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ABSTRACT

Detecting hate speech automatically in social media forensics has emerged as a highly challenging task due to
the complex nature of language used in such platforms. Currently, several methods exist for classifying hate
speech, but they still suffer from ambiguity when differentiating between hateful and offensive content and they
also lack accuracy. The work suggested in this paper uses a combination of the Whale Optimization Algorithm
(WOA) and Particle Swarm Optimization (PSO) to adjust the weights of two Multi-Layer Perceptron (MLPs)
for neutrosophic sets classification. During the training process of the MLP, the WOA is employed to explore
and determine the optimal set of weights. The PSO algorithm adjusts the weights to optimize the performance
of the MLP as fine-tuning. Additionally, in this approach, two separate MLP models are employed. One MLP
is dedicated to predicting degrees of truth membership, while the other MLP focuses on predicting degrees of
false membership. The difference between these memberships quantifies uncertainty, indicating the degree of
indeterminacy in predictions. The experimental results indicate the superior performance of our model compared
to previous work when evaluated on the Davidson dataset.
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1 Introduction

Nowadays, Online Social Networks (OSNs) are becoming more popular among individuals all
over the world whether they are technological or not. One of the main reasons for OSNs widespread
usage is the accessibility of the internet. Individuals use OSN for a variety of reasons, including
entertainment, interaction, joy, fame, marketing, and commerce [1]. OSN allowed a fertile medium
to spread hateful, harmful, and aggressive content. Despite differences in hate speech laws in different
countries, it commonly includes communications of hatred against individuals or groups based on a
group feature such as religion, color, gender, or disability. The proliferation of hate speech on social
media platforms has exacerbated the challenges confronted by investigators [2].
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Social media forensics is an approach to gathering, analyzing, and investigating digital infor-
mation collected through different social media platforms to find evidence for court or criminal
investigations. In digital forensics, social media evidence is a fresh field [3]. Throughout social media
platforms criminal activities and evidence can be detected, and the data collected from applications
and platforms can be used in criminal investigation. Social media forensics analysis steps include the
following [4–7]: (a) Collection of social media content (Evidence Collection): This can be accomplished
through a variety of methods including web scraping, Application Programming Interfaces (APIs), and
specialist tools developed for social media data collection. Text, photos, videos, metadata, and other
information important to the analysis can all be included in the evidence [6]. (b) Data preprocessing:
This might include cleaning up the data from duplicates, unnecessary data, and additional noise.
(c) Data Analysis: The next stage is to analyze the data using many techniques and tools. These
techniques encompass a variety of approaches, including Natural Language Processing (NLP) [8] and
text classification for analyzing data to find patterns, trends, and other insights that can inform the
objectives of the analysis. Like the classification of text whether it contains hate speech, cyberbullying,
and offensive speech or not. (d) Data Interpretation of Digital Evidence: This involves making sense
of the patterns, trends, and other insights that were uncovered during the analysis. (e) Reporting: This
may involve creating a report, a dashboard, or other forms of visual representation of the data and
insights.

Hate speech detection for social media forensics can contribute to mitigating the presence of
harmful content on social media platforms, preventing violence, and fostering social harmony [9].
The process of detecting hate speech involves discerning the language employed in social media posts
that target individuals or groups based on characteristics such as race, religion, ethnicity, gender,
sexual orientation, or other attributes [10]. Detecting hate speech is a challenging task as ambiguity
in any language varies greatly depending on the speaker and the audience [11]. Ambiguity refers to
a text that has multiple meanings or interpretations, making it difficult to determine the intended
meaning without additional context or clarification [12]. Text classification [13] is one of the most
important and active research areas in the social media analysis domain. It is a machine-learning task
that involves automatically assigning text to a predefined category. This is a valuable tool in the social
media domain, where it can be used to classify social media posts into different categories, such as
“hate speech”, “cyberbullying”, or “offensive speech”.

There are three main approaches to hate speech detection [14]: keyword-based, machine learning-
based, and hybrid approaches. It relies on the identification of specific words or phrases that are known
to be associated with hate speech. The keyword-based approach is relatively simple to implement, but
it can be easily circumvented by users who use euphemisms or slang terms. Furthermore, the machine
learning approach uses statistical models to learn the patterns of language that are associated with
hate speech. It is more robust to evasion than the keyword-based approach. However, obtaining a
substantial amount of labeled data for training and relying on human experts to label social media
posts as hate speech or not hate speech are necessary but challenging aspects. A hybrid approach
combining keyword-based and machine learning-based methods has been proposed.

Within the second category, the Multi-Layer Perceptron (MLP) [15] is broadly used. MLP
classification is an effective machine learning technique used for the categorization of hate speech
in textual data. MLP classifiers are composed of multiple layers of artificial neurons, which are
interconnected in a specific way. Within an MLP classification model, the neurons in each layer
are responsible for learning distinct features present in the input text. The output of the final layer
is then utilized to classify the input text into various categories, such as hate speech or non-hate
speech. MLPs offer advantages in handling complex nonlinear relationships between features, making
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them suitable for text classification tasks. MLPs demonstrate scalability by accommodating large
volumes of data. This scalability is achieved by increasing the number of layers and neurons in the
network, enabling MLPs to effectively learn intricate relationships between input features and output
classes. This capability is particularly beneficial in text classification tasks [15]. Recently, the Whale
Optimization Algorithm (WOA) [16] is an effective algorithm for optimizing the training of MLPs. The
WOA algorithm is a population-based algorithm, which means that it uses a group of search agents to
search for the optimal solution. The WOA algorithm draws inspiration from the natural behavior
of humpback whales, making it a bio-inspired optimization algorithm. It has shown effectiveness
in solving diverse optimization problems, including function optimization, machine learning, and
scheduling problems. Notably, WOA exhibits several advantages over other optimization algorithms,
such as rapid and efficient exploration of large search spaces, faster convergence to optimal solutions,
and reduced sensitivity to data noise [16].

