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ABSTRACT

In the contemporary era of technological advancement, smartphones have become an indispensable part of
individuals’ daily lives, exerting a pervasive influence. This paper presents an innovative approach to passenger
counting on buses through the analysis of Wi-Fi signals emanating from passengers’ mobile devices. The study seeks
to scrutinize the reliability of digital Wi-Fi environments in predicting bus occupancy levels, thereby addressing
a crucial aspect of public transportation. The proposed system comprises three crucial elements: Signal capture,
data filtration, and the calculation and estimation of passenger numbers. The pivotal findings reveal that the
system demonstrates commendable accuracy in estimating passenger counts under moderate-crowding conditions,
with an average deviation of 20% from the ground truth and an accuracy rate ranging from 90% to 100%. This
underscores its efficacy in scenarios characterized by moderate levels of crowding. However, in densely crowded
conditions, the system exhibits a tendency to overestimate passenger numbers, occasionally doubling the actual
count. While acknowledging the need for further research to enhance accuracy in crowded conditions, this study
presents a pioneering avenue to address a significant concern in public transportation. The implications of the
findings are poised to contribute substantially to the enhancement of bus operations and service quality.
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1 Introduction

Public transportation systems play a crucial role in modern cities, providing an essential mode
of travel for millions of people every day. As such, local governments and transportation agencies
have invested significant resources in improving the quality and efficiency of these systems [1]. On
the other hand, the ubiquitous presence of smartphones in society, facilitated by rapid technological
advancements, has engendered an increasingly integrated digital landscape. Formerly an uncommon
possession among individuals aged sixty-five and above, smartphones are now widely adopted across
different age groups, including the elderly [2]. These devices have evolved into miniature computers
with multifaceted functionalities, encompassing features such as global positioning system (GPS),
compass, and light sensors. Consequently, there has been a surge of interest in utilizing smartphones as
research tools to gather information about individuals’ behaviors and actions across various domains
[3–7]. Furthermore, the pervasive utilization of digital devices has revolutionized human interactions
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with their surroundings. Residential spaces, workplaces, and even automobiles have become “smart,”
with individuals becoming increasingly reliant on digital technologies in their daily routines. This shift
has prompted vigorous competition among corporations, governments, and organizations to adopt
innovative technologies and maintain a competitive edge.

Recently, the proliferation of open digital environments (ODEs) has presented exciting research
prospects, particularly within the realm of public transportation [8–11]. Despite the availability of
real-time bus schedules and timings, the issue of overcrowding in buses remains prevalent [10]. In fact,
the installation costs of traditional people-counting on buses are prohibitively high, prompting the
exploration of an alternative solution involving the analysis of the digital Wi-Fi environment on the
bus. Particularly, the installation and maintenance expenses associated with deploying sensors on buses
are substantial. Consequently, the suggested solution is to utilize more affordable tools to capture and
analyze signals emitted by passengers’ devices [11]. As such, this paper specifically focuses on ODEs,
which encompass public spaces like buses, shopping malls, streets, and events where unexpected data
is abundant. The objective of this study is to investigate whether examining the Wi-Fi environment can
yield a reasonably accurate estimation of the passenger count at a reduced cost. The analysis of signals
emitted by passengers’ devices aims to address several inquiries surrounding passenger behaviors
on buses, including the prevalence of Wi-Fi usage among passengers, the incidence of smartphone
utilization during public transportation, and the development of methods to differentiate signals
originating from inside vs. outside the bus. Ultimately, this research endeavor strives to enhance our
comprehension of the intricate dynamics within the digital environment and its profound impact on
our daily lives.

Based on the aforementioned discussion, this study presents a novel approach for analyzing Wi-
Fi signals emitted by smartphones on buses, employing Wireshark—an advanced network analyzer.
It discusses the utilization of media access control (MAC) addresses as unique identifiers and the
acquisition of signals from passengers’ devices through probe requests. The key contributions of this
paper can be highlighted as follows:

• A novel approach using smartphone Wi-Fi signals to estimate passenger count in buses. This
approach is more affordable and scalable than traditional methods using people-counting
sensors.

• The development of a signal acquisition and filtering pipeline using Wireshark. This pipeline helps
to eliminate background noise and non-mobile device signals, improving the accuracy of the
passenger count estimation.

• An algorithm that utilizes received signal strength indication (RSSI) values to estimate the number
of passengers on board. This algorithm is based on signal attenuation patterns and takes into
account the bus’s structure and layout.

The remainder of this paper is organized as follows. Section 2 presents an in-depth review
of relevant literature. Section 3 outlines the proposed methodology, while Section 4 presents the
experimental results. Section 5 is dedicated to the discussion of the findings, and finally, the paper
is concluded in Section 6.

2 Related Studies
2.1 Classification Digital Environments

Video surveillance has limitations due to privacy concerns and high costs, which has led
researchers to develop alternative techniques to achieve similar results. Zeng et al. [12] employed
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Wi-Fi signals to analyze shopper behavior in a retail store, achieving high accuracy by analyzing
the Channel State Information (CSI) of Wi-Fi signals. CSI refers to the propagation of signals from
source to receiver. Maekawa et al. [13] developed a method to detect train congestion using Bluetooth
RSSI, resulting in an algorithm with 83% accuracy. Scholz et al. [14] introduced a fingerprinting-
based system called wireless discrimination (WiDisc) for classifying subjects into three categories, tall,
medium, and small, achieving up to 76% accuracy. Both studies utilized RSSI, but from different
sources, which were Bluetooth and Wi-Fi. Furthermore, Wei et al. [15] investigated the effectiveness
of Radio Frequency Interference (RFI) on detecting human activities using device-free CSI-based
recognition techniques and demonstrated that RFI improved detection rates by up to 10%. de
Sanctis et al. [16] developed an infrastructure-free human activity recognition system called WiFi
beacon-enabled camera (WIBECAM) which analyzed PSD estimation from Wi-Fi Beacon messages
and a video camera, achieving an average accuracy of 0.73 to 1 in different locations. These studies
reveal different methods of detecting human actions or patterns in various scenarios.

2.2 Determine Location

This section delves into the significance of smartphone location detection in indoor environments
and presents various approaches that researchers have explored to improve the accuracy of indoor
localization. While GPS sensors are widely used for location detection, they may lack sufficient accu-
racy in indoor environments, which has motivated researchers to explore alternative approaches [17].
However, the focus of previous works on improving accuracy has generally overlooked the simplicity
of development. Recent research on determining indoor location involved different approaches, such
as sensors, algorithms, or a combination of both [18–22]. A notable study by Lymberopoulos et al. [18]
evaluated 22 indoor localization systems through a comprehensive testing procedure under identical
conditions. The results indicated that location errors varied from 0.72 to 10.22 m, with only three
teams achieving less than 2 m accuracy, and the highest accuracy being obtained by Team 1 (0.72 m)
using the 2.4 GHz Phase Offset technique. Another study by Chen et al. [17] proposed a distributed
bear-localization (BearLoc) framework, that integrates sensors, algorithms, and applications, aiming
to streamline the development process while minimizing overhead. The Binding concept in BearLoc
allows algorithms to use data from different sources to generate a location estimate that is passed to
applications or other components. The findings indicate that BearLoc reduced developers’ lines of
code by 60% with acceptable network delay.

