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ABSTRACT

Insulator defect detection plays a vital role in maintaining the secure operation of power systems. To address
the issues of the difficulty of detecting small objects and missing objects due to the small scale, variable scale,
and fuzzy edge morphology of insulator defects, we construct an insulator dataset with 1600 samples containing
flashovers and breakages. Then a simple and effective surface defect detection method of power line insulators for
difficult small objects is proposed. Firstly, a high-resolution feature map is introduced and a small object prediction
layer is added so that the model can detect tiny objects. Secondly, a simplified adaptive spatial feature fusion (S-
ASFF) module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale
features. Finally, we propose an enhanced deformable attention mechanism (EDAM) module. By integrating a
gating activation function, the model is further inspired to learn a small number of critical sampling points near
reference points. And the module can improve the perception of object morphology. The experimental results
indicate that concerning the dataset of flashover and breakage defects, this method improves the performance of
YOLOv5, YOLOv7, and YOLOv8. In practical application, it can simply and effectively improve the precision of
power line insulator defect detection and reduce missing detection for difficult small objects.
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1 Introduction

Insulators, as one of the key equipment, are important for secure power transmission. Its main
function is to be used together with the metal fittings to fix the conductors to the tower poles and to
keep the insulation between the conductors and the tower poles. However, there are various insulator
defects due to harsh environments. The insulation characteristics of the defect insulator gradually
deviate from the reliable range until it loses its insulation capacity. Common insulator defects include
missing caps, pollution, flashover, breakage, and current leakage. According to research statistics,
insulator defects cause more than half and the largest proportion of power accidents [1]. Flashover
of insulators causes the second largest number of insulator accidents [2]. Nevertheless, insulator status
detection is considered one of the most formidable issues within the realm of power line inspection [3].
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To prevent power accidents and ensure the stability of the power supply, power companies
must regularly inspect the power system to identify and address any equipment defects. In recent
years, the inspection ways have undergone rapid development. Traditional inspection ways include
(1) maintenance personnel observation inspection. Manual operation is limited by weather, terrain,
and environment, which is inefficient and risky. (2) Using a manned helicopter to shoot videos. The
helicopter is flown at a safe distance away from power lines and equipment, and then maintenance
personnel take videos of various equipment in the power system for subsequent inspection. But this
way is costly and inaccurate. As Unmanned Aerial Vehicle (UAV) technology has been widely used in
many fields, such as agriculture and search actions, it has also been promoted in power inspection. UAV
inspection offers the benefits of low cost and high efficiency. It can capture all kinds of data efficiently
and quickly, such as visible image data. By processing the images, and then using the detection and
classification technology based on computer vision, the automatic processing and analysis of images
can be achieved so that the intelligent surveillance of the power system can be further realized.

However, after several years of development, the vast amounts of aerial images captured by UAVs
have become one of the bottlenecks limiting the intelligent monitoring of power systems. Effectively
employing advanced technologies for the intelligent processing and analysis of large-scale images has
emerged as a critical concern.

Considerable work has been put into the detection of insulators and their defects to better monitor
the power system. Zhang et al. [4] introduced an enhanced YOLOv8s model with multi-scale large
kernel attention and lightweight Group Shuffle Convolution (GSConv) to tackle challenges related to
sluggish recognition speed and low accuracy. Zhang et al. [5] proposed a densely connected feature
pyramid based on YOLOv3. The method can realize the efficient fusion between the positional
information of shallow features and the semantic information of deep features. However, it has a
large performance gap in object detection with different scales. Jiang [6] proposed a method based
on YOLOv5. They adopted a cascade framework to detect all insulator objects and various types of
defects in images using the first-level model and second-level model successively. Although the method
can detect defects such as flashovers, breakages, and missing caps, its ability to localize the flashovers
and breakages with weak edge features is poor and detection precision is low. Xu [7] proposed a super-
resolution generative network. They combined GridMask, random erasure algorithm, and adversarial
generative network to expand the small object dataset while realizing the boundary clarity of small
objects. Then the precision of small object detection was improved by introducing a Transformer and
Swin Transformer to improve YOLOv5. However, the structure of the method is more complicated,
which is not favorable for practical application.

