integrates the
simulation of the accelerator into the neural network model parameter update process of reinforcement
learning, so that the agent can receive direct feedback from the hardware. The mixed precision
quantization framework of the whole neural network model for reinforcement learning is divided
into two processes: Reinforcement learning process and quantization retraining process. The former
contains state-space design, reward function design and reinforcement learning training strategy, the
latter contains hardware feedback strategy and symmetric quantization strategy, respectively.
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3.2 Reinforcement Learning Process

3.2.1 State-Space Design

In reinforcement learning, learners and decision-makers are called agents, and everything outside
the agent is the environment, and the agent and environment interact at each step in a series of discrete
time steps. At each time step, the agent receives the state of the environment, on the basis of which an
action is selected to execute, and the agent receives a reward value and is in a new state.

Since our agent processes neural networks in a layer-by-layer fashion, the state-space design is the
set of each layer of weights/activations of all possible environmental states, as shown in Table 2.

Table 2: State-space design table

Encoding ordinal number Weights state space Activations state space

1 Tier index Tier index
2 Input channel Input channel
3 Output channel Output channel
4 Convolution kernel size Convolution kernel size
5 Step Step
6 Input feature map size Input feature map size
7 The number of weight

parameters
The number of weight
parameters

8 The standard deviation of the
weights

The standard deviation of
the weights

9 Weight flag bits Activations flag bits
10 The bit width of the previous

layer
The bit width of the
previous layer

3.2.2 Reward Function Design

After all layers have been quantized, the quantization model is periodically fine-tuned, and the
model accuracy after short-term retraining is used as the reward value of the agent. Define a function
reward whose reward is directly related to precision:

if cost_ratio is not None:

if acc_limit is not None: # Precision constraints

if acc_quant > acc_limit:

reward = 1
|acc_limit − acc_orgin| + 1

cost_ratio

else:

reward = 1
|acc_quant − acc_orgin| + δ

+ 1
cost_ratio
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else:

reward = 10 ∗ acc_quant + 1
cost_ratio

else:

reward = 1
|acc_quant − acc_orgin|

where cost_ratio = time of current bit
time of full 8 bit

is the compression ratio. acc_limit is the given precision

constraint value. acc_orgin is the top-1 accuracy of the full 8 bit-precision model before quantization
on the training set, and acc_quant is the accuracy of the quantization model after finetuning. δ is to
prevent the occurrence of zero risk, which can be set to 0.0001.

3.3 Quantization Retraining Process

3.3.1 Hardware Feedback Strategy

After the agent provides actions for all layers, the amount of resources used by the quantized
model is measured, and the feedback comes directly from the delay calculation table of the hardware
accelerator [16], which is used as an environment to obtain direct feedback from the hardware to
guide the agent to determine the quantization strategy selection from the nuances between different
layers and meet the resource constraints. The speedometer is inferred from the speed evaluation model
established in advance by different models on different hardware accelerators.

To adapt to existing accelerators, the hybrid bit width search space of weights is (1,4,8) and
activation is (2,4,8). The weight bit width of the next layer is equal to the activation bit width of the
previous layer.

After the agent provides actions to all layers, the quantization model measures the number of
resources that will be used. If the current quantization cost exceeds the target constraint, the bit width
of each layer is reduced sequentially until the resource constraint is finally satisfied. The order in which
the action space is restricted is shown in the following pseudocode:

If current cost > target:

Traverse each layer of the model in reverse order:

reduce the activation bit of the last layer by 1.

if current cost > target:

reduce the weight of the last layer by 1

if current cost > target:

penultimate of the 2nd layer...

Until the action space satisfies the resource constraint.

The proposed method encourages the agent to meet the computing resource budget by constrain-
ing the action space. The execution speed feedback comes directly from the hardware.
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3.3.2 Symmetric Quantization Strategy

The quantization algorithm used in this paper is based on the neural network quantization
software proposed by Xi’an Microelectronics Technology Institute [17]. The quantization software
generates a guide file for the neural network accelerator to map floating-point data into low-precision
data. The schematic diagram of the quantization software is shown in the Fig. 2.

Figure 2: Schematic diagram of quantization software

The quantization software uses the layers as the basic processing unit. A pseudo-quantization
operation is inserted into the weight and output of each layer [18]. Firstly, the distribution and range
of input, weight, and output data of each layer of the neural network model are analyzed in advance.
Then, each floating-point value is represented by a low-bit integer. The output of the current layer
is used as the input of the next layer. Note here that the activation threshold is calculated from the
activation equalization of a set of quantization calibration images.