Furthermore, Sen et al. [19] proposed a cooperative ultra-wideband positioning indoors
(CUPID2.0), that enhances the previously proposed CUPID system’s accuracy. CUPID2.0 leverages
Time-of-Flight-based localization with signal strength to boost accuracy, and the system was tested
in six sites with over 2.5 million locations, achieving approximately 1.8 m error localization with
infrastructure-free implementation. In contrast, Meng et al. [20] focused on semantic translation of
coordinates, enabling the recognition of store names by scanning Wi-Fi access points. Their prototype
system demonstrated over 90% accuracy in identifying store names, paving the way for innovations
beneficial to both shoppers and store owners.

Kocakusak et al. [22] established a model database (MD), consisting of 750 RSSI values collected
from 96 different locations, with a view to improving location performance. Despite this, their study
found the mean error to be around 3.24 m. However, the results obtained by Kocakusak et al. were not
as strong as those reported by Lymberopoulos et al. [18] and Sen et al. [19]. Drawing a comparison
between these studies, it appears that the proposed approach by Kocakusak et al. [22] may not be
sufficient for achieving highly accurate location tracking. Nonetheless, it is important to note that
further studies may be needed to explore other potential solutions to this problem. In fact, existing
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literature indicates that while location detection is critical for many applications, the methods for
implementing indoor localization and the solutions’ accuracy vary considerably. Therefore, a detailed
investigation of indoor positioning techniques is necessary for effective implementation of location-
based solutions.

2.3 Crowd Detection

Detecting crowds is essential in providing efficient public transport services. To achieve accurate
information on passenger density and congestion levels, researchers have explored alternative methods
to traditional sensors. Lathia et al. noted that while public transport information systems are useful,
they lack qualitative information about passengers [23]. To address this, Lathia et al. investigated
the use of smartphones and social media to provide passengers with real-time updates in London,
England. Their findings suggest that passengers are more likely to share positive experiences and
report crowded or delayed services before announcements are made by the transit authority [23].
Similarly, Zhou et al. developed a system using cellular signals to monitor urban traffic in Singapore
[24]. Their experiments revealed that weather conditions could have an impact on the accuracy of their
system, but ultimately showed the feasibility of achieving a fine-grained estimate of traffic density
using cellular signals [24]. By exploring alternative methods to detecting crowds, these studies offer
innovative solutions to improving public transport services and enhancing passenger experience.

2.4 Wi-Fi Probe Requests

This section explores recent studies on the use and analysis of Wi-Fi signal in different domains.
Freudiger [25] conducted a study to investigate Wi-Fi probe requests from popular smartphones in
various settings. The author aimed to identify how different factors of mobile devices influence the
frequency of probing, as well as the number of broadcasts. The results showed that smartphones send
probe requests at a rate of 55 times per hour. Similarly, Schaub et al. [26] developed a system called
privacy calendar (PriCal) that captures phone signals through MAC addresses. The system displays
the appropriate calendar for each group depending on their MAC address when entering the office.
By saving the MAC addresses beforehand, newcomers are shown the normal calendar. This system
allows for more efficient use of time management, reducing the chances of double-bookings or missed
appointments. In another study, Barbera et al. [27] aimed to capture probe requests from devices in
public for three months. They collected over 11 million probes from over 160,000 different devices
and presented their results in graphs. The authors emphasized the important sociological aspects that
can be learned from analyzing these probes in a large crowd setting. Moreover, Fukuzaki et al. [28]
developed a system to analyze pedestrian flow using Wi-Fi probe requests. The study confirmed that
the system can effectively analyze pedestrian flow, and the authors suggest generating more accurate
person-trip data for future work. This could serve as an important factor in analyzing pedestrian
mobility trends in crowded spaces. On the other hand, a Wi-Fi-based device-free self-quarantine
monitoring system using channel state information (CSI) derived from Wi-Fi signals was proposed
for room occupancy detection and human activity recognition [29], offering an alternative to existing
camera or wearable device-based systems. Meanwhile, Magsino et al. [30] presented a multi-story
indoor localization scheme using multiple Wi-Fi Received Signal Strength Indicator (RSSI) signals,
enabling tracking within a residential household. It can be observed that, these studies demonstrate
the potential of Wi-Fi probe requests as a tool for gathering important data for a variety of purposes.
Whether it is understanding social behavior, improving time management, detection and tracking, or
analyzing pedestrian flow, the use of these probes shows great promise for future research.
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2.5 Summarization of Relevant Literature

Overall, the investigated studies demonstrate the potential of Wi-Fi signals and probe requests
for a variety of applications, including understanding social behavior, improving time management,
detecting and tracking, and analyzing pedestrian flow. However, there are also limitations to some of
the approaches, such as requiring data collection and training. Further research is needed to develop
more generalizable methods for using Wi-Fi signals for these purposes. The employed approaches,
their applications, strengths and limitations of the relevant studies in literature are summarized in
Table 1.

Table 1: Summarization of relevant literature

Ref. Approach Area of application Strengths Limitations

[12] Wi-Fi signals to analyze
shopper behavior

Retail store High accuracy by
analyzing CSI of Wi-Fi
signals

Not applicable
to all scenarios

[13] Bluetooth RSSI to detect
train congestion

Train 83% accuracy algorithm Limited to
specific use
cases

[14] Wi-Fi
fingerprinting-based
system for classifying
subjects

Classification (tall,
medium, and small)

Up to 76% accuracy Requires data
collection and
training

[15] Device-free CSI-based
recognition techniques to
detect human activities

Detection of human
activities

Up to 10% improvement
in detection rates

Requires data
collection and
training

[16] Infrastructure-free
human activity
recognition system using
PSD estimation

Recognition of human
activities

0.73 to 1 average
accuracy in different
locations

Requires data
collection and
training

[17] Sensors, algorithms, or a
combination of both to
determine indoor
location

Indoor environments Wide range of accuracy Varies
depending on
approach

[18] BearLoc distributed
framework for indoor
localization

Streamline the
development process
while minimizing
overhead

Reduced developers’ lines
of code by 60% with
acceptable network delay

Limited to
BearLoc
framework

[19] CUPID2.0 indoor
positioning system

Infrastructure-free
implementation

Approximately 1.8 m
error localization with
infrastructure-free
implementation

Limited to
CUPID2.0
system

[20] Semantic translation of
coordinates to recognize
store names

Recognition of store
names by scanning
Wi-Fi access points

Over 90% accuracy in
identifying store names

Requires Wi-Fi
access points

(Continued)
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Table 1 (continued)

Ref. Approach Area of application Strengths Limitations

[22] Model database (MD)
for improving location
performance

Location detection Results not as strong as
other approaches

Limited to MD
framework

[23] Smartphone and social
media for real-time
updates on public
transport services