To address the aforementioned challenges, this paper establishes a dataset encompassing flashover
and breakage defects. Additionally, it presents a method for detecting insulator defects in power lines
based on YOLOv5. The key contributions of our research can be outlined as follows:

• We introduce a high-resolution feature map to be fused with feature pyramids to enhance the
detailed features of small objects in the neck network. Then the small object prediction layer
is added to further improve the detection precision of tiny objects.

• We propose an S-ASFF module to improve adaptability to variable scales. It can enhance scale
perception for objects by establishing relationships between dimensions of scale and space to
retain key information and learn to lead important scale features into a dominant position.

• We propose an EDAM module to highlight weak edge features of insulator defects. It can
further inspire the deformable attention mechanism to learn a small number of critical
sampling points near the reference point to extract discriminative features.
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• Experimental results show that the proposed method can effectively detect insulator flashover
and breakage defects and reduce missing detection.

The rest of this paper is organized as follows. Section 2 reports the related work. Section 3
describes the details of the proposed methodology for defect detection in power lines. Experiment
results on the defect detection are presented in Section 4, and a short conclusion is finally drawn in
Section 5.

2 Related Work

Vision foundation models. Currently, the insulator defect detection models are mainly categorized
into traditional image processing-based methods and deep learning-based methods. Methods based
on traditional image processing design algorithms that involve the extraction of features [8], including
color [9,10], morphology [11,12], gradient [13], edge [14], texture [15], and spatial characteristics [16].
The extracted features are poorly generalized to different tasks or objects and thus are gradually
replaced by deep learning methods. Further, the methods are also susceptible to the interference of
complex backgrounds, which is not conducive to small object detection.

The rise of deep learning has positioned it as a prominent technique in the intelligent inspection of
power lines. The deep learning-based methods are categorized into two-stage methods and single-stage
methods. Algorithms like R-CNN [17], Fast R-CNN [18], and Faster R-CNN [19] exemplify the two-
stage methods. Reference [20] proposed an improved Faster R-CNN model based on deep learning to
improve the precision of fault detection. The method first replaced the feature extraction network and
used a feature pyramid for feature fusion, and finally used RolAlign instead of the RolPooling network
to reduce the impact of quantization. Thus, the reduction of missed detection rate and false detection
rate were realized. While these two-stage methods offer high detection precision, they face challenges
in meeting real-time requirements in practical application scenarios. This is due to the candidate frame
generation phase, which introduces significant computational redundancy, leading to a reduction in
detection speed.

Single-stage methods, represented by algorithms such as the YOLO [21], YOLOv4 [22], YOLOv5
[23], YOLOv7 [24], and SSD [25], can directly predict the location and object class by using the location
information as a potential object. Especially, the YOLO algorithm achieves a faster detection speed
compared to two-stage methods, while taking into account a higher detection accuracy. Therefore, the
YOLO series is widely used in industrial applications. Hao et al. [26] carried out a new architectural
design from the backbone network and neck of YOLOv4, respectively. They designed CSP-ResNeSt
to extract stronger features to weaken the influence of complex backgrounds in aerial images. Subse-
quently, Bi-SimAM-FPN, featuring split-attention blocks, was introduced to address the challenge of
accurately identifying small-scale insulator defects. Reference [27] introduced Mina-Net for detecting
self-blast in insulators, leveraging the YOLOv4 framework. The approach primarily incorporated shal-
low feature mapping within the feature pyramid and subsequently enhanced Squeeze-and-Excitation
Networks (SENet) to recalibrate features across different levels in the channel direction. In another
work, Ding et al. [28] integrated the Assumption-free K-MC2 (AFK-MC2) algorithm into YOLOv5,
adapting the K-means method to enhance both accuracy and speed in detecting defects in insulator
strings.

The architectural framework of the YOLO series primarily comprises three components, which
are the backbone, neck, and head. In terms of extracting multi-scale features, top-down paths, and
transversally connected paths can represent multi-scale objects correctly. However, this leads to the fact
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that the different scale feature layers are only responsible for detecting objects at the corresponding
scales, and the different scales are not sufficiently fused. In addition, tiny object detection still suffers
from insufficient precision.