4 Numerical Simulation and Results Analysis

In this section, simulation experiments are carried out to verify the proposed method’s effective-
ness. First, we describe the architecture of the proposed method in Section 4.1. Second, quantization
perceptual hyperparameter selection experiment is conducted in Section 4.2. Then, most importantly,
experimental results are given from three aspects in Section 4.3: Quantization strategy assignment
results, hybrid bit width search results and comparison with previous work. In addition, we perform
the ablation study of the proposed algorithm itself from the perspectives of standard deviation and
optimized reward in Section 4.4. The experiments were carried out on Ubuntu 18.04. The Central
Processing Unit (CPU) is Intel(R) Core(TM) i7-8700K, 3.70 GHz, the Graphics Processing Unit
(GPU) is NVIDIA GeForce GTX1070, Deep Learning Framework is Pytorch 1.7.0, Compute Unified
Device Architecture (Cuda) is 10.1. The execution speed feedback comes directly from TIANJI
NPU4.0 neural network accelerator proposed by Xi’an Microelectronics Technology Institute [19].
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4.1 Experimental Architecture

The experimental architecture is shown in Fig. 3, which uses datasets and models as input, hybrid
bit width search is performed on classification tasks through reinforcement learning and simple
quantization retraining. It converts the initial training models such as Open Neural Network Exchange
(ONNX), TensorFlow, and Caffe provided by third parties into a PyTorch format. Based on the
optimal bit width obtained by search, single quantization retraining is carried out again to update the
weights of the model. This completes the training phase. In the testing phase, the model with mixed
bit width configuration is deployed on the inference platform to obtain accuracy calculation results.
To evaluate the effectiveness of the proposed algorithm across a variety of Deep Neural Networks
(DNNs), three neural network test models MobileNet-V2, ResNet-50 and LeNet are selected in
different target classification task.

Figure 3: Experimental architecture

4.2 Hyperparameter Selection

To adapt to existing accelerators, the weight bit width of the next layer is equal to the activation bit
width of the previous layer. And when the activation bit width of the upper layer is 2-bits, the weight
of the next layer can only be 1-bit. After all layers are quantified, if the current quantization policy
exceeds the resource budget, resource constraints are applied. Update activations and weights layer by
layer in reverse order, modifying the weights of this layer while changing the activations of the previous
layer.

There are many hyperparameters in the hybrid bit-width framework, such as the initial value of
the learning rate, the rate decay, the training set size, and the quantization retraining epochs. Fig. 4
lists only the most important quantization perception hyperparameters—the results of experiments
with different quantization retraining epochs. In this experiment, two sets of fixed mixed precision
quantization strategies of LeNet model were carried out on the Modified National Institute of
Standards and Technology (MNIST) dataset. The accuracy after quantization retraining was used
as the evaluation index. The initial value of learning rate is 0.01, the learning rate decay is 0.8, the
number of quantization retraining is 100, and the training set size is 200. Repeating the experiment 3
times, selecting the average statistical results.

Fig. 4 shows that with the increase of quantization retraining epochs, the accuracy of different
mixed precision quantization strategies increases, and the accuracy is lower than that of the first group
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because the quantization width of the second group of mixed precision quantization strategies is lower
and more difficult to quantize.

Figure 4: Accuracy with different quantization retraining epochs

4.3 Experimental Results

In this section, we first present our quantization strategy assignment results for MobileNet-V2 on
ImageNet, and LeNet on MNIST. Then we present our hybrid bit width search results for MobileNet-
V2 on UCMerced LandUse. Finally, comparison with prior work is carried out.

4.3.1 Quantization Strategy Assignment Results

The maximum compression ratio is set to 0.6, and the episodes of Reinforcement Learning (RL)
training is set to 50. The number of quantization retraining epochs for this experiment is set to 100.
Repeat the experiment 3 times, selecting the average statistical results.

For MobileNet-V2 on ImageNet dataset, Table 3 shows the two sets of hybrid bit width assignment
strategies with the best accuracy in multiple iterations. Due to the excessive number of layers in the
MobileNet-V2 model, the hybrid bit width quantization strategy representation is simplified to layer
by layer input/weight/activation bit width-[layer 1 [input, weight, activation], layer 2 [input, weight,
activation]... Layer n [input, weight, activation]]. It can be seen from Table 3 that after replacing the
dataset and model, the influence of low bit-to-width ratio on model accuracy is also reflected.