The subjective nature of language in speech can make it difficult to identify and classify whether
it contains hate speech or not. This is because the meaning of a text can depend on a variety of
factors, including the context in which it is used, the intent of the speaker or writer, and the cultural
background of the audience [17]. Despite these challenges, it is important to continue to develop
tools and techniques for automatically identifying and classifying hate speech. Hate speech can
harm individuals and society, and it is important to be able to identify and remove it from online
platforms [18].

Neutrosophic Logic (NL) [19] emerges as a promising and innovative tool for hate speech
detection, showcasing unique features that set it apart from traditional fuzzy tools. NL’s distinct
capability lies in its nuanced representation of uncertainty, surpassing conventional fuzzy tools.
By employing a three-valued membership function, NL captures degrees of truth, indeterminacy,
and falsity, offering a sophisticated understanding of linguistic nuances in hate speech instances.
Comparatively, Neutrosophic Logic employs a three-valued representation, capturing degrees of truth,
falsity, and indeterminacy. In contrast, Traditional Machine Learning is typically limited to truth
and falsity, while Deep Learning relies on probabilities. Fuzzy Logic [20,21] represents uncertainty
through degrees of membership and non-membership. The nuanced approach of NL, with its explicit
representation of indeterminacy and membership functions, positions it as a tool capable of addressing
the complexities of hate speech detection more effectively than traditional fuzzy tools, and machine
learning. This comparative analysis highlights the unique strengths of Neutrosophic Logic in the
context of hate speech classification.

1.1 Problem Statement

Hate speech poses a growing challenge on social media platforms, as it can quickly propagate and
inflict harm upon individuals and communities. The absence of robust mechanisms for monitoring
and reporting hate speech on these platforms has contributed to a rise in online incidents involving
hate speech. In the realm of social media forensics, the identification and analysis of hate speech plays
a pivotal role in comprehending and mitigating its dissemination. Manual monitoring and reporting of
hate speech on social media platforms are resource-intensive, time-consuming, and often ineffective.
Consequently, there is a pressing need to develop automated systems for hate speech detection that
can accurately and efficiently identify hate speech in real-time, thereby aiding social media forensics
efforts.
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1.2 Motivation

Detecting hate speech automatically on social media has emerged as an exceptionally challenging
task due to the complex nature of language, these challenges include unwanted content, such as
meaningless texts that can hamper the performance of detection algorithms. Differentiating between
contaminated content and real-world events is a key obstacle. Scalable and effective metadata
architectures are essential for real-time hate speech detection. Short messages and grammatical errors
further complicate traditional text analysis techniques. The brevity and informal nature of text
often result in ambiguous or unclear expressions, making it challenging to accurately interpret the
intended meaning. Identifying hate speech becomes even more complex when faced with uncertain or
contextually vague content. Currently, several methods exist for hate speech classification like single
machine learning methods and hybrid machine learning methods, but they still suffer from ambiguity
when differentiating between hateful and offensive content and they also lack accuracy.

1.3 Contribution and Methodology

This paper offers a hate speech classification model based on neutrosophic neural networks.
The model combines WOA and PSO [22] to adjust weights during the training of two MLPs for
neutrosophic sets classification. The WOA explores optimal weights, while the PSO fine-tunes MLP
performance. Two MLPs are employed; one predicts degrees of truth membership, the other false
membership. The model estimates indeterminacy membership by calculating the difference between
truth and false memberships, generating interval neutrosophic sets. Semantically, the model predicts
the meaning of input patterns by associating features with truth, false, and indeterminacy memberships
for each class. Trained on labeled input patterns, it handles ambiguity inherent in neutrosophic sets,
accommodating uncertainty in membership values and the possibility of belonging to multiple classes
simultaneously.

The paper’s structure is as follows: Section 2 provides an overview of recent related work. Section 3
outlines the proposed model for hate speech detection. Section 4 presents the results and discussions.
Finally, Section 5 presents the conclusions drawn from the study.

2 Related Works

Numerous studies have been conducted by researchers focusing on techniques for detecting hate
speech on social media. This section presents a brief review of recent studies that employed various
methods, such as Neural Network Models, Fuzzy, ensemble, and Hybrid models [14,18]. In [23], a
proposed Twitter hate speech classification model used a rule-based system and modified Jaccard
similarity for real-time tweet clustering, reducing misclassification. Results showed effectiveness in
topic detection and categorization, demonstrating robustness to various challenges. However, the
model displayed sensitivity to larger training datasets, escalating complexity. Moreover, in [24],
authors suggested a hybrid approach combining lexicon-based and machine learning methods for hate
speech prediction, integrating sentiment analysis. The limitations of this model include the subjective
definition of hate speech, neglecting user characterization, potential circumvention of policies, and
the difficulty of adapting to rapidly evolving hate speech expressions. Similarly, in [25], the authors
explored whether a model trained on a dataset from one social media platform unrelated to any specific
domain could effectively classify hate speech in the sports domain. The experiments involved Hate
Speech detection in Serbian using BiLSTM deep neural networks, resulting in good precision but
relatively low Recall. A limitation of this work is its specificity to the sports domain.
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Furthermore, the authors in [26] applied ensemble learning, specifically AdaBoostClassifier, for
hate speech detection in social media. Results demonstrated improved prediction accuracy. However,
limitations include the reliance on accurate preprocessing and the need for substantial training data.
As social media evolves with new hate speech forms, ongoing adaptation is required for sustained
high accuracy. Additionally, in [27], the authors focused on detecting and visualizing hate speech
on cyber-watchdog-based social media. They employed various classification algorithms, including
Bidirectional Encoder Representations from Transformers (BERT), Support Vector Machine (SVM),
Convolutional Neural Networks (CNN), and Attention-Based Models. The study aimed to develop
an approach for detecting and visualizing hate speech attacks on social media, but limitations were
identified, such as the need for high accuracy in the classification process due to the diversity of
hate speech expressions. The authors in [28] presented a tool that takes an offensive language dataset
that only contains Standard American English (SAE) text, and then transforms the SAE text into
simulated text with the help of style transfer. The model assesses fairness by comparing predictions
on SAE and simulated texts, enabling measurement of underrepresented demographic groups. It
facilitates fairness testing on new datasets before investing in human annotation for fine-tuning.
Moreover, the limitations include imperfections in the method, emphasizing the need for exploring
more sophisticated techniques to ensure that generated sentences contain specific offensive words.