In this paper, we choose YOLOv5 as a baseline for four reasons: (1) YOLOv5 is the first model in
the YOLO family to apply the gradient shunting idea to design a more efficient network architecture
by using Cross Stage Partial Network (CSPNet) [29]. The subsequent YOLOv7 and YOLOv8 are
both based on this idea to obtain richer gradient information by branching more gradient flow in
parallel and thus obtain higher precision. Therefore, the value of using YOLOv5 as a baseline for our
research results can be demonstrated more clearly in essence. (2) YOLOv5 is a popular and mature
object detection model for industrial applications. It has been highly optimized compared to other
versions and therefore has a very stable performance. (3) YOLOv5 has a strong advantage in the
rapid deployment of the model. It not only dramatically improves detection speed while maintaining
precision, but is also more friendly and flexible to deploy. (4) YOLOv5 has excellent FPS, and
compared with YOLOv8, it is more suitable for deployment and real-time application on devices that
do not support GPU. Besides, YOLOv7 and YOLOv8 all have higher parameters and FLOPs than
YOLOv5 in the same level of model.

Attention mechanisms. In recent years, attention mechanisms have been widely used in the field
of power line defect detection. Chen et al. [30] added SENet, a channel attention mechanism, to
the YOLOv5 backbone network to improve the feature extraction ability of the model. In addition,
some researchers combine SENet with other attention mechanisms to solve the problem of low
accuracy of power line defect detection. For example, Efficient Channel Attention (ECA) and
SENet formed a double attention fusion module [31]. Alternatively, SENet and Concentration-Based
Attention Module (CBAM) were introduced respectively to merge object features at different scales
and prominent feature information [32]. Transformer [33] based on the self-attention mechanism has
achieved great success in the field of natural language processing and some scholars have also applied
it in the field of power line defect detection [34,35]. However, Self-attention is computationally heavy
because it processes all the pixels in an image. In contrast to the above methods, inspired by the
Deformable Attention Mechanism (DAM) proposed in Deformable DETR [36], EDAM proposed in
this paper makes use of DAM that can significantly reduce computation and have better performance
than the self-attention mechanism. EDAM has more powerful attention ability than DAM (especially
on small objects) and more stable training gradients due to the introduction of fusion gating activation.

3 Methodology

In this paper, we present a simple and effective surface defect detection method for power line
insulators. This method addresses challenges such as low precision and missed detection caused by
small defect objects, variable scales, and fuzzy edge morphology.

Fig. 1 illustrates the overall framework of the defect detection method proposed in this paper.
The CBL is composed of convolution, batch normalization, and the Leaky ReLU activation function.
There are two structures contained in the model, the CSP1_X structure and the CSP2_X structure,
where X denotes multiple residual units. The CSP2 refers to X = 1, indicating that it contains only
one residual unit. To maximize the retention of detailed features conducive to small object detection,
a shallow high-resolution feature map of size 160 × 160 × 64 in the backbone network is introduced
firstly to be fused with the Feature Pyramid Network (FPN). Secondly, we introduce the ASFF module
and improve it. The cross-scale fusion of FPN layers at each scale is performed by the adaptive spatial
feature fusion layer S-ASFF, so that the fusion is dominated by the most important feature layer
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at each spatial location, improving the multi-scale characterization capability. Finally, an enhanced
deformable attention mechanism is introduced with a fusion gating activation function, which further
inspires the model to learn a small number of critical sampling points in a set of sampling points,
reducing the defect missed detection rate of weak edge features.

Figure 1: The overall architecture of the proposed method

3.1 Strategy Adjustment of YOLOv5 Network Structure

The following is the setting of FPN used to construct the feature pyramid. The original feature
representations are denoted as P = {P3, P4, P5}, which correspond to the multilevel feature maps
C = {C3, C4, C5} with predetermined strides {8, 16, 32} in feature hierarchy of the input image. To
address the challenges that lead to defect missed detection due to insulators with small defect objects,
low proportion of pixels occupied, and serious loss of detailed features during convolution down
samplings, we introduce the high-resolution feature map C2 after two down samplings in the backbone
network and fuse it with P2 of FPN. This way can enhance the detailed features of small objects in the
neck network and alleviate the situation of serious loss of the detailed features in the deeper layers. The
specific steps are: (1) P3 is upsampled and then feature fused with C2 to obtain P2 which increases the
detail features in the neck network that are favorable for small object detection; (2) the feature map P2

is input into the YOLOv5 head after convolution, batch normalization, and Leaky ReLU activation,
which ultimately improves the detection of tiny objects.