Qualitative
information about
passengers

Passengers more likely to
share positive experiences
and report crowded or
delayed services

Limited to
social media
and smartphone
data

[24] Cellular signals to
monitor urban traffic

Traffic monitoring Fine-grained estimate of
traffic density using
cellular signals

Limited to
cellular signals

[25] Wi-Fi probe requests
from popular
smartphones

Social behaviors and
pedestrian flow
tracking

Can be used to improve
time management, detect
and track, or analyze
pedestrian flow

Requires Wi-Fi
enabled devices

[29] Wi-Fi-based device-free
self-quarantine
monitoring system

Room occupancy
detection and human
activity recognition

Alternative to existing
camera or wearable
device-based systems

Requires Wi-Fi
access points
and CSI data

[30] Multi-story indoor
localization scheme using
multiple Wi-Fi RSSI
signals

Tracking within a
residential household

Can be used to track
individuals within a
home

Requires Wi-Fi
access points
and RSSI data

3 Proposed Methodology

In the preceding section, a number of methodologies and approaches were elucidated with regards
to addressing diverse issues, such as the detection of crowding in buses. One potential solution involves
leveraging Wi-Fi signals emitted by passengers’ devices and subsequently analyzing and filtering the
collected data. Nonetheless, the implementation of this approach necessitates the adoption of several
measures to attain an acceptable level of precision. To assess the viability of this method, this paper will
conduct an experimental study in the domain of public transportation, specifically on the Brighton &
Hove Buses. This study will employ qualitative research techniques to evaluate the effectiveness of the
proposed methodology.

The architecture of our proposed system, as illustrated in Fig. 1, has been structured into three
distinct components: (1) Signal capture, (2) Data filtering, and (3) Analysis and estimation. Each of
these components is assigned specific tasks, with defined inputs and outputs. Moreover, a detailed
flow diagram is shown in Fig. 2 to further explain the involved steps in each component of the system.
In addition, the Pseudo-code of the proposed algorithm is further provided in Algorithm 1 to enhance
the clarity and understanding of steps the proposed approach. Subsequent subsections will delve into
a comprehensive explanation of each component, providing detailed insights.
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Figure 1: The general architecture of the system

Figure 2: The flow diagram of the proposed system
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3.1 Signal Capture Component

The Capturing Component is the first stage of the proposed methodology. It is responsible for
collecting the stream P = {p1, p2,..., pn} of Wi-Fi packets captured from passengers’ electronic devices
while they are on board the bus. It employs a streamlined version of Wireshark, known as Tshark,
which serves solely as a tool for signal capture, constituting the input mechanism of the system.
Essentially, Wireshark is a network protocol analyzer renowned for its ability to monitor network
activity at a granular level. It is employed to aid in data analysis and expedite the resolution of network-
related problems with real-time capturing capabilities, which makes it suitable for the requirements of
this study. Specifically, Wireshark is employed as the initial layer to capture network signals, with
the intention of passing the data to the subsequent layer for filtering. The system will conduct live
capture on buses and subsequently analyze the data to determine the number of passengers present.
The specific data that Wireshark provides to the second layer of the system are listed in the following:

• MAC Address: The system proposed in this paper is reliant upon the collection of MAC
addresses, which serve as a crucial prerequisite for the identification of devices within a digital
environment.

• Device Name: Wireshark has the capability to furnish the device name or brand name associated
with each captured signal, thereby enabling the system to filter out non-mobile devices based
on this information.

• Service Set Identifier (SSID): One prospective development involves enhancing data analysis
capabilities by leveraging the Service Set Identifier (SSID) to gather additional information.
Within this system, the primary objective lies in accurately detecting and monitoring the
occupancy levels of buses.

• Received Signals Strength Indication (RSSI): The RSSI holds substantial importance within the
system, in terms of its ability to filter out signals originating from external to the bus devices.
It is worth noting that the system can judiciously discern the distance of the device from the
receiver based on the signal strength [19].

Algorithm 1: Bus passenger counting using Wi-Fi signals
Inputs:

• P = {p1, p2, . . . , pn}: Stream of Wi-Fi packets captured between bus stops A and B
Output:

• N: Estimated number of passengers
Initialization:

• filterd_packets = []
• unique_MAC_addresses = set()

Begin
Do
Step1: Signal Capture Component:

• Capture Wi-Fi packets P using Tshark.
• Extract relevant data for each packet p ∈ P:

• MACp: MAC address
• Dp: Device name
• RSSIp: Received Signal Strength Indication

(Continued)



CMC, 2024, vol.79, no.1 883

Algorithm 1 (continued)
Step2: Data Filtering Component:

•For each packet p in P:
•If RSSIp ≤ −80dBm and Dp suggests a mobile device then

•Add p to filtered_packets:
filterd_packets = {(MACp, RSSIp, Dp

) ∈ P|RSSIp ≤ −80dBm and Dp

suggests mobile device}
•For each MAC address MACp in filtered_packets:

•If MACp is not already in unique_MAC_addresses then
•Add MACp to unique_MAC_addresses:

unique_MAC_addresses = {MACp ∈ filtered_packets}
Step3: Analysis and Estimation Component:

•For each MAC address MACp in unique_MAC_addresses:
•Calculate the frequency of occurrence:

•fp = count(MACp)/|filterd_packets|
•Identify MAC addresses likely belonging to passengers:

•N = count(MACpin unique_MAC_addresses |fp ≥ 0.2)

Repeat until the bus reaches the next stop
Go to Signal Capture Component
End

Data collection is a crucial aspect of any research project, as the accuracy and relevance of the
data directly impact the validity of the study. In fact, the selected approach for data collection in this
study focuses on utilizing the bus environment to capture signals from passengers’ electronic devices.
This method aims to reduce the financial burden associated with the project as compared to other
methodologies that rely on capturing signals near bus stops. It is important to note that the number
of bus stops exceeds the number of buses, resulting in a higher availability of data for analysis when
collecting signals on the bus. Generally, when collecting data from public or open spaces, researchers
face challenges due to the large volume of available data, much of which may not be pertinent to
the specific research project at hand. Particularly, it should be noted that Wireshark’s signal capture
also gathers extraneous information for the project, such as IP addresses, IP targets, and protocol
types. Consequently, filters are required to eliminate this superfluous data. This filtering process must
be implemented to reduce the volume of data to be analyzed within the system. Based on that, the
component proceeds with the task of saving and preparing the data for the subsequent component,
which involves further data filtering. This sequence of tasks is repeated iteratively until reaching the
next bus stop.

3.2 Data Filtering Component

Within this component, the system undertakes an analysis of the collected data, applying filters to
eliminate devices that are not mobile and those located outside of the bus. This stage comprises three
interdependent steps. Firstly, the system filters all packets transmitted between bus stops A and B,
discarding any packets associated with devices exhibiting an RSSI greater than −79 dBm, indicating
that the device is not present on the bus. In fact, it was observed that signals weaker than −80 dBm
are predominantly indicative of smartphones within the bus, as per experimental results.