Furthermore, the authors in [29] investigated the use of multi-task learning (MTL) to address the
challenges of domain transfer in hate speech detection. It is applying a model trained on one dataset to
a different dataset, to address this issue, the authors propose an MTL framework that utilizes sentiment
analysis as an auxiliary task alongside the primary task of hate speech detection. Additionally, in [30],
the authors suggested a multi-class classification approach that categorizes tweets into three categories:
hate speech, offensive language, and neither using the Davidson dataset, they noticed that almost 40%
of hate speech is misclassified. Moreover, the authors in [31] utilized convolutional neural networks to
capture more complex representations of language, to make them suited for handling the long tail of
hate speech. They classified the text into hate and non-hate speech.

In [32], the authors suggested a fuzzy multi-task learning model for hate speech type’s detection,
which utilized semi-supervised multi-label learning from single-labeled data. The results demonstrated
the superiority of the fuzzy approach in terms of embedding features. The fuzzy approach also pro-
vided an intensity score for the presence of each type of hate speech in a tweet, facilitating the analysis
of correlation between different labels; something that probabilistic approaches lacked. Additionally,
in [33], the authors applied extremely weakly-supervised methods for hate speech classification. They
conducted a comprehensive dataset and cross-dataset experiments to analyze the transferability of hate
speech classification models. Weakly supervised classification exhibited advantages over traditional
supervised classification, allowing the application of algorithms across various hate speech datasets
and domains, utilization of unlabeled documents without domain mismatch issues, and facilitating
cross-dataset comparison through “reannotation” of labeled datasets. However, a limitation of this
work was its focus on classifying hate speech categories target groups rather than detecting the presence
of hate speech in a post.

Neutrosophic sets [34], introduced as a natural extension of fuzzy logic, offer a more adaptable
framework for effectively navigating uncertainty. The following studies contribute substantial insights
into the diverse applications and advantages of neutrosophic sets. The work in [35] demonstrated the
application of neutrosophic sets in multi-attribute group decision-making, showcasing its ability to
handle uncertainty in complex evaluations, specifically in the context of evaluating mathematics teach-
ers. Employing single-valued trapezoidal neutrosophic numbers, the study showcases the versatility
and robustness of neutrosophic sets in multi-attribute group decision-making scenarios. Moreover,
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the authors in [36] compared the performance of neutrosophic approaches against a spectrum
of deep learning models. The findings underscore the efficacy of neutrosophic sets in capturing
and managing sentiments, presenting a compelling case for their application in complex analytical
tasks. Additionally, the authors in [37] contributed a novel approach to skin cancer classification
by leveraging fused deep features within a neutrosophic environment, the study demonstrates the
adaptability of neutrosophic sets in enhancing accuracy and reliability in medical diagnostics. Also,
the work in [38] introduced neutrosophic sets to enhance decision-making in group scenarios. The
study contributes advancements in addressing the intricacies of collective decision-making, further
expanding the scope of neutrosophic applications. The work in [39] proposed an image processing
method utilizing a generalized linguistic neutrosophic cubic aggregation operator, demonstrating
its potential for tackling image processing tasks under uncertainty. These diverse studies showcase
the growing interest and potential of neutrosophic sets across various domains. By incorporating
uncertainty into decision-making and analysis processes, neutrosophic sets offer a valuable tool for
enhancing the accuracy and robustness of complex systems.

Our proposed classification model demonstrates distinct features when compared to existing
methods. Notably, it excels in handling uncertainty by quantifying it through the calculation of the
difference between predicted truth and false memberships, resulting in indeterminacy membership
values. In terms of network architecture, our model innovatively employs two separate Multi-Layer
Perceptron (MLP) models dedicated to predicting truth and false membership degrees, diverging from
the common practice of using single MLPs in existing methods. The optimization strategy of our
model is also unique, integrating the Whale Optimization Algorithm (WOA) and Particle Swarm
Optimization (PSO) for weight adjustment. This approach sets it apart from existing methods, which
often rely on gradient-based or evolutionary algorithms [16]. Additionally, our model incorporates
interval neutrosophic sets [40], providing a more comprehensive representation of uncertainty and
enhancing its capability for nuanced classification. This inclusion further underscores the novel aspects
of our proposed classification model within the broader landscape of existing methods.