For the LeNet model, a speedometer with dimension 6 ∗ 3 ∗ 3 is established. 3 ∗ 3 is the total
number of combinations assigned bit widths of each convolutional layer, with a weight distribution
of 1/4/8 bit and an activation distribution of 1/4/8 bit. In multiple iterations, select the two sets of
mixed precision quantization strategies with the best accuracy. The intra-layer/inter-layer bit width
assignment of different strategies and the corresponding evaluation metrics are shown in Table 4.

Experiments of LeNet on the MNIST dataset show that a group of hybrid bit width strategies with
low compression ratio have low accuracy. It shows that the greater the proportion of low bit width, the
greater the accuracy of the model. The larger the reward value, the higher the model’s accuracy, which
shows that the more accurate the positive feedback is based on the accuracy of the quantized model
after retraining, the more effective it can guide the agent to carry out deep reinforcement learning
training, and the bit width strategy that satisfies the hardware resources can be obtained.
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Table 3: Quantization strategy assignment for MobileNet-V2 on ImageNet

Mixed precision
quantization strategy

[[8,8,8], [8,8,8], [8,8,4], [4,4,4], [4,4,4],
[4,4,8], [8,8,4], [4,4,4], [4,4,4], [4,4,8],
[8,8,4], [4,4,8], [8,8,8], [8,8,8], [8,8,2],
[2,1,8], [8,8,4], [4,4,8], [8,8,8], [8,8,4],
[4,4,8], [8,8,8], [8,8,2], [2,1,2], [2,1,8],
[8,8,4], [4,4,4], [4,4,8], [8,8,4], [4,4,2],
[2,1,8], [8,8,2], [2,1,8], [8,8,8], [8,8,8],
[8,8,2], [2,1,4], [4,4,8], [8,8,4], [4,4,8],
[8,8,2], [2,1,4], [4,4,4], [4,4,4], [4,4,4],
[4,4,4], [4,4,2], [2,1,2], [2,1,8], [8,8,4],
[4,4,2], [2,1,8], [8,8,8]]

[[8,8,8], [8,8,8], [8,8,4], [4,4,4], [4,4,4],
[4,4,8], [8,8,4], [4,4,4], [4,4,4], [4,4,8],
[8,8,4], [4,4,8], [8,8,8], [8,8,8], [8,8,2],
[2,1,8], [8,8, 4], [4,4,8], [8,8,8], [8,8,4],
[4,4,8], [8,8,8], [8,8,4], [4,4,2], [2,1,8],
[8,8,4], [4,4,4], [4,4,8], [8,8,8], [8,8,2],
[2,1,8], [8,8,4], [4,4,4], [4,4,8], [8,8,8],
[8,8,2], [2,1,4], [4,4,8], [8,8,4], [4,4,8],
[8,8,2], [2,1,4], [4,4,4], [4,4,8], [8,8,4],
[4,4,4], [4,4,4], [4,4,2], [2,1,8], [8,8,4],
[4,4,2], [2,1,8], [8,8,8]]

Compression ratio 0.552 0.572
Accuracy 0.776 0.792

Table 4: Quantization strategy assignment for LeNet on MNIST

Bit width assignment within layers Input Weight Activation

Layer1 8 4 8
Layer2 8 8 8

Mixed precision Layer3 8 8 8
quantization strategy 1 Bit width assignment Layer4 8 8 4

between layers Layer5 4 4 4
Layer6 4 4 8

Compression ratio 0.285
Reward value 8.100

Accuracy 0.905

Mixed precision
quantization strategy 2

Bit width assignment within layers Input Weight Activation

Bit width assignment
between layers

Layer1 8 8 2
Layer2 2 1 8
Layer3 8 8 4
Layer4 4 4 4
Layer5 4 4 8
Layer6 8 8 8

Compression ratio 0.206
Reward value 7.576

Accuracy 0.853

4.3.2 Hybrid Bit Width Search Results

To further verify the effectiveness of reinforcement learning in mixed-precision search, this section
details the evolution of reward, loss, and evaluation metrics in RL training process. Evaluation metrics
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include the compression ratio of the search hybrid bit width and the accuracy of retrained quantization
model. In order to fully improve the accuracy of the retrained quantization model, the maximum
compression ratio of the search bit width is increased to 0.9, and the episodes of reinforcement learning
training is set to 30. Moreover, the goal of mixed precision search technique is to find a suitable hybrid
bit width assignment strategy in the complex bit width selection space. The bit width search of each
time only requires simple quantization retraining, so the epochs of quantization retraining for this
experiment is set to 30.