D′ = {(MACi, RSSIi, Di) ∈ P|RSSIi ≤ −80 dBm} (1)
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where D′ represents the filtered packets with RSSI ≤ −80 dBm. Consequently, all data pertaining to
such devices is removed. Subsequently, the system re-filters the remaining packets transmitted between
bus stops A and B, eliminating non-mobile devices.

D′′ = {(MACi) ∈ D′′|Di suggests mobile device} (2)

where D′′ represents the filtered packets after removing the non-mobile devices. For example, if the
system initially captures 500 signals from various devices during the journey between bus stops A and
B, it may identify that 300 signals originate from devices located far away from the bus, and 120 signals
are emitted by non-mobile devices. Following the application of the data filtering process, the system
retains only 80 signals, which are expected to originate from mobile devices within or in close proximity
to the bus. Finally, the system eliminates any duplicate MAC addresses present within the packets.

D′′′ = {unique (MACi) ∈ D′′′} (3)

where D′′′ represents the filtered packets after removing the duplicate MAC addresses.

3.3 Analysis and Estimation Component

The final layer of the system entails an algorithm that performs data analysis and identification
of relevant information to estimate the number of individuals present on the bus. This component
comprises two distinct steps. Firstly, the system calculates the frequency of occurrence for each MAC
address across all packets as

fi = count (MACi)/|P| (4)

where P represents the filtered packets. Secondly, the system identifies MAC addresses that appear in
more than 20% of the packets, indicating their presence on the bus. Then the MAC addresses likely
belonging to passengers are identified as

N = count (MACi ∈ D′′′|fi ≥ T) (5)

where T = 0.2 represents the considered threshold. It is important to note that this stage exclusively
estimates the number of individuals within the bus between bus stops A and B. Subsequently,
the system returns to the initial phase and repeats the entire process through the various system
components. Specifically, the implemented algorithm is designed to calculate the number of packages
captured by the system within a 10-s interval between bus stop A and bus stop B. This duration has been
chosen to ensure the capture of multiple packages, as occasionally the travel time between these stops
is less than 15 s. For instance, the system may capture 12 packages during the journey from bus stop A
to B. Additionally, the system performs a function that examines each MAC address and determines
how frequently it is captured within the A to B interval. If a MAC address is captured, it undergoes the
process of calculating the percentage of times it appears across all captured packages. Ultimately, the
estimation of the number of individuals on the bus is achieved by tallying MAC addresses that have
appeared in 20% or more of the captured packages. Through experimentation, it was found that 20%
represents the most effective threshold for estimating the number of passengers. In other words, the
system captures packages between bus stops A and B, with the count depending on the duration of the
bus journey. Subsequently, it evaluates how frequently a MAC address appears among the captured
packages within this interval. A calculation is then performed based on the percentage of appearances,
with 100% denoting that the MAC address appears in all packages and lower percentages indicating
partial presence.
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4 Experimental Results

The system under consideration is designed to operate based on specific initial values, crucial
for its functionality. These values include the frequency of signal (probe request) transmission from
smartphones within a given time frame and the signal strength inside and outside a bus environment.
Such data are vital for filtering irrelevant signals and providing a comprehensive overview of the
system’s operational context before its actual design, thereby avoiding incorrect assumptions. This
section outlines the results from our initial experiments, which were conducted using a laptop as the
capture device in a controlled setting. The primary objectives of these experiments were threefold: (1)
to ascertain the presence of a smartphone on a bus, (2) to determine the frequency of wireless local
area network (WLAN) packet transmissions from smartphones, and (3) to gather initial values that
would inform and guide the subsequent system design. Below, we detail the main experiments and
their setups, emphasizing the role of the laptop in capturing and processing the Wi-Fi signals.

4.1 Preliminary Experiments

This section presents the preliminary experiments conducted on smartphones and buses, and
reports the results obtained from these experiments, which were subsequently utilized in the main
experiments. Section 4.1.1 describes the experiment conducted on smartphones, while Section 4.1.2
presents the experiment that measures the signal strength of smartphones in buses. Additionally,
Section 4.1.3 reports the initial experiment conducted on buses.

4.1.1 Smartphones WLAN Packet Experiment

In fact, this experiment mainly aimed to investigate how smartphones send signals to access points
or scan for access points. The experiment was conducted using distinct available smartphones operated
on different platforms, namely iOS and Android. The experiment involved testing the smartphones
under five different scenarios as follows. (1) The devices are connected to the internet with locked
screen. (2) The devices not connected to the internet with locked screen and Wi-Fi enabled. (3)
The devices are connected to the internet and browsing a website. (4) The devices are connected to
the internet with Wi-Fi enabled. (5) The devices are connected to the internet through Wi-Fi with the
screen turned off.

Remark 1. The chosen scenarios were designed to comprehensively study how smartphones behave
under different operational conditions such as internet connectivity, screen activity, and Wi-Fi usage,
particularly in the context of bus passenger counting. The goal was to understand how smartphones
interact with Wi-Fi networks in realistic usage conditions during bus commutes. The scenarios aimed
to simulate common real-world situations that smartphones encounter and reflect realistic passenger
behaviors and smartphone interactions with Wi-Fi networks inside a bus.

It is worth mentioning that each of the aforementioned scenarios was tested for a duration of
10 min, as the distance between bus stops is typically less than 10 min by bus. The number of signals
transmitted by the smartphones during each experiment is illustrated in Fig. 3. It is evident that
smartphones transmit signals frequently, more than once in 10 min, irrespective of whether they are
connected to the internet or not. The iOS device transmitted the most signals in most experiments.
Conversely, the Android device did not transmit any signals when the screen was locked with the
battery-saver mode enabled (Android-I). However, it transmitted the most signals when connected to
the internet through Wi-Fi with the battery-saver mode disabled (Android-II).
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Figure 3: Results of smartphones experiment

4.1.2 Smartphones’ Strength Signals in a Bus Experiment

The purpose of this experiment was to investigate the strength of smartphone signals on a double-
decker bus. The experiment was conducted to measure signal strength on both the first and second
floors of the bus. The study was conducted in Brighton, UK on public buses. The results indicated
that the strength of signals from a smartphone on a bus did not need to exceed −79 dBm. Fig. 4
displayed signal strength at various locations on the bus.

Figure 4: Strength signals in many locations on a bus

4.1.3 Initial Bus Experiment

This experiment is conducted to comprehend the nature of data that could be collected. Two
experiments were carried out on public transportation in Brighton, UK. The primary objective of
these experiments was to collect data for analysis and determine the optimal data format. The first
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experiment was conducted on bus 23 (shown in Fig. 5), where signals were captured every 10 s between
Park Village Bus Stop and Brighton Marina Bus Stop. The 10-s interval was selected because a bus
cannot travel between two stops in less than 10 s, and the system needed to record more than one
package between two stops. The system recorded MAC addresses and manual counts of passengers
simultaneously. On the other hand, the second experiment was conducted on bus 7 (shown in Fig. 6),
following the same settings as the first experiment. These routes were chosen because they pass through
crowded areas such as downtown and Brighton Marina. The results of both experiments revealed
that the number of MAC addresses exceeded the bus capacity at most stops. The first experiment
captured approximately 3500 unique MAC addresses, while the second experiment captured 34,000
unique MAC addresses from different electronic devices. These results indicated that the system could
potentially capture a vast amount of data, which would require filtering to refine the data. Figs. 7 and 8
illustrate the number of unique MAC addresses at each bus stop for the first and second experiments,
respectively.