3 Proposed Model

Traditional machine learning models [41] for hate speech detection cannot handle uncertainty
and ambiguity in natural language, such as fuzzy logic [42]. Fuzzy logic systems face limitations due
to manual design complexities and inherent imprecision, fuzzy logic systems are typically designed by
human experts, who must specify the membership functions for the fuzzy sets, leading to inaccuracies
in critical applications like hate speech detection. The proposed model incorporates two-step Whale
Optimization Algorithm-based Multilayer Perceptron (WOA-MLP) and neutrosophic sets, addressing
these challenges. The WOA algorithm [16] explores optimal weights during MLP training, and
The PSO algorithm [43] fine-tunes weights, mitigating local minima issues. The hybrid WOA-PSO
optimizes the MLP training phase, enhancing predictive accuracy for hate speech multi-classification.
The model employs two WOA-PSO-MLPs, predicting truth and false membership degrees, the
difference between truth and false membership values is used to estimate indeterminacy membership,
forming an interval neutrosophic set. This approach improves optimization robustness, offering better
solutions. Fig. 1 illustrates the interconnected elements of the WOA-PSO-MLP technique for hate
speech multi-classification. Subsequent sections elaborate on these major model elements.
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Figure 1: The proposed neutrosophic WOA-PSO-MLP hate speech classification

3.1 Data Collection Phase

This stage focuses on gathering crucial data to validate the proposed WOA-PSO-MLP model,
which is applied to Twitter. Twitter serves as an effective platform for data collection on hate speech
and offensive speech due to its real-time trend list that reflects current popular topics. However, this
application domain presents challenges due to limited context, informal language, abbreviations, and
susceptibility to noise, spam, and misleading content. These factors contribute to higher uncertainty in
the collected data. Several benchmark datasets exist for hate speech detection, including the Davidson
dataset [30]: This dataset contains 24,000 labeled tweets categorized as hate speech, offensive, or
neither. It offers a diversity of three types, hate speech, offensive language, and neither. However, it
primarily focuses on English language hate speech and may not be representative of other languages
or dialects. Twitter Sentiment Analysis dataset [44]: This dataset contains tweets classified as positive,
negative, neutral, or irrelevant. While not explicitly focused on hate speech, it provides a broader
range of sentiment labels that could be useful for training and validating sentiment-sensitive hate
speech detection models. OffensEval dataset [45]: This dataset includes multiple sub-datasets covering
various offensive language types, including hate speech, profanity, and cyberbullying. However, the
individual sub-datasets are relatively small and may not represent the full spectrum of online offensive
content. Hate Speech dataset from white supremacy forum [46]: This dataset contains approximately
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16,000 tweets labeled hate speech and not hate speech only, so it is not suitable for multi-classification.
The Davidson dataset was chosen for this study due to its representation of hate speech, offensive
and neither, its focus on hate speech specifically, and its adequate size for training and validating the
proposed model. Also, the dataset primarily focuses on English language hate speech.

3.2 Pre-Processing Phase

Text preprocessing involves removing stop words, URLs, numbers, usernames, and punctuation,
as well as replacing slang and emoticons to represent the main body of the text.

3.3 Two-Step WOA for Training MLP Phase

In this section, we describe the proposed approach based on a combination of WOA and Particle
Swarm Optimization (PSO) to optimize the training phase typically involves adjusting the weights
of the MLP network. The decision to employ WOA in the initial step of our model is grounded in
its unique characteristics and proven efficacy in solving optimization problems. WOA is driven by
its exploration capabilities as WOA excels at exploring the search space for optimal solutions. Its
unique spiral updating mechanism and random search agent selection enable it to discover diverse
and potentially optimal solutions, especially when dealing with complex data with multiple local
optima. Also, WOA’s dynamic update equations allow it to adjust its search behavior throughout the
optimization process, overcoming limitations of other algorithms that may stagnate in local optima.
This adaptability enhances its ability to navigate complex search landscapes. WOA’s relatively simple
structure and implementation compared to other advanced metaheuristic algorithms [16].

The goal is to find the optimal set of weights that minimizes the error or loss function during the
training process for the MLP by leveraging the exploration capabilities of WOA and the optimization
capabilities of PSO. In the proposed approach combining WOA and PSO, the initial solution obtained
from the WOA algorithm represents an initial set of weights for the MLP network. The PSO algorithm
is then applied to further refine and improve these weights. This refinement process can be seen as a
form of fine-tuning, where the PSO algorithm adjusts the weights to optimize the performance of
the MLP. In the WOA the search agents are often referred to as whales. The algorithm is inspired
by the hunting behavior of humpback whales, where each whale represents a potential solution or
candidate solution to the optimization problem. Similar to how whales navigate and search for food in
the ocean, the search agents in WOA explore the search space in search of the optimal or near-optimal
solution. Each whale (search agent) has a position in the search space, which corresponds to a set of
parameters or variables being optimized. The movement and updating of the whales’ positions during
the optimization process are guided by the WOA algorithm’s rules and equations. By simulating the
interaction and movement of whales, the WOA algorithm aims to improve the quality of the solutions
iteratively. The whales (search agents) communicate and adapt their positions based on their own
experiences and the information shared by other whales, leading to a collective improvement in the
search for better solutions.

The approach employs a population of search agents, referred to as whales, to identify the global
optimum for optimization problems. Similar to other population-based algorithms, the search process
initiates by generating a set of random solutions, known as candidate solutions, for a given problem.
This set is iteratively improved until a specified end criterion is met. The distinguishing feature of WOA
lies in the rules governing the enhancement of candidate solutions at each optimization step. WOA
commences optimization by creating a set of random solutions and updates the positions of search
agents based on either a randomly selected search agent or the best search agent obtained thus far. It
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encourages diverse solutions as WOA promotes diversity within the population of search agents. The
algorithm incorporates a spiral updating mechanism that encourages search agents to move around
in a circular pattern, which aids in exploring different areas of the search space. This diversity helps
prevent premature convergence to suboptimal solutions. WOA employs dynamic update equations
that adapt and change over the optimization process. The update equations control the movement
and adjustment of search agents’ positions, allowing for efficient exploration and exploitation. The
dynamic nature of these equations improves the algorithm’s ability to adapt to different problems.