The hybrid bit width search experiment of MobileNet-V2 on UCMerced LandUse dataset is
shown in Figs. 5–7. It can be seen from Fig. 5 that, due to the new design of the reward function, the
reward becomes larger as the RL training episodes increase, and the reward value reaches a maximum
of 9.053 at the 30th iteration. This fully demonstrates that this reward function, as an evaluation
criterion of the agent’s task execution, can encourage the agent to make good action decisions and
discourage the agent from making action decisions that lead to bad outcomes. This constantly updates
the mixed-precision quantization strategies to get as many rewards as possible.

Figure 5: The evolution of reward in RL training

Fig. 6 shows that with the increase of RL trainings episodes, the accuracy of retrained quantization
model is increasing, which reaches a maximum of 0.776 at the 30th iteration, and the error with
the accuracy of 0.800 of the full-precision model is 2.5%. Meanwhile, the compression ratio of the
best accuracy reaches 0.775. In particular, at the 15th iteration, the accuracy reaches 0.724, but
the compression ratio reaches 0.848. In order to achieve the goal of lower compression ratio and
higher accuracy, reinforcement learning once again exerts powerful decision-making capabilities. This
gradually reduces the compression ratio and maintains a consistently increasing accuracy.

According to the mixed-precision quantization framework, the model assigned new quantization
widths is briefly retrained to restore performance, and the accuracy of the retrained model is used
as the reward to guide the agent to carry out deep reinforcement training. To illustrate the role of
quantization retraining, Fig. 7 shows the evolution of loss varying seven different RL learning. On
the one hand, the loss value in each RL training decreases steadily with the increase of the epochs of
quantization retraining. Although there is a tendency to become larger in some places, this is due to
the robustness of model training. On the other hand, with the increase of the order of 1, 3, 8, 13, 17, 25
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and 30 for different RL training episodes, the overall range of loss values also decreases. Furthermore,
it is shown that the accuracy of the evaluated model steadily increases in the RL training process.

Figure 6: The evolution of compression ratio and accuracy in RL training

Figure 7: The evolution of loss varying different RL learning in quantization retraining

4.3.3 Comparison with Prior Work

In order to verify the effectiveness of the improved quantization strategy assignment method, the
comparative experiments with related works are carried out. Experiments are performed on target
classification task. We compare with the full-precision MobileNet-V2, ResNet-50 and LeNet, and
popular state-of-the-art hybrid bit width search methods including Parameterized Clipping activation
(PACT) [20], Han et al. [21], HAQ [14], Reinforcement Learning approach for deep Quantization
(ReLeQ) [22], DoReFa [23] and Alternating Direction Method of Multipliers (ADMM) [24]. Above
all, we apply these methods to search for optimal hybrid bit widths.
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The comparative experiment for MobileNet-V2 on ImageNet dataset is shown in Table 5. We
compare our framework with PACT and Han that uses fixed number of bits without hardware
feedback. And HAQ, ReLeQ that uses flexible number of bits with hardware feedback. It can be
seen from Table 5, our method performs similarly to the full-precision baseline on the same hardware
platform.

Table 5: Comparative experiment for MobileNet-V2 on ImageNet

Network W-bits A-bits Accuracy Acc loss

Baseline 32 32 0.818 /

4 bits 4 bits 0.614 0.204
PACT 6 bits 4 bits 0.689 0.129

6 bits 6 bits 0.712 0.106

2 bits / 0.581 0.237
Han 3 bits / 0.6800 0.138

4 bits / 0.712 0.106

HAQ flexible flexible 0.675 0.143
ReLeQ 6.43 (ave) 6.43 (ave) 0.558 0.26
Ours 1/4/8 bits 2/4/8 bits 0.792 0.026

Table 6 shows the comparative experiment for ResNet-50 on ImageNet. Here, we add the tradi-
tional method DoReFa that uses fixed number of bits without hardware feedback as a comparison.
Under 1, 2, 4, 8 mixed precision configuration, the quantized ResNet-50 has also achieved relatively
small quantization errors by 0.024 than all comparative methods shown. It has certain performance
competitive advantages.

Table 6: Comparative experiment for ResNet-50 on ImageNet

Network W-bits A-bits Accuracy Acc loss

Baseline 32 32 0.782 /

PACT 2 bits 2 bits 0.722 0.06
3 bits 3 bits 0.753 0.029

2 bits 2 bits 0.689 0.093
Han 3 bits 3 bits 0.751 0.031

4 bits 4 bits 0.762 0.02

DoReFa 2 bits 2 bits 0.671 0.111
HAQ flexible flexible 0.753 0.029
Ours 1/4/8 bits 2/4/8 bits 0.758 0.024
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For comparison, Table 7 records the comparative experiment for LeNet on MNIST with prior
work. Our method achieves minimum quantization variations of 0.055 and 0.003 compared to the full-
precision baseline at the two-bit width allocation schemes, respectively. Again, in Table 7, we notice
that a group of hybrid bit width strategies of our method with high average bit width have low accuracy.
It indicates that the greater the proportion of low bit width, the greater the accuracy of the model.