3.2 Simplified Adaptive Spatial Feature Fusion

To tackle the issue of insufficient feature fusion across different scales, which hampers the network
of ability to adapt to significant variations in object scales, S-ASFF is added to the neck network,
inspired by the Adaptive Spatial Feature Fusion (ASFF) [37] module. In addition, to reduce the
number of parameters, we remove the feature fusion layers of ASFF-1, ASFF-2, and ASFF-3. By
utilizing the feature fusion mechanism of S-ASFF, the model can adaptively learn the weights of the
different scale feature layers of the FPN at each same position, so that the most important feature
layers dominate the fusion. The comparison between the ASFF module and the S-ASFF module is
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shown in Fig. 2. The original ASFF contains three fusion layers while S-ASFF has only one fusion
layer which integrates the feature layer P2 of FPN with more detailed features. The S-ASFF can fuse
the bottom feature maps with higher resolution in the FPN so that it can improve the detection ability
of smaller objects.

Figure 2: The network structure comparison between ASFF and S-ASFF

As shown in Fig. 3, S-ASFF is specifically divided into three steps: (1) up-sampling P =
{P3, P4, P5} to expand the scale to ensure that the scales of each feature layer are consistent in
the process of fusion; (2) spatial filtering for each position after up-sampling to learn the relative
importance of different scale layers and to enhance the perceptibility of the scales; and (3) spatial
fusion across scales to enhance the adaptability to changes in scales. As shown in Fig. 3, where P5

is the highest layer and P2 is the lowest layer. After up-sampling, the feature maps of each layer are
denoted as xk, k ∈ [2,5].

Figure 3: The structure of simplified adaptive spatial feature fusion. (a) Represents the overall
architecture of S-ASFF with FPN. (b) Represents the details of spatial filtering and cross-scale fusion
for S-ASFF

Both scale dimension and spatial dimension are taken into account in S-ASFF which processes
spatial weights to the scaled feature maps at each level. A softmax activation function with a control
factor ρ is used to calculate the spatial mask indicating the relative importance of the corresponding
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positions for the layers across the scales. Taking layer of x5 as an example, the formula for calculating
a mask value at pixel (i, j) of the 5-th layer is as follows:

α5
ij = eρ5

ij

eρ2
ij + eρ3

ij + eρ4
ij + eρ5

ij
, (1)

where each pixel corresponds to a control factor ρij to generate αij. The αij for levels referred to as
[α2

ij, α
3
ij, α

4
ij, α

5
ij].

For aggregation at scales and filtering of conflicts in space, the formula is as follows:

y′
ij = α2

ij · x2
ij + α3

ij · x3
ij + α4

ij · x4
ij + α5

ij · x5
ij, (2)

where xk
ij, k ∈ [2,5] denotes the feature tensor at pixel (i, j) and α2

ij + α3
ij + α4

ij + α5
ij = 1. y′

ij denotes a
feature tensor as output after being processed by S-ASFF.

3.3 Enhanced Deformable Attention Mechanism

To enhance the transform modeling ability of the convolution neural network, the model can
adaptively adjust the shape of the convolution kernel to adapt to object features with different
morphologies, to enhance the localization ability of insulator defects with fuzzy edge morphology,
and then the missed detection of insulator defects is reduced. EDAM is introduced to improve the
perception of object morphology. As shown in Fig. 4, the given feature tensor F ∈ RC×H×W is the
feature space based on S-ASFF, and after a general convolution, the feature map y is obtained. �
indicates that K sampling points of a pixel are matched with the attention mask value, respectively, and∑K

k=1 � indicates that K sampling points are paid attention to. The adaptive sampling process is a self-
learning process to obtain the offset when the network is trained. EDAM enhances the attention ability
of the DAM so that the model can focus on more meaningful locations. Specifically, it zeroes in on the
attention values of unimportant sample points by fusing the gating activation function, prompting the
model to transition from learning a limited set of sample points near a reference point to focusing on
a few crucial sample points within that set.