WOA-PSO is employed to train a single hidden layer MLP network. When designing this
approach, two crucial aspects are considered: the representation of search agents within WOA and
the selection of the fitness function. In the Two-Step WOA approach, each search agent is represented
as a one-dimensional vector encoding a candidate neural network. The vector consists of weights
connecting the input and hidden layers, weights connecting the hidden and output layers, and biases.
The vector length corresponds to the total number of weights and biases in the network, and it can be
calculated using the following equation:

Individual length = (n * m) + (2 * m) + 1 (1)

where:

n: is the number of input variables that represents the number of features in each text sample.

m: is the number of neurons in the hidden layer, in this work, we follow the same method proposed
and used in [47] where m is selected based on the following formula: 2 * N + 1, where N is the number
of dataset features.

To measure the fitness value of the generated two-step WOA agents the fitness value of the
generated two-step WOA agents is measured using the accuracy fitness function. The accuracy fitness
function is calculated as follows:

Accuracy = (No. of correctly classified test samples)/(Total number of test samples) (2)

The goal of Two-Step WOA using PSO is to find the neural network with the highest accuracy
by adjusting the weights of the neural network. The workflow of the Two-Step WOA using the PSO
approach applied in this work for training the MLP network can be described in the following steps:

a) Initialization: The initial step involves randomly generating a predetermined number of search
agents to represent a potential MLP network. Each search agent is encoded as a one-dimensional
vector, with its length corresponding to the total number of weights and biases in the MLP network.

b) Fitness evaluation: Next, the fitness of each search agent (MLP) is evaluated using the accuracy
fitness function. The accuracy is determined by calculating the percentage of correctly classified test
samples by the neural network. The objective is to find the MLP with the highest accuracy, indicating
superior performance.

c) Update the position of search agents: After evaluating the fitness of each search agent, the
positions of the search agents are updated using the WOA algorithm. The search agent with the best
fitness value, representing the highest performance, is identified, and its weights are stored as the
current best solution.

d) Repeat steps b–c: Steps b and c are repeated until the maximum number of iterations is reached,
allowing for continuous improvement of the search agents’ positions and the corresponding MLP
networks.
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e) Improve the solution using PSO: The best solution obtained through the WOA algorithm, which
represents the MLP network with the highest accuracy, is utilized as the initial set of parameters for
the MLP network. The PSO algorithm is then employed to further refine and enhance the solution.

f) Testing: The MLP network with the highest accuracy value is tested on a separate portion of
the dataset, consisting of unseen samples, to evaluate its performance in handling new inputs.

Test case and its successful outcomes:

Specific Examples: Hateful Tweet: “You disgusting immigrants are ruining our country! Go back
to where you came from!”, “Fucking niggers that’s all Kentucky is and ever will be” (Correctly
classified as hateful), Offensive Tweet: “You’re an idiot! I bet you couldn’t even tie your shoes!”
(Correctly classified as offensive) Neither Tweet: “The weather is beautiful today! I’m going to take a
walk in the park”. (Correctly classified as neither hate speech nor offensive speech). Handling Edge
Cases: Tweet: “Of course, I love everyone equally! Especially those who disagree with me”. (Correctly
classified as offensive), tweet: “I’m so tolerant, I even tolerate intolerance!” (Correctly classified as
neither), Tweet: “I don’t like you very much”. (Correctly classified as offensive). We included a diverse
range of tweets in terms of length, vocabulary, and complexity to assess the model’s generalizability.

3.4 Neutrosophic Set Classification Phase

In this paper, we leverage Neutrosophic sets, a mathematical framework introduced by Prof.
Florentin Smarandache [34], In the context of a universe �, a Neutrosophic set (NS), denoted as A, is
defined by three essential membership functions: the truth membership function TA, the indeterminacy
membership function TA, and the falsity membership function FA. These functions, represented by real
standard elements of the interval [0, 1], characterize the degrees to which an element belongs to the
set. Mathematically, a Neutrosophic set A can be expressed in Eq. (3):

A = {< x, (TA(x), IA(x), FA (x)) > x ∈ E, TA, IA, FA ∈ ]−0, 1 + [} (3)

There is no restriction on the sum of TA (x) , IA (x), and FA (x) allowing for a flexible representation
where the degrees of truth, indeterminacy, and falsity can vary independently. This is mathematically
expressed as 0 ≤ TA (x)+IA (x)+FA (x) ≤ 3, The unrestricted nature of this sum accommodates a com-
prehensive characterization of elements within the Neutrosophic set, facilitating a good representation
of uncertainty and ambiguity.

An ensemble of two WOA-PSO-MLP is created. The output of the best MLPs is used to represent
the membership, non-membership, and indeterminacy of the data points. We use two MLPs to classify
data into neutrosophic sets, the output of the MLPs represents the membership, non-membership, and
indeterminacy of the data points. Specifically, the first MLP is trained to predict the membership of the
data points in the neutrosophic set. The second MLP can be trained to predict the non-membership
of the data points in the neutrosophic set. The indeterminacy of the data points can then be calculated
using the following Eq. (4):

Indeterminacy = 1 − (membership + non-membership) (4)

The outputs of a single MLP can be modeled using a distributed output code in which each class
is assigned a unique codeword, Codewords are unique binary strings that are used to represent classes
in a multiclass classification problem. Each class is assigned a unique codeword, and the codewords
are designed to be as different from each other as possible to minimize error correlation. One simple
way to generate codewords is to use the One-Against-All (OAA) approach [48]. OAA is a multiclass
classification technique that uses a single MLP to classify data points into multiple classes. In OAA,



CMC, 2024, vol.79, no.1 253

the MLP is trained to predict the probability that a data point belongs to each class. The data point
is then assigned to the class with the highest probability. In OAA, each class is assigned a separate
codeword, and the codeword for each class is a vector of bits, where the ith bit is equal to 1 if the
class is the ith class, and 0 otherwise. To use OAA to generate codewords for a multiclass classification
problem, we train a separate MLP for each class. The MLP for the ith class is trained to predict the
codeword for the ith class.