Figure 5: The first route: bus 7 Brighton & Hove

Remark 2. This study is designed to prioritize privacy and data protection. The proposed
system does not involve tracking individuals’ movements or collecting personal data. Instead, it
focuses on capturing and analyzing anonymized Wi-Fi signals to estimate passenger numbers, thereby
safeguarding passengers’ privacy.
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Figure 6: The second route: bus 23 Brighton & Hove

4.2 Main Experiments

This section presents the detailed results of six main experiments conducted to test the proposed
scheme for bus passenger counting. Essentially, manual recordings were taken at each bus stop to
compare with the system’s results. The experiments captured around 127,000 unique MAC addresses,
indicating the number of digital devices present on the buses. Particularly, the system’s estimates were
generally higher than the actual number of passengers, and the reasons for this will be discussed in the
next section. However, the system showed high accuracy rates of 90% to 100% in less crowded areas.
The results are presented for each experiment, emphasizing the most important findings and providing
an overall summary of the data.

4.2.1 Experiment 01

In the first experiment, data was collected from Bus 23 between Amex Stadium and Marina
Cinema from 18:38:55 to 19:24:12. Over 20,000 unique MAC addresses were captured, with varying
numbers at each bus stop. Table 2 displays the number of unique MAC addresses at each bus stop,
with some stops having a large number of MAC addresses, such as Wild Park with approximately
3000 unique MAC addresses. However, this number does not necessarily reflect the number of people
on the bus, as some MAC addresses may have been detected outside of the bus. From Table 3, it can
be observed that 60 MAC addresses were captured three or more times. To remove the devices outside
the bus, an RSSI filter is employed. As a result, the number of MAC addresses decreased to 8000.
The number of MAC addresses after the RSSI filter is found with a decrease of approximately 58% at
each bus stop. In fact, only 41 MAC addresses were captured more than twice. The data was further
filtered to remove non-mobile devices, resulting in an average decrease of 33% in the number of MAC
addresses at each bus stop. Furthermore, Table 4 shows the number of passengers recorded manually
as compared to the obtained results of the developed system, indicating high accuracy in some places
but lower accuracy in others, which will be discussed in the following section.
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Figure 7: The number of MAC addresses at each bus stop of the first route
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Figure 8: The number of MAC addresses at each bus stop of the second route
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Table 2: Number of MAC address in each bus stop at Experiment 01

Bus stop name All data RSSI filter Non-mobile filter

Amex Stadium 913 106 59
Brighton University Falmer 734 216 150
Amex Stadium 913 106 4
Falmer Station 116 21 13
Brighton Academy 83 25 10
Coldean Lane 618 196 159
Wild Park 2972 1155 1040
Ringmer Road 39 25 12
Moulsecoomb Way 50 19 10
Bates Estate 125 55 27
Brighton University 181 58 24
Mithras House 125 84 39
Coombe Road 360 79 39
Lewes Road Bus Garage 286 97 60
Melbourne Street 673 268 213
St Pauls Street 1025 719 633
Elm Grove 1585 732 649
Bottom of Elm Grove 499 324 288
De Montfort Road 876 309 261
Bonchurch Road 51 343 296
Queens Park Junction 361 184 138
Baxter Street 124 68 35
The Hanover 131 81 49
Pepper Pot 564 186 148
Albion Hill 258 125 62
Egremont Gate 534 302 232
Park Street 1704 992 858
Gala Bingo Hall 120 49 20
College Place 1000 178 156
County Hospital 155 18 7
Chesham Street 1029 269 184
St Marys Ilall 257 155 135
LiDL Superstore 861 522 486
Roedean Road 1116 600 549
Marina Cinema 421 96 55
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Table 3: Number of MAC address in each bus stop at Experiment 01

Bus stops All MAC address RSSI filter Non-mobile filter

35 bus stops (maximum number) 1 1 None
20 to 25 2 2 1
10 to 19 5 5 4
4 to 9 16 16 16
3 33 17 5
2 1204 240 47
Only in a bus stop 19,000 7900 6800

Table 4: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 01

Bus stop name Manual System Bus stop name Manual System

Amex Stadium 4 5 De Montfort Road 19 265
Brighton University 5 7 Bonchurch Road 17 298
Amex Stadium 5 4 Queens Park 17 9
Falmer Station 9 6 Raxter Street 16 38
Brighton Academy 9 11 The Hanover 16 51
Coldean Lane 14 5 Pepper Pot 18 150
Wild Park 14 17 Albion Hill 18 5
Ringmer Road 15 13 Egremont Gate 18 234
Moulsecoomb Way 15 11 Park Street 18 9
Bates Estate 15 103 Gala Bingo Hall 21 21
Brighton University 15 24 College Place 23 157
Mithras House 15 53 County Hospital 21 7
Coombe Road 16 41 Chesham Street 19 6
Lewes Road Bus Garage 16 60 St Marys Hall 20 137
Melbourne Street 15 6 LiDL Superstore 18 2
St Pauls Street 19 635 Roedean Road 25 8
Elm Grove 16 650 Marina Cinema 1 1
Bottom of Elm Grove 18 293

4.2.2 Experiment 02

In the second experiment, Route 7 was selected to collect additional data between 19:36:43 and
20:13:20. The system successfully captured over 26,100 unique MAC addresses along the route from
Brighton Marina to Livingstone Road. The number of MAC addresses was recorded in Table 5, with
the majority of MAC addresses being captured at a single bus stop. However, approximately 4% of all
MAC addresses, were captured at more than one bus stop, as shown in Table 6. After applying an RSSI
filter, the number of MAC addresses decreased by almost 80%. The system then applied a non-mobile
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filter, which reduced the number of MAC addresses at each bus stop by an average of 25%, as shown
in Table 6. Additionally, Table 7 shows the number of passengers recorded manually as compared to
the obtained results of the developed system.