Figure 4: The structure diagram of the enhanced deformable attention mechanism

The mask is obtained based on the gating activation function ∅. This activation function zeroes
out the negative weights so that the network can learn how to enhance expansion ways for the
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perceptual domain of attention, extracting effective discriminant features. The formula is represented
as follows:

∅(x) = max
(

0,
tanh (x − ϕ) + tanh(ϕ)

1 + tanh(ϕ)

)
∈ [0,1], (3)

where x is the feature map after convolution, ϕ is a predefined hyperparameter and tanh is the
hyperbolic tangent function.

Based on the features in the across-scale fusion space, the output after attention for K sampling
points on a pixel p0 is represented as follows:

Ḟ(p0) =
K∑

k=1

Ak · wk · x (p0 + pk + �pk), (4)

where Ḟ is the feature space for EDAM. For a pixel p0 on the feature map y after general convolution,
K is the total number of sampling points on a pixel p0. We set K = |R|. The range of the convolution
kernel is defined by R. In this paper, R = {((−1, −1) . (−1, 0), . . . , (0, 1), (1, 1))}, which is represented
that 3 × 3 convolution kernel with dilation 1. Ak is a mask value for the k-th sampling point by gating
activation function ∅. pk + Δpk is the offset position of the k-th sampling point. It is worth noting
that when the offset coordinates are floating point numbers, we use the nearest neighbor interpolation
method to round the offset coordinates to obtain the revised coordinates and determine the offset
position pk + Δpk.

4 Experiments
4.1 Dataset Preparation

This paper utilizes a dataset of 1600 raw images. We first collated insulator images containing
flashover and breakage from the Electric Power Research Institute (EPRI) and public datasets UPID
[38,39]. And then we performed a pre-processing operation in images: Cleaning up the damaged
images and resizing them. In addition, image flipping, saturation adjustment, contrast adjustment,
and noise addition were used to expand the data. Second, a dataset in YOLO format was produced
for training and evaluation. Specifically, the images were labeled using the Labelimg tool to obtain
the object categories and coordinate information of ground truth. There are three object classes:
Pollution_flashover, broken, and insulator. According to statistics, the sample size of these three classes
is 1994, 861, and 1466 in order. The dataset was partitioned into a training set and a test set, with an
8:2 ratio.

The label correlogram for objects of each size in the dataset is shown in Fig. 5. It can help identify
patterns or correlations in the distribution of object annotations across different classes and scales. It
reveals if certain classes are more likely to appear at specific scales [40]. x and y are the coordinates of
the bounding box of the object, and width and height are the size of the bounding box of the object,
respectively. From the three coordinate graphs with red labeled boxes, it can be shown that most of
the bounding box widths and heights are less than 1/4 or 1/8 of the original size of the entire image.
However, because the size of the feeding neural network is fixed at 640 × 640, most of the object
pixels in the actual trained images take up a smaller proportion. Overall, the object bounding boxes
are distributed in all parts of the x-axis, indicating that the object scale varies greatly. In addition,
this dataset covers most of the defect scenes in practical applications which makes the trained model
generalizable. To further reduce the network overfitting problem, the model was enhanced with a
mosaic data enhancement method for the samples in the dataset before training. Furthermore, data
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enhancement strategies such as random scaling and random cropping were used to improve the model
classification performance.

Figure 5: The label correlogram for objects of each size in the dataset. (a) Represents a class of graphs
depicting the relationship between x, y, width, and height. Similarly, (b) represents a class of graphs
depicting the distribution

4.2 Experimental Metrics and Implementation Details

For a more comprehensive evaluation of the model, the paper employed three metrics: Precision
(P), Recall (R), and F1-Score, to account for the comprehensive prediction of breakage and flashover.
Additionally, mAP was utilized as an overarching performance metric to characterize and assess the
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model’s quality. All the experiments in this paper were conducted in the hardware environment shown
in Table 1.