The training process involves the Truth MLP, which is designed to estimate the degrees of truth
membership. In a k-class truth neural network, the length of a codeword is k, where each bit represents
a specific class. For the ith class, the codeword has a value of 1 at the ith position and 0 for the remaining
positions. On the other hand, the Falsity MLP shares the same architecture and properties as the Truth
MLP but focuses on predicting the degree of false membership. To achieve this, the Falsity MLP is
trained using the complement of the target codewords utilized in the training data for the Truth MLP.
For instance, if the codeword used to train the Truth MLP for the ith class has a value of 1 at the ith bit
and 0 for the rest, then the codeword employed to train the Falsity MLP for the same class will have
a value of 0 at the ith bit and 1 for the remaining bits.

When presented with an unknown input pattern, we assign Tj as the true membership of the
jth output for the truth network, and Fj as the false membership of the jth output for the falsity
network. These predicted outputs are expected to be contradictory, with high truth membership
corresponding to low false membership and vice versa. If the truth membership value is high while
the false membership value is low, or vice versa, uncertainty arises in predicting these outputs. To
quantify the degree of uncertainty or indeterminacy in the prediction, we can calculate the difference
between the truth and false membership values. A high difference indicates low uncertainty, whereas
a low difference suggests high uncertainty. Let Ij represent the indeterminacy membership of the jth

output, which can be calculated as shown in Eq. (5).

Ij = 1 − ∣
∣Tj − Fj

∣
∣ (5)

These three memberships form an interval neutrosophic set. We define Aj as an interval neutro-
sophic set for the jth output, represented as shown in Eq. (6).

Aj = {
x(TAj(x), IAj(x), FAj(x))

}
(6)

where TAj denotes the truth membership function, IAj represents the indeterminacy membership
function, and where FAj corresponds to the false membership function for the jth output. Interval
Neutrosophic Sets (INS) [40] are employed because of their ability to represent the inherent uncertainty
in data more effectively than single-valued neutrosophic sets [49]. As data contains inherent ambiguity
and vagueness, it is difficult to assign precise membership values using single-valued sets. INS
allows representing a range of possible membership degrees, providing a more nuanced and flexible
representation of uncertainty. The three memberships form an interval neutrosophic set and are used
for decision-making. For each instance, evaluating the INS Aj for all classes. The class with the highest
degree of truth TAj(x) and lowest indeterminacy IAj(x) is assigned as the final classification.

3.5 Illustrative Example

Here is an illustrative example using tweets for solving neutrosophic classification with three
classes: hate speech, offensive language, or neither. We will follow the proposed model’s steps:

Truth Membership: Using the first network to predict the degree of truth membership (TAj ) for
each class, For the tweet: TAhate

= 0.85, TAoffensive
= 0.1, and TAneither

= 0.05.



254 CMC, 2024, vol.79, no.1

False Membership: Using the second network to predict the degree of false membership (FAj ) for
each class, for the tweet: FAhate

= 0.1, FAoffensive
= 0.8, and FAneither

= 0.1.

Uncertainty Quantification: Calculating the indeterminacy membership (IAj ) for each class using
the difference between TAj and FAj , for the tweet: IAhate

= 1 − ‖0.85 − 0.1‖ = 1 − 0.75 = 0.25,
IAoffensive

= 1 − ‖0.1 − 0.8‖ = 1 − 0.7 = 0.3, and Ineither = 1 − ‖0.05 − 0.1‖ = 1 − 0.05 = 0.95.

Interval Neutrosophic Set: Forming the interval neutrosophic set Aj for each class using the
calculated values: Ahate = {0.85, 0.25, 0.1}, Aoffensive = {0.1, 0.3, 0.8}, and Aneither = {0.05, 0.95, 0.1}.

Decision-Making: Evaluate the interval neutrosophic sets for all classes by choosing the class
with the highest degree of truth and the lowest indeterminacy as the final classification. In this case,
the tweet is classified as “hate speech” due to the highest TAhate

and lowest IAhate
.

4 Discussion

The proposed model is evaluated using the Davidson classification datasets introduced above.
In this section, the performance of the proposed model is validated on Davidson’s [30] hate speech
classification dataset. The Davidson dataset is a dataset of tweets that have been labeled as hateful,
offensive, or neither. The dataset was created by collecting tweets that contained words from a hate
speech lexicon, and then manually labeling the tweets by CrowdFlower workers. The dataset contains
24,000 tweets, of which 5% are hateful, 15% are offensive, and 80% are neither. The dataset is a valuable
resource for training and evaluating machine learning models for hate speech detection and offensive
language classification. It is also a useful dataset for researchers studying the nature and prevalence of
hate speech and offensive language online. This dataset contains information about tweets and their
classifications by CrowdFlower users. Table 1 provides a detailed description of each variable:

Table 1: Davidson dataset description

Variable Description

Count No. of CrowdFlower users who coded the tweet (minimum of 3)
Hate speech No. of CrowdFlower users who classified the tweet as hate speech
Offensive language No. of CrowdFlower users who classified the tweet as offensive
Neither No. of CrowdFlower users who considered the tweet neither hate nor offensive
Class (0: hate speech, 1: offensive language, 2: neither)
Tweet Text message of the tweet

The experiment was performed in Intel (R), Core (TM) i7 CPU, 8.00 GB RAM implemented in
anaconda, using Python. Herein, we utilize the evaluation metrics used in [50]: Precision, Recall, and
F1 Score as evaluation metrics [51].