Table 5: Number of MAC address in each bus stop at Experiment 02

Bus stop name All data RSSI filter Non-mobile filter

Brighton Marina 3076 526 462
Arundel Road 56 15 6
LiDL Superstore 172 87 66
Sussex Square 13 5 4
St Marys Hall 20 6 4
Chesham Street 1640 194 105
County Hospital 2803 587 465
College Place 485 204 177
Gala Bingo Hall 851 128 96
Park Street 907 272 215
Devonshire Place 300 88 44
Law Courts 713 208 150
Old Steine 790 184 143
Old Steine 1687 271 199
North Street 2243 528 419
Clock Tower 1573 277 193
North Road 3375 430 348
Brighton Station 1156 282 209
Compton Avenue 875 333 250
Seven Dials 441 101 59
Osmond Road 201 86 50
Montefiore Road 249 96 61
Lyon Close 372 98 76
Holland Road 244 74 54
Wilbury Villas 826 223 157
Eaton Gardens 509 216 148
Hove Station 303 130 86
Livingstone Road 947 334 236

Table 6: Number of MAC address in each bus stop at Experiment 02

Bus stops All MAC address RSSI filter Non-mobile filter

28 bus stops (maximum number) 1 1 None
20 to 25 5 3 2

(Continued)
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Table 6 (continued)

Bus stops All MAC address RSSI filter Non-mobile filter

10 to 19 15 17 20
5 to 9 41 24 20
4 15 6 5
3 92 20 18
2 1038 260 130
Only in a bus stop 23,000 4900 3700

Table 7: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 02

Bus stop name Manual System Bus stop name Manual System

Brighton Marina 2 5 North Street 33 17
Arundel Road 15 6 Clock Tower 32 29
LiDL Superstore 17 67 North Road 27 39
Sussex Square 22 4 Brighton Station 37 19
St Marys Hall 30 4 Compton Avenue 36 25
Chesham Street 33 10 Seven Dials 36 12
County Hospital 37 29 Osmond Road 34 51
College Place 43 179 Montefiore Road 35 63
Gala Bingo hall 45 18 Lyon Close 30 78
Park Street 45 22 Holland Road 30 55
Devonshire Place 45 45 Wilbury Villas 23 11
Law Courts 44 37 Eaton Gardens 18 14
Old Steine 33 23 Hove Station 13 87
Old Steine2 32 31 Livingstone Road 10 20

4.2.3 Experiment 03

In this experiment, the same route as in the previous experiment is selected to collect more data.
The experiment began at 09:20:24 and ended at 09:58:52, during which time the system captured
over 24,000 unique MAC addresses from Brighton Marina to Livingstone Road. Table 8 displays the
number of MAC addresses captured at each bus stop. The majority of MAC addresses were captured
at only one bus stop, while around 5% of all MAC addresses were captured at more than one bus stop.
Table 9 provides information on the number of MAC addresses captured at multiple bus stops. After
applying an RSSI filter, the number of MAC addresses decreased by around 80%. Table 8 displays
the number of MAC addresses captured at each bus stop after the RSSI filter was applied. Table 9
provides further information on the MAC addresses captured at multiple bus stops. After that, a non-
mobile filter is employed, which resulted in an average 35% decrease in the number of MAC addresses
captured at each bus stop. Furthermore, Table 10 shows the number of passengers recorded manually
as compared to the obtained results of the developed system.
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Table 8: Number of MAC address in each bus stop at Experiment 03

Bus stop name All data RSSI filter Non-mobile filter

Brighton Marina 358 47 27
Arundel Road 319 82 57
LiDL Superstore 126 43 19
Sussex Square 264 24 11
St Marys Hall 214 29 16
Chesham Street 130 31 18
County Hospital 4964 342 206
College Place 237 39 27
Gala Bingo Hall 982 133 99
Park Street 275 87 44
Devonshire Place 367 99 58
Law Courts 580 144 108
Old Steine 1002 232 190
Old Steine2 879 201 113
North Street 2812 595 449
Clock Tower 2345 397 281
North Road 2404 449 348
Brighton Station 855 173 107
Compton Avenue 778 221 124
Seven Dials 642 155 97
Osmond Road 272 83 55
Montefiore Road 630 127 49
Lyon Close 639 145 105
Holland Road 420 92 57
Wilbury Villas 593 191 117
Eaton Gardens 571 241 170
Hove Station 663 274 191
Livingstone Road 859 247 166

Table 9: Number of MAC address in each bus stop at Experiment 03

Bus stops All MAC address RSSI filter Non-mobile filter

28 bus stops (maximum number) 1 1 None
20 to 27 5 1 None
10 to 19 7 5 5
5 to 9 37 22 19
3 to 4 98 18 13

(Continued)
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Table 9 (continued)

Bus stops All MAC address RSSI filter Non-mobile filter

2 965 198 89
Only in a bus stop 23,000 4200 2800

Table 10: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 03

Bus stop name Manual System Bus stop name Manual System

Brighton Marina 20 5 North Street 27 20
Arundel Road 26 9 Clock Tower 21 12
LiDL Superstore 26 19 North Road 20 20
Sussex Square 28 11 Brighton Station 11 10
St Marys Hall 29 16 Compton Avenue 12 29
Chesham Street 29 18 Seven Dials 18 16
County Hospital 35 18 Osmond Road 20 7
College Place 35 27 Montefiore Road 20 49
Gala Bingo Hall 39 17 Lyon Close 21 105
Park Street 39 7 Holland Road 23 57
Devonshire Place 39 9 Wilbury Villas 20 8
Law Courts 37 13 Eaton Gardens 19 9
Old Steine 31 21 Hove Station 13 5
Old Steine2 31 14 Livingstone Road 13 5

4.2.4 Experiment 04

In this experiment, the data was collected along a route passing through the city center, beginning
at 10:00:55 and ending at 10:39:22. The system recorded over 23,800 unique MAC addresses between
George Street and Marina Seattle Hotel. Table 11 displays the number of MAC addresses captured
at each bus stop, with the majority of MAC addresses being captured at only one bus stop. However,
around 5% of all MAC addresses were captured at more than one bus stop, as shown in Table 12. After
applying an RSSI filter, the number of MAC addresses decreased by approximately 79%, as indicated
in Table 11. The researchers then applied a non-mobile filter, resulting in an average 29% decrease in
the number of MAC addresses captured at each bus stop. Additionally, Table 13 shows the number of
passengers recorded manually as compared to the obtained results of the developed system.



CMC, 2024, vol.79, no.1 897

Table 11: Number of MAC address in each bus stop at Experiment 04

Bus stop name All data RSSI filter Non-mobile filter

George Street 514 201 118
Livingstone Road 125 60 29
Hove Station 458 278 199
Eaton Gardens 1645 642 544
Wilbury Villas 1186 315 230
Lyon Close 1559 432 300
Montefiore Road 412 164 119
Osmond Road 796 312 224
Seven Dials 316 105 53
Compton Avenue 523 123 80
Brighton Station 4050 938 762
North Road 458 105 69
Clock Tower 2633 387 280
North Street 1382 280 189
St James s Street 745 181 101
Devonshire Place 704 176 115
Rock Gardens 554 115 64
Park Street 297 55 29
Gala Bingo Hall 423 129 91
College Place 475 40 24
County Hospital 2804 210 136
Chesham Street 228 27 9
St Marys Hall 230 48 26
LiDL Superstore 352 81 49
Roedean Road 1004 123 83
Marina Seattle Hotel 787 146 112