Table 7: Comparative experiment for LeNet on MNIST

Technique W-bits Average bit width Accuracy Acc loss

Baseline 32 / 0.908 /
ReLeQ {8,2,2,3,2,8} 4.16 0.842 0.066
ADMM {8,5,3,2,3,8} 4.83 0.700 0.208
Ours {8,1,8,4,4,8} 5.5 0.853 0.055
Ours {4,8,8,8,4,4} 6 0.905 0.003

4.4 Ablation Study

4.4.1 W/ and W/O Standard Deviation

The design adds the standard deviation of weights to the state-space design. The number of
searches is set to 50, the number of quantization retraining is set to 100, in order to make the
comparison with the addition of the weight standard deviation more obvious, the hybrid bit width
assignment strategy with the best verified accuracy is shown in the following table for the two models
of MobileNet-V2 and LeNet.

The hybrid bit width assignment strategies selected in Table 8 are all have low bit width, that is,
there is a combination of 2-bit input and 1-bit weight in one or more layers. Experiments show that
reinforcement learning can fully measure the distribution differences of data in different layers in the
mixed precision quantization bit width search process. Although the compression ratio of the model
is slightly increased, the quantization deployment accuracy of the model is improved in the limited
search space, and a suitable quantization bit width assignment strategy is found for each layer.

Table 8: Comparative experiment with the addition of “weighted standard deviation”

Network Weight standard deviation Compression ratio Accuracy

MobileNet-V2
None 0.552 0.767
� 0.572 0.792 (+0.025)

LeNet
None 0.206 0.853
� 0.234 0.863 (+0.01)

4.4.2 Comparison between Optimized Reward Function

The goal of reinforcement learning is to obtain optimal decisions so that the agents controlling the
mixed-precision quantization strategies receive the greatest rewards. The design of reward function is a
crucial component of reinforcement learning as indicated in Section 3.2. In this paper, we incorporate
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reinforcement learning techniques by proposing a special parametric reward formulation. To evaluate
the effectiveness of the proposed reward formulation, we have compared the mixed-precision search
effect of the models before and after the reward function optimization in Table 9.

Table 9: Comparative experiment with optimized reward function

Network Dataset Optimize reward Accuracy Compression ratio Time

MobileNet-V2 Fashion-MNIST None 0.721 0.691 3388.06
� 0.814 0.784 3314.37

UCMerced LandUse None 0.736 0.765 1767.58
� 0.776 0.775 1675.15

LeNet MNIST None 0.853 0.206 387.898
� 0.905 0.285 338.790

Table 9 shows the accuracy and compression ratio results of MobileNet-V2 and LeNet, where
“�” indicates that the corresponding reward function has been optimized. It can be seen from the
comparative results that no matter which model is evaluated, no matter which dataset is based on,
although the compression ratio of the quantization strategy searched by the optimized reward function
is slightly higher, the accuracy of retrained quantization model becomes higher. Under the condition
that the hardware resources are satisfied, the proposed reward formulation is consistently achieving
higher accuracy during the reinforcement learning training episodes. Our agent gave quite different
quantization strategies for accelerators.

5 Conclusion

In conclusion, a quantization strategy optimal assignment algorithm for mixed precision is
proposed, and reinforcement learning is used to automatically predict the optimal bit width that meets
the constraints of hardware resources. The proposed method improves the classification accuracy loss
of 2.6%, 2.4% and 0.3% on the MobileNet-V2, ResNet-50 and LeNet compared to the full-precision
baseline, respectively. It effectively achieves the compromise between the performance and accuracy
of deep neural networks.

Future research opportunities stemming from the findings presented include: (1) Mixed-precision
search based on reinforcement learning can be applied to tasks such as detection, semantic segmenta-
tion, and speech recognition, etc.; (2) The execution speed feedback can also be obtained from other
localized embedded neural network accelerators. These can be widely deployed on various embedded
computing platforms with low power consumption and limited resources; (3) Even though we have
shown benefits of ours as compared to DNAS or HAQ, it may be possible to combine these methods
for more efficient AutoML search. We leave this as part of future work.
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