Precision = TP/(TP + FP) (7)

Recall = TP/(TP + FN) (8)

F1 Score = 2* (Precision*Recall)/(Precision + Recall) (9)
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4.1 Experiment 1: Comparison with Existing Methods

The results validate the effectiveness of the proposed model, demonstrating a 19% increase in
accuracy compared to [50] for hate speech detection. One plausible explanation for this outcome
lies in the two-step WOA-MLP neutrosophic approach, which enhances classification accuracy. By
combining WOA-PSO, the model identifies the optimal set of weights that minimize the error or loss
function during MLP training, utilizing the exploration capabilities of WOA and the optimization
capabilities of PSO. Then best MLP is used, one MLP for generating the truth membership function
and the other MLP is used as the false membership function, and then both are used to calculate
indeterminacy membership values as the difference between the truth and false membership values.
The results show uncertainty value is equal to 3, so the uncertainty value is low, and it generally
indicates that the model’s predictions are more reliable and accurate, and the model is more confident
in its classifications. Also, this neutrosophic approach handles the ambiguity problems that face hate
speech classification, as ambiguity arises when there is a lack of clear distinction between different
classes or when it is difficult to confidently assign samples to specific categories. Table 2 shows the
classification performance.

Table 2: Comparative study

Ref. Class Precision Recall F1

Davidson et al. [50]
Hate 0.32 0.53 0.4
Offensive 0.96 0.88 0.92
Neither 0.81 0.95 0.87

Talat et al. [29]
Hate – – 0.39
Offensive – – 0.94
Neither – – 0.84

Davidson et al. [30] Hate 0.44 – –

Zhang et al. [31]
Hate – – 0.30
Non-hate – – 0.97

Proposed model
Hate 0.51 0.56 0.54
Offensive 0.96 0.96 0.96
Neither 0.86 0.95 0.91

4.2 Experiment 2: Comparison of Model Accuracy with WOA and WOA-PSO

This set of experiments aimed to validate the role of WOA-PSO in enhancing classification
accuracy. Table 3 showcases the efficacy of the proposed model, which employs neutrosophic sets
and utilizes two WOA-PSO MLPs: one for predicting the degree of truth membership and the other
for predicting the degree of false membership. The indeterminacy membership value is calculated by
determining the difference between the truth and false membership values for each pair of networks.
which raises the accuracy by 3% relative to the model with only WOA-MLP, and 7% relative to the
model with only MLP. The experiment demonstrated that incorporating the PSO algorithm in the
combined WOA-PSO approach improved the model’s performance compared to using WOA alone.
By utilizing PSO as a fine-tuning mechanism, the approach enhanced convergence speed and facilitated
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a more comprehensive exploration of the search space, ultimately leading to improved classification
accuracy.

Table 3: Comparison of precision, recall, and F1 between proposed model, WOA-MLP, and MLP

Ref. Class Precision Recall F1

Proposed model
Hate 0.51 0.56 0.54
Offensive 0.96 0.96 0.96
Neither 0.86 0.95 0.91

WOA-MLP
Hate 0.48 0.53 0.50
Offensive 0.94 0.94 0.95
Neither 0.84 0.90 0.88

MLP
Hate 0.44 0.30 0.35
Offensive 0.94 0.94 0.94
Neither 0.79 0.88 0.83

4.3 Experiment 3: Comparison between the Proposed Model and Other Nature-Inspired Metaheuristic
Algorithms
This set of experiments aimed to compare the efficiency of the combination of WOA-PSO and

neutrosophic sets in hate speech classification against a combination of other nature-inspired meta-
heuristic algorithms with neutrosophic sets. We substituted the WOA module in the proposed model
with well-known metaheuristic modules, using their default configurations, through a BlackBox. These
metaheuristic algorithms included Ant Colony Optimization (ACO) [52], the Artificial Bee Colony
(ABC) Algorithm [53], and the Butterfly Optimization Algorithm (BOA) [54]. The results presented
in Table 4 confirm the research hypothesis that integrating WOA-PSO learning optimization improves
classification accuracy. The suggested combination achieved a 4% accuracy increase compared to
the closest combination involving BOA and the MLP classifier. In ACO, ABC, and BOA, the
convergence rate is influenced by key parameters that determine the movement of individuals towards
the best position obtained so far by individuals and the group, affecting their tendency to explore
or exploit. This, in turn, affects the balance between the exploration and exploitation tendencies of
these algorithms. In contrast, the WOA algorithm tends to be more explorative, as evidenced by its
lower convergence rate when compared to the other methods. Unlike ACO, ABC, and BOA, the
convergence rate in WOA is not significantly influenced by specific parameters within the algorithm.
This robustness of WOA makes it a versatile optimization algorithm capable of effectively addressing
a wide array of optimization problems. Therefore, the choice of the WOA-PSO combination in this
experiment was driven by the aim to leverage the explorative nature of WOA while benefiting from the
fine-tuning capabilities of PSO. By incorporating PSO, the optimization process was further enhanced,
leading to improved classification accuracy in the task of hate speech classification.