Table 12: Number of MAC address in each bus stop at Experiment 04

Bus stops All MAC address RSSI filter Non-mobile filter

26 bus stops (maximum number) 2 1 None
20 to 25 1 1 None
10 to 19 4 3 3
5 to 9 23 10 10
3 to 4 62 16 12
2 950 264 112
Only in a bus stop 22,000 4900 3600
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Table 13: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 04

Bus stop name Manual System Bus stop name Manual System

George Street 6 118 North Street 14 9
Livingstone Road 6 29 St James s Street 21 23
Hove Station 11 13 Devonshire Place 20 22
Eaton Gardens 12 19 Rock Gardens Park Street 21 64
Wilbury Villas 14 21 Park Street 22 13
Lyon Close 14 33 Gala Bingo Hall 22 14
Montefiore Road 13 119 College Place 22 24
Osmond Road 13 16 County Hospital 17 7
Seven Dials 15 10 Chesham Street 17 9
Compton Avenue 14 19 St Marys Hall 16 9
Brighton Station 16 18 LiDL Superstore 14 10
North Road 15 69 Roedean Road 17 7
Clock Tower 13 6 Marina Seattle Hotel 3 13

4.2.5 Experiment 05

In this experiment, the data was collected at different times along Route 7. The system captured
over 19,900 unique MAC addresses from Brighton Marina to Livingstone Road, with Table 14
displaying the number of MAC addresses at each bus stop. While the majority of MAC addresses
were captured at only one bus stop, approximately 4% of all MAC addresses were captured at more
than one bus stop, as shown in Table 15. After filtering the data with an RSSI filter, the number of
MAC addresses decreased by around 19%, with Table 14 displaying the number of MAC addresses in
each bus stop after the RSSI filter was applied. The data was then filtered again with a non-mobile
filter, resulting in an average 21% decrease in the number of MAC addresses at each bus stop. Table 15
displays the number of MAC addresses captured at more than one bus stop after the non-mobile filter
was applied. Additionally, Table 16 shows the number of passengers recorded manually as compared
to the obtained results of the developed system.

Table 14: Number of MAC address in each bus stop at Experiment 05

Bus stop name All data RSSI filter Non-mobile filter

Brighton Marina 260 155 116
Arundel Road 875 391 341
LiDL Superstore 83 59 37
Sussex Square 257 59 35
St Marys Hall 105 35 20
Chesham Street 188 117 64
County Hospital 1779 1049 900
College Place 198 166 124

(Continued)
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Table 14 (continued)

Bus stop name All data RSSI filter Non-mobile filter

Gala Bingo Hall 1795 1496 1338
Park Street 788 729 580
Devonshire Place 1293 1196 1067
Law Courts 1097 963 850
Old Steine 1259 1226 1037
Old Steine2 2132 2102 1854
North Street 1037 1008 858
Clock Tower 2563 2367 2060
North Road 1525 1394 1238
Brighton Station 1046 762 652
Compton Avenue 564 374 257
Seven Dials 240 225 166
Osmond Road 324 222 182
Montefiore Road 228 169 93
Lyon Close 252 228 191
Holland Road 173 159 118
Wilbury Villas 280 260 182
Eaton Gardens 226 219 149
Hove Station 86 86 41
Livingstone Road 462 362 273

Table 15: Number of MAC address in each bus stop at Experiment 05

Bus stops All MAC address RSSI filter Non-mobile filter

28 bus stops (maximum number) 2 2 None
20 to 26 3 3 2
10 to 19 19 18 14
5 to 9 55 50 34
3 to 4 128 115 79
2 604 465 253
only in a bus slop 18,900 15,500 12,500

Table 16: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 05

Bus stop name Manual System Bus stop name Manual System

Brighton Marina 38 4 North Street 42 53
Arundel Road 35 341 Clock Tower 47 39
LiDL Superstore 35 37 North Road 45 22

(Continued)
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Table 16 (continued)

Bus stop name Manual System Bus stop name Manual System

Sussex Square 39 6 Brighton Station 33 43
St Marys Hall 42 20 Compton Avenue 30 25
Chesham Street 44 64 Seven Dials 24 9
County Hospital 64 15 Osmond Road 20 182
College Place 68 17 Montefiore Road 20 93
Gala Bingo Hall 73 25 Lyon Close 17 191
Park Street 72 22 Holland Road 15 20
Devonshire Place 70 27 Wilbury Villas 14 7
Law Courts 70 850 Eaton Gardens 11 10
Old Steine 59 32 Hove station 6 41
Old Steine2 48 21 Livingstone Road 6 9

4.2.6 Experiment 06

In the final experiment, a data analysis was conducted on Route 7 at different times. The system
captured over 37,000 unique MAC addresses between George Street and Marina Seattle Hotel.
Table 17 displays the number of MAC addresses at each bus stop, with the majority of MAC addresses
being captured at only one bus stop. However, around 10% of all MAC addresses were captured at
more than one bus stop, as shown in Table 18. After applying an RSSI filter, the number of MAC
addresses decreased by approximately 31%. The data was then filtered again with a non-mobile filter,
resulting in an average 10% decrease in the number of MAC addresses at each bus stop, as shown in
Table 18. Additionally, Table 19 shows the number of passengers recorded manually as compared to
the obtained results of the developed system.

Table 17: Number of MAC address in each bus stop at Experiment 06

Bus stop name All data RSSI filter Non-mobile filter

George Street 598 552 437
Livingstone Road 114 103 77
Hove Station 65 53 38
Eaton Gardens 307 201 168
Wilbury Villas 300 293 254
Lyon Close 218 188 164
Montefiore Road 2813 655 547
Osmond Road 648 264 230
Seven Dials 1314 1226 1086
Compton Avenue 1137 880 761
Brighton Station 1741 1213 1060
North Road 192 179 134
Clock Tower 696 597 534
North Street 1644 1345 1234

(Continued)
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Table 17 (continued)

Bus stop name All data RSSI filter Non-mobile filter

St James s Street 3062 1972 1801
Devonshire Place 3270 2693 2453
Rock Gardens 1500 1382 1251
Park Street 556 523 459
Gala Bingo Hall 1207 537 464
College Place 1218 1196 1093
County Hospital 661 656 586
Chesham Street 611 592 550
St Marys Hall 155 111 86
LiDL Superstore 463 393 331
Roedean Road 2535 2019 1847
Marina Seattle Hotel 1129 993 885

Table 18: Number of MAC address in each bus stop at Experiment 06

Bus stops All MAC address RSSI filter Non-mobile filter

26 bus stops (maximum number) 4 3 None
20 to 25 4 4 4
10 to 19 39 35 28
5 to 9 91 84 61
3 to 4 262 193 136
2 610 528 345
Only in a bus stop 36,000 24,000 22,300

Table 19: Results comparison for the number of passengers obtained by the developed system and
manual recording in Experiment 06