Table 1: The experimental running environment

Type Configuration

CPU Intel(R) Core(TM) i5–10500 CPU @ 3.10 GHz
GPU Nvidia GeForce RTX3090 (24 G)
Accelerated environment CUDA 11.5
Operating system Windows10
Deep learning framework Pytorch1.10.1
Programming language Python3.7.12

4.3 Model Training

The network was fed with images of size 640 × 640, and several key parameters were configured.
The batch size was set to 8, momentum to 0.937, initial learning rate to 0.01, and weight decay to
0.0005. The network was trained from scratch for 300 epochs. For the constructed dataset, the number
of object classes is inevitably unbalanced. To alleviate the impact of this problem, we adopted YOLOv5
with a class imbalance strategy as the baseline. This strategy is proposed by YOLOv5. The setting of
class weights and image weights was introduced. The class weights require calculating the number of
labels for each class in the dataset and then taking the reciprocal of the number of class labels. In other
words, the greater the number of labels of a certain class, the smaller the weight in the image containing
that class. Calculating the sum of all the class weights contained in an image is the image weight. The
greater the image weight, the greater the probability of the image being sampled. In particular, the
image is selected according to the image weight by random selection method and the number of images
is the same as that of the training set. This means that the larger image weight will be more likely to be
selected for training. This method can increase the training proportion of the small number of object
classes during training so that the model can learn the features of each object class more balanced
and prevent over-fitting. The training results are depicted in Fig. 6. As the number of training epochs
gradually increased to 300, the loss curves stabilized, indicating effective training.

4.4 Comparison with the SOTA Models

In this section, we assessed the detection capabilities of our method. For a fair comparison, we re-
implemented the relevant models and employed the same evaluation dataset to calculate performance
metrics, including precision, recall, and F1-Score, for the different models. All results are presented in
Table 2. The detection model based on Faster RCNN and SSD has low detection precision and recall
for flashover and breakage as small objects due to the limitations of the basic network framework, so
they are difficult to apply in practice. Compared with YOLOv5s, both YOLOv7 and YOLOv8s have
better performance. However, when applied to YOLOv5s, YOLOv7, and YOLOv8s, respectively, our
proposed method can bring them greater precision gains and recall rate gains. In particular, when the
YOLOv5s baseline was combined with our proposed method, the precision on flashover and breakage
defects was improved by 5.7% and 4.7%, respectively. This exceeds the YOLOv8s baseline, even the
model YOLOv8s + Ours, and significantly narrows the performance gap with YOLOv7. As for the
higher gains of our method on YOLOv5, the possible reason is that the YOLOv5 model is not robust
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enough. There are more robust network structures and performance due to the optimization and
improvement of YOLOv7 and YOLOv8 in the aspects of model feature extraction and strategy for
matching positive and negative samples.

Figure 6: The graphs of training loss and validation loss. (a) Illustrates the bounding box regression
loss. (b) Represents the classification loss

Table 2: The comparison with the state-of-the-art models

Model Breakage (%) Flashover (%) mAP

P R F1-Score P R F1-Score

Faster
RCNN

60.6 81.5 69.0 43.6 60.8 51.0 62.8

SSD 91.2 75.4 83.0 74.9 67.6 71.1 75.3
FINet [41] 90.3 87.5 88.9 87.3 78.5 82.7 80.5
AFNet 88.0 87.5 87.7 88.1 81.5 84.6 81.3
YOLOv5s 87.3 89.6 88.4 83.4 83.0 83.2 83.5
YOLOv5s
+ Ours

93.1 + 5.7 90.6 + 1.0 91.8 88.1 + 4.7 86.0 + 3.0 87.0 85.6 +
2.1

YOLOv7 94.7 91.3 93.0 89.8 86.3 88.0 87.4
YOLOv7 +
Ours

95.4 + 0.7 92.7 + 1.4 94.0 92.0 +1.2 87.2+0.9 89.5 87.9 +
0.5

YOLOv8s 90.3 89.6 89.9 87.5 75.7 81.2 84.9
YOLOv8s
+ Ours

92.2 + 1.9 89.9+0.3 91.0 88.0 + 0.5 79.4 + 3.7 83.5 86.1 +
1.2

We also provide the deployment performance of each model in practical applications, as shown
in Table 3. In the task of power line inspection, the deployment of deep learning models is a
comprehensive process involving several key factors. How efficiently the model is deployed on specific
hardware for optimal performance is critical. YOLOv7 and YOLOv8s are higher than YOLOv5s
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in FLOPs, Parameters, and Model Size. For deploying models on hardware devices that do not
support GPU, YOLOv5s is more suitable. However, the YOLOv5s is significantly inferior to the
YOLOv5s + Ours in terms of precision. In actual model deployment, compared with YOLOv7
+ Ours and YOLOv8s + Ours, YOLOv5s + Ours has the advantages of small model size, high
precision, low computational efficiency and flexible deployment. If optimal precision needs to be
considered, YOLOv7 as the baseline can be chosen to detect flashover and breakage defects of power
line insulators.