4.4 Experiment 4: Comparison between the Proposed Model, Other Machine Learning Algorithms,
and Fuzzy
This experiment aimed to compare the accuracy of the proposed model, machine learning

algorithms, and the fuzzy model in hate speech detection. These machine-learning algorithms include
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the Support Vector Machine (SVM) [55], the Random Forest (RF) Algorithm [12], and the Logistic
Regression (LR) Algorithm [56]. The choice of these machine learning algorithms was based on
their popularity and effectiveness in various classification tasks. Each algorithm has its strengths and
weaknesses, and the goal was to assess how the proposed neutrosophic model performs in comparison.
The results demonstrated that the proposed model achieved a 3% and 6% higher accuracy compared to
machine learning algorithms and the fuzzy model, respectively. There are a few reasons that the neutro-
sophic model achieved higher accuracy: Handling uncertainty and indeterminacy; The neutrosophic
model incorporates the concepts of indeterminacy-membership and falsity-membership, allowing
it to handle uncertain and conflicting information more effectively. In hate speech classification,
where the boundaries between different categories can be blurry, the ability to capture and represent
these uncertainties can lead to improved accuracy. Modeling complex relationships; Hate speech
classification can involve complex relationships and patterns in the data. The neutrosophic model,
combined with the mentioned machine learning algorithms, may have better captured and modeled
these complex relationships, leading to improved classification accuracy. accurate understanding of
hate speech; The neutrosophic model’s consideration of multiple membership degrees allows it to
capture the nuances of hate speech more effectively. By incorporating indeterminacy-membership
and falsity-membership, the model can recognize and classify instances that may have conflicting or
uncertain characteristics, leading to improved accuracy.

Table 4: Results of the comparison between different nature-inspired metaheuristic algorithms

Nature-inspired metaheuristic Class Precision Recall F1

Proposed model
Hate 0.51 0.56 0.54
Offensive 0.96 0.96 0.96
Neither 0.86 0.95 0.91

ACO
Hate 0.47 0.44 0.50
Offensive 0.90 0.90 0.89
Neither 0.81 0.84 0.91

ABC
Hate 0.39 0.41 0.35
Offensive 0.91 0.91 0.87
Neither 0.80 0.80 0.82

BOA
Hate 0.41 0.40 0.38
Offensive 0.84 0.86 0.86
Neither 0.81 0.84 0.82

Also, one key difference between fuzzy sets and neutrosophic sets is their consideration of different
membership degrees. Fuzzy sets solely focus on the truth-membership degree, indicating the extent
to which an element belongs to a set. On the other hand, neutrosophic sets incorporate additional
membership degrees, including indeterminacy-membership and falsity-membership. By considering
indeterminacy-membership and falsity-membership, the neutrosophic model can effectively handle
situations where there is incomplete or conflicting information. This capability allows the model
to detect hate speech more accurately, leading to improved performance. The comparison results in
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Table 5 highlight the superiority of the proposed neutrosophic model over the fuzzy model and other
machine-learning techniques.

Table 5: Comparison between proposed model, machine learning algorithms, and fuzzy-based model

Algorithm Class Precision Recall F1

Proposed model
Hate 0.51 0.56 0.54
Offensive 0.96 0.96 0.96
Neither 0.86 0.95 0.91

Fuzzy-based model
Hate 0.45 0.27 0.34
Offensive 0.92 0.97 0.94
Neither 0.82 0.83 0.82

SVM
Hate 0.43 0.33 0.37
Offensive 0.93 0.95 0.94
Neither 0.85 0.87 0.86

Random forest
Hate 0.46 0.06 0.11
Offensive 0.89 0.98 0.92
Neither 0.88 0.64 0.74

Logistic regression
Hate 0.48 0.23 0.31
Offensive 0.93 0.95 0.94
Neither 0.84 0.88 0.86

5 Conclusions

In this paper, our research addresses the challenging task of hate speech detection in social media.
Existing approaches often struggle with the inherent ambiguity and complexity in distinguishing
between hateful and offensive content in social media. Our use of neutrosophic logic effectively
addresses this challenge by capturing uncertainty and contextually vague content, leading to a more
accurate representation of hate speech. This work contributes significantly to the field of social
media forensics and offers several notable advantages. The integration of WOA and PSO enables the
optimization of MLP models, resulting in enhanced performance and accuracy. The WOA algorithm
explores the optimal set of weights during the training process, while the PSO algorithm fine-
tunes the weights to further optimize the MLP’s performance. This combination of optimization
techniques contributes to the overall effectiveness of our model. Additionally, our model predicts
degrees of truth membership and false membership, allowing for the estimation of indeterminacy
membership or uncertainty in the predictions. This estimation provides valuable insights into the level
of uncertainty associated with the classification results, aiding users and decision-makers in assessing
the reliability of the outcomes. Furthermore, our research introduces the concept of neutrosophic sets,
which represent uncertainty in predictions and resolve ambiguity between true and false classifiers.
This technique improves the accuracy and performance of hate speech classification compared to
state-of-the-art methods, particularly demonstrated through the evaluation of the Davidson dataset.
To further enhance the performance of the proposed model and its applicability in real-world
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scenarios, several promising research avenues will be explored in future work. The model will be
adapted to support multilingual analysis by incorporating techniques for language-agnostic feature
extraction and multilingual embedding models. Dimensionality reduction techniques like principal
component analysis and linear discriminant analysis will be employed to reduce the feature space and
improve computational efficiency. Ensemble methods incorporating the proposed model with other
classification models like support vector machines or random forests will be investigated to leverage
the strengths of diverse models and improve generalizability. Parallelization and distributed computing
techniques will be explored to leverage the power of multiple processing units and achieve scalable
real-time performance. Moreover, other types of neutrosophic sets will be used like Trapezoidal
neutrosophic numbers.
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