Bus stop name Manual System Bus stop name Manual System

George Street 8 340 North Street 68 17
Livingstone Road 8 7 St James s Street 76 20
Hove Station 18 5 Devonshire Place 75 30
Eaton Gardens 20 7 Rock Gardens Park Street 75 22
Wilbury Villas 32 4 Park Street 69 14
Lyon Close 32 3 Gala Bingo Hall 63 13
Montefiore Road 37 10 College Place 59 10
Osmond Road 39 9 County Hospital 50 7
Seven Dials 41 13 Chesham Street 46 7
Compton Avenue 41 19 St Marys Hall 44 7
Brighton Station 68 16 LiDL Superstore 38 8

(Continued)
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Table 19 (continued)

Bus stop name Manual System Bus stop name Manual System

North Road 66 12 Roedean Road 37 9
Clock Tower 73 20 Marina Seattle Hotel 5 9

4.2.7 Performance Metrics

In this particular section, we conduct a comprehensive assessment of the proposed system’s perfor-
mance drawing from the achieved outcomes. More specifically, emphasis is laid on the accuracy, false
positive rate (FPR), and sensitivity. These essential metrics are elucidated through the establishment
of certain key values for each experiment:

• True Positives (TP): These are the cases where the system correctly identified the number of
passengers.

• False Positives (FP): These are the cases where the system incorrectly identified an excess
number of passengers.

• False Negatives (FN): These are the cases where the system incorrectly identified fewer
passengers than there actually were.

• True Negatives (TN): These are the cases where the system correctly identified an absence of
passengers.

Following the derivation of these fundamental values, the metrics of accuracy, sensitivity, and FPR
are computed utilizing the subsequent equations:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (6)

Sensitivity = TP/(TP + FN) (7)

FPR = FP/(FP + TN) (8)

Furthermore, Table 20 succinctly encapsulates the performance metrics assessed across each
experimental undertaking. Moreover, a comparative analysis is conducted to juxtapose the overall
performance metrics with those elucidated in [31] as illustrated in Table 21. Based on the comparison
result, it seems that the proposed algorithm outperforms the one presented in [31] in terms of accuracy
and sensitivity (recall). The accuracy of the proposed solution is 0.731 as compared to 0.714 from
[31], indicating that the proposed algorithm has a slight edge in correctly predicting the outcome.
Moreover, the sensitivity (recall) is 0.661 as compared to 0.555 from [31], which suggests that the
proposed solution has a better capability to identify true positives.

Table 20: Summarization of performance metrics

Experiment number Accuracy Sensitivity (Recall) FPR

Experiment #1 0.654 0.806 0.346
Experiment #2 0.792 0.729 0.160
Experiment #3 0.832 0.593 0.071

(Continued)
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Table 20 (continued)

Experiment number Accuracy Sensitivity (Recall) FPR

Experiment #4 0.832 0.832 0.159
Experiment #5 0.656 0.685 0.218
Experiment #6 0.620 0.322 0.040
Overall 0.731 0.661 0.165

Table 21: Comparison results

Accuracy Sensitivity (Recall) False positive rate

This paper 0.731 0.661 0.165
[32] 0.714 0.555 Not defined

5 Discussions

This section integrates the results from our six experiments with insights from existing literature,
offering a comprehensive analysis of the factors influencing these outcomes and the system’s overall
accuracy.

5.1 General Observations across Experiments

Consistent with findings by Mishalani et al. [32], our system demonstrated a tendency to
overestimate passenger numbers in scenarios with high pedestrian traffic or vehicular congestion. This
pattern, also observed by Paradeda et al. [33], underscores the influence of external environmental
factors on system performance.

5.2 Correlation of Findings and Contributing Factors

Our experiments align [34], highlighting the variability of system accuracy with the bus’s move-
ment and the presence of nearby vehicles. For instance, longer stops at traffic lights led to an increased
capture of MAC addresses from nearby pedestrians, affecting the accuracy. This necessitates improved
filtering mechanisms, a challenge also identified in the Wi-Fi-based Automatic Bus passenger CoUnt-
ing System (iABACUS) by Nitti et al. [35].

5.3 Behavioral Influences on System Performance

Another key factor affecting the results was the behavior of bus passengers regarding smartphone
usage. Our assumption that 50% of passengers had their Wi-Fi enabled was not always accurate,
leading to discrepancies in the system’s estimations. This was particularly evident in Experiment 6,
where a higher proportion of older passengers, who are less likely to use smartphones, resulted in an
underestimation of passenger numbers. The impact of passenger behavior on system performance,
particularly smartphone usage, resonates with the observations by Wang et al. [36]. Our findings
further emphasize the need for demographic considerations in system design, as also suggested by
Bánhalmi et al. [37].
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5.4 Summary of Experiments

Each experiment provided unique insights, similar to the approach of Junior et al. [38], who also
emphasized the importance of diverse experimental conditions. Our findings contribute to the growing
body of research on Wi-Fi-based passenger estimation systems. While Experiments 1 and 2 highlighted
the challenges in accurately estimating passenger numbers in varying traffic conditions, experiments
3 and 4 demonstrated the system’s higher accuracy during peak times. Experiment 5 underscored the
impact of external factors like pedestrian traffic, and Experiment 6 revealed the influence of passenger
demographics on the system’s accuracy.

5.5 Implications and Future Directions

Our cumulative findings, along with insights from Roncoli et al. [39] and Kuchár et al. [40],
highlight the complexity and potential of Wi-Fi signals for passenger estimation in urban transit
scenarios. These studies collectively suggest avenues for future research, particularly in refining system
algorithms and integrating additional data sources.

5.6 Recommendations for System Improvement

To enhance the accuracy of the system, we propose integrating GPS technology, similar to
the approach by Junior et al. [38], and recalibrating the signal capture percentage, as suggested by
Wang et al. [36]. Implementing multiple monitors, as in the iABACUS system [35], could further
refine our system’s ability to discern device locations, reducing errors from external signal sources. In
conclusion, while our system shows potential in estimating bus occupancy, the experiments highlight
several challenges and areas for improvement. Our approach, complemented by insights from these
references, provides a foundation for future research in enhancing the accuracy and reliability of Wi-
Fi-based passenger estimation systems in urban transit environments.

6 Conclusion

In conclusion, this project aimed to investigate the feasibility of counting passengers on a bus
by detecting signals from their phones. The system designed for this purpose consisted of three
components: Signal capture, data filtering, and passenger estimation. Six experiments were conducted
to test the system, which showed that it was possible to estimate the number of passengers on the bus,
but with a tendency to overestimate by more than double. The accuracy of the system was affected by
factors such as bus movement and traffic conditions. To improve the accuracy of the system, additional
receivers and GPS could be added, and signal capture could be controlled by the movement of the bus.
Future research could further be dedicated to refining and enhancing the proposed system to confront
the challenges associated with heavily crowded conditions during peak travel times, thereby extending
the scope of its applicability and ensuring its reliability across a broader spectrum of operational
scenarios. Moreover, the application of employed technology could be explored in other scenarios,
such as counting people in stadiums or analyzing customer behavior in malls and supermarkets. The
technology could also be used by advertisement companies to customize ads based on smartphone
signals.
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