Table 3: The comparison of deployment performance in practical application

Model FLOPs Parameters (MB) Model size (MB)

Faster RCNN 474.0 28.8 108.2
SSD 137.0 24.0 91.6
YOLOv5s 17.0 7.3 14.1
FINet 16.9 7.3 14.2
AFNet 17.7 8.1 15.8
YOLOv7 53.2 37.6 71.3
YOLOv8s 28.7 11.2 21.5
YOLOv5 + ours 23.1 8.4 16.6

The results show that our proposed method is effective and lightweight in solving small objects,
scale variations, and weak edge morphological features. Firstly, for strategy adjustment of the YOLOv5
network structure, although this strategy only uses simply high-resolution feature map, it brings two
major improvement advantages to the model: (1) reduces the loss of details of small objects; (2) brings
smaller object-scale information to the second component (S-ASFF). This balances the preference for
learning large and small objects, allowing the model to learn tiny object features that are more difficult
to learn. Secondly, for S-ASFF, the improved performance gains benefit from the fact that the most
important scale layer dominates each position in the feature pyramid with minimal computational
cost. For better fusion, we weigh the scale to which the feature pyramid should be scaled with the least
computational cost while preserving as much of the small object information as possible from the first
proposed component (strategy). Other fusion ways all cause secondary loss of small object information
or increase unnecessary computing costs. Finally, due to EDAM introducing the gating activation
function ∅ with tanh instead of the sigmoid in DAM, EDAM can suppress all attention values with
negative input to 0, which is similar to the negative half region of the ReLU. This will increase the
sparsity of attention. Compared to DAM which indiscriminately learns from a small group of sampling
points near a certain pixel point, EDAM can focus on more meaningful location learning discriminant
features, resulting in improved performance. In addition, EDAM alleviates gradient dispersion because
the sensitive range of gradient change is expanded from [0,0.25] to [0,1], and the gradient is more stable
during training. Furthermore, our method is a more generic variant method compared to the existing
solutions on the YOLO series, which can improve the performance of models in the YOLO family.

All in all, in this paper, a general enhancement method is designed, which reasonably uses high-
resolution feature maps and can simply and effectively improve the adaptability of variable multi-scale
features and the perception of weak edge features with less increase of parameters and computation.
It significantly enhances the detection performance of the YOLO series on difficult small objects. The
missing detection of defects in power lines is reduced.
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To verify the detection performance of our model on large-scale objects and make the results more
convincing, we trained and tested various mainstream algorithms on the public dataset UPID and
compared them with the IFD dataset constructed in this paper. As shown in Table 4. For large-scale
objects, the AP of our model on both the IFD dataset and the UPID public dataset is best.

Table 4: The performance comparison on different datasets

Model IFD UPID

Insulator AP (%) Insulator AP (%)

SSD 97.46 91.21
YOLOv5s 97.50 93.74
FINet 98.39 94.59
AFNet 98.21 94.95
Ours 98.48 95.45

Object detection was performed on the test set and the results were visualized. Fig. 7 shows some
of the results. The experiment proves that the detection model has strong generalization capability and
wide application potential.

4.5 Ablation Study

In this section, we conducted essential ablation experiments to quantitatively analyze the effec-
tiveness of the various equipment proposed. We gradually introduced the relevant modules into
the network during training. YOLOv5s served as the baseline method for all ablation studies. For
convenience, the strategy adjustment of YOLOv5s network structure is denoted as SAStrgy. The results
are shown in Table 5.

We note that directly adding an SAStrgy makes slight degradation for the performance of
breakage but improves the precision of flashover. The result suggests an unstable effect. We consider
possible reasons for this: The plain YOLOv5s has no advantage for the detection of small objects due
to variable scale and weak edge features besides complex backgrounds. The method has difficulty in
precise judgment for the defect location and damage degree. For specific defect detection tasks, further
optimized strategies are necessary to improve detection performance.

The results show that S-ASFF and EDAM, based on the addition of a SAStrgy, boost the
performance of the baseline: The detection precision of flashover is improved by 3.01% and that
of breakage by 4.58%. However, EDAM improves the model performance most significantly. The
detection precision of flashover is boosted by 4.71% and recall by 2.96% over YOLOv5s. The detection
precision of breakage is increased by 5.74% and recall by 1.05%. This is because S-ASFF provides key
details to EDAM and reduces interference from complex backgrounds. It enables EDAM to more
accurately expand the perceptual domain of attention and extract discriminative features.
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Figure 7: The visualization of defect detection results of power line equipment. (a) Illustrates the
objects can beeffectively identified when the attitude is deformed. (b) Illustrates dense and weakly
discharged flashovers can also be effectively detected. (c) Represents broken cross-sections can also be
effectively detected when the light is intense. (d) Represents detection results for ice-covered scenarios.
(e) Illustrates no missed detection for the case of dense breakage defects and overlapping edges on an
insulator. (f) Severe accumulation of dirt on insulators is not mistakenly detected as a flashover

Table 5: The effect of each component

Model Breakage (%) Flashover (%)

P R F1-Score P R F1-Score

YOLOv5s 87.31 89.58 88.43 83.37 83.04 83.20
YOLOv5s + SAStrgy 86.92 89.10 88.00 86.77 85.40 86.08
YOLOv5s + SAStrgy + S-ASFF 91.89 88.54 90.19 86.45 85.60 86.03
YOLOv5s + SAStrgy + S-ASFF +
DAM

92.38 88.85 90.58 86.95 85.02 85.97

YOLOv5s + SAStrgy + S-ASFF +
EDAM

93.05 90.63 91.82 88.08 86.00 87.03

To illustrate the benefits of our model more visually. This is shown in Fig. 8. The first row shows
an example of breakage and the second row shows an example of flashover. The layer23 will be
further used to predict small objects. It is used together with layer 26 and layer 29 as input to yolo
heads for classification and regression tasks. Before S-ASFF (as shown in layer 21), features are
retained in the object regions because of the stronger semantic information. On the contrary, after the
object scale perception of S-ASFF (as shown in layer 22), features are extracted around each object.
Compared with layer 21, large-scale insulators and small-scale defect (flashovers and breakages)
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objects significantly improve the feature distinction in scale and are more sensitive to location. After
EDAM (as shown in layer 23), distinguishing features are highlighted from key information retained
by the previous module, and object sizes and edge morphological features are precisely learned. At
the same time, one may notice that the defect objects can be learned in both layer 26 and layer 29
because YOLOv5 allows ground truth boxes to perform anchor matching in all prediction layers
simultaneously to increase the number of positive samples. However, layer 23 contains more accurate
small object size and richer edge morphology. Therefore, for SAStrgy, adding a tiny object prediction
layer to directly predict the feature map of layer23 is conducive to improving the precision of smaller
objects, especially for detecting difficult small objects.

Figure 8: The results of heat map visualization

4.6 Runtime Analysis

We also recorded the testing time of our method based on YOLOv5. Specifically, with a batch size
of 16, our method achieved an inference time of 6.1 ms and a non-maximum suppression (NMS) time
of 0.9 ms. Consequently, the total processing time for an image with a size of 640 pixels was 7.1 ms.

5 Conclusion

In this paper, we develop research on defect detection in power lines based on YOLOv5, a frame-
work of object detection algorithms in the field of computer vision. We analyze the challenges in this
field. Through image dataset construction, image processing, model improvement, and experimental
validation of flashover and breakage, we propose a simple and effective surface defect detection
method of power line insulators for difficult small objects. After experimental validation, we conclude
that our model has the advantages of high precision, low omission rate, stability, and fast convergence
when compared with state-of-the-art detection models. It can detect objects in real time. our model can
be extended to other defect detection, such as bird’s nests on power lines or towers, and hanging foreign
objects. The fact that deep learning-based defect detection for flashover and breakage in power lines
is under-reported in the literature, so this paper has clear engineering research value. If more sufficient
and diverse defect image data can be obtained, the next step will focus on multiple defect detection
scenes of various power components, and solve the difficult small object detection problem in this
scene with multi-scale objects.
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