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ABSTRACT

Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual and
skeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,
failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility to
efficiently process both uniform and disparate input patterns. Thus, in this paper, an attention-enhanced pseudo-3D
residual model is proposed to address the GAR problem, called HgaNets. This model comprises two independent
components designed for modeling visual RGB (red, green and blue) images and 3D skeletal heatmaps, respectively.
More specifically, each component consists of two main parts: 1) a multi-dimensional attention module for
capturing important spatial, temporal and feature information in human gestures; 2) a spatiotemporal convolution
module that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,
the output weights of the two components are fused to generate the recognition results. Finally, we conducted
experiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy on
four datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s and
the parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approaches
in terms of recognition accuracy.

KEYWORDS
Gesture action recognition; multi-dimensional attention; pseudo-3D; skeletal heatmap

1 Introduction

With the advancement of artificial intelligence, human gesture action recognition [1] (GAR)
plays an important role in facilitating gesture communication between deaf and healthy people,
and has widespread applications in the fields of human-computer interaction [2]. Relative to action
recognition, the GAR is more complicated, which often utilize visual RGB (red, green and blue) images
and skeletal data. Hence, there are two categories: Visual-based gesture action recognition (VGAR)
and skeleton-based gesture action recognition (SGAR). In the VGAR task, the RGB images contain
rich texture information [3]. And 2D Convolutional Neural Networks (CNN) are usually employed to
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extract visual image features [4]. For instance, the gesture team [5] introduced a GAR system using 2D
CNN to encode gesture features from the hands and upper body. Compared to 2D CNN, 3D CNN
considers the temporal information and is used to extract spatiotemporal features from multiple video
images [6]. Li et al. [7] proposed a 3D CNN model to learn and extract the spatiotemporal features
from gesture videos.

In the SGAR task, unlike RGB images that becomes impractical in low-light conditions, the
skeletal data portrays hand pose information, which is robust to context noise [8]. Graph Convo-
lutional Networks (GCN) are used to process skeletal data. For example, Amorim et al. [9] introduced
a spatiotemporal GCN to model the relationship between skeletal joints on the continuous multiple
frames. Tunga et al. [10] proposed a GCN model to extract skeletal graph features and a transformer
model to explore the temporal dependence between frames. However, the SGAR method is largely
influenced by the accuracy of hand key points [11]. What’s more, although existing VGAR and SGAR
studies have demonstrated significant results [12], these studies highlight independent modalities, and
ignore the overall applicability of GAR. This challenge stems from the inherent differences between
skeletal and visual information. Skeletal data are represented in irregular graphs while visual data are
organized on a regular grid. Huang et al. [13] proposed a multi-channel 3D CNN model to extract
discriminative spatial-temporal features from color information, depth clues, and joint positions.
However, the distinct properties of these modes impede the efficient exchange and integration of
multimodal knowledge through a deep learning network. Therefore, many of reaches focus on different
deep networks to encode visual and skeletal information. For instance, Kumar et al. [14] proposed a
5-stack convolution neural network (5S-CNN) to represent motion images and a Bi-directional Long
Short-Term Memory Network (Bi-LSTM) with the hybrid 5S-CNN to encode skeletal data. Although
this method achieved better recognition results, it cannot decrease the number of parameters and
computational costs.

In this work, we aim to exploit a deep learning model that can process uniform and distinct input
patterns to capture multi-modal features. Firstly, an attention-enhanced pseudo-3D residual model
(HgaNets) is suggested to integrate the visual and skeletal data. Unlike characterizing a skeleton,
which simply represents time-dependent 2D joint/bone locations, we introduce the heatmap stacks
of joints to form 3D skeletal heatmaps, which is generated by OpenPose [15] technique. Furthermore,
we have developed a multi-dimensional attention mechanism for the pseudo-3D residual module to
better capture important spatial, temporal, and channel information. Finally, our proposed model
can be trained in an end-to-end manner, providing the versatility for processing uniform and separate
input data. This adaptation makes it well suited for processing a variety of multimodal information.
This model allows us to use smaller networks (2.74M) and attains excellent accuracy on four datasets
(85.40%, 91.91%, 94.70%, and 95.30%). Our main contributions are the following:

1) We present HgaNets, a lightweight attention-enhancing pseudo-3D residual model to capture
multi-modal features for the GAR task.

2) We propose a multi-dimensional attention module to encode the important appearance, frame,
and feature information. And we utilize the 3D skeletal heatmaps generated by the OpenPose to
process the corresponding gesture joints.

3) The efficiency of the proposed approach is demonstrated through extensive experiments and
outperforms others in terms of the recognition accuracy.

The remainder of this work is organized as follows: Related work is discussed in Section 2.
Section 3 describes our proposed model in detail. Section 4 presents the experimental results, and the
work is concluded in Section 5.
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2 Related Works
2.1 Visual-Based GAR

Early visual-based GAR often relies on manual feature [16] for representing gesture motion. For
example, Lim et al. [17] proposed block-based histogram to explicitly encode optical flow and generate
sign features. Zheng et al. [3] developed pyramid histograms of oriented gradient (M-PHOG), the
additional motion information from three projected orthogonal planes was applied to generated 3D
gesture motion map. Oliveira et al. [18] applied principal component analysis (PCA) to compress
visual features, which helped to reduce the feature dimension and improve recognition accuracy.
Furthermore, gesture recognition technologies based on deep learning can automatically encode
gesture features, such as posture, shape, and speed of gestures. For instance, Al-Hammadi et al. [2]
proposed a 3D CNN model as a discriminative spatiotemporal descriptor for hand gestures. To better
represent spatio-temporal gesture features, Luqman et al. [19] used convolutional neural network
and long short-term memory network to capture spatial features and learn temporal information,
respectively.

2.2 Skeletal-Based GAR

Compared to the RGB images, human skeleton is a well-established modality, which is robust
not only to contextual noise, but also to variations in viewpoint and appearance [20]. Currently,
there are four kinds of deep learning frameworks to encode skeletal information, including Recurrent
Neural Networks (RNN), CNN and GCN, Transformer networks. For example, Xiao et al. [8]
proposed a recognition method with RNN, which naively treats the skeleton as vectors formed
by the body joints coordinates. Kumar et al. [21] proposed CNN model to identify discriminative
spatio-temporal features of each gesture, which was interpreted using joint angular displacement
maps. Heidari et al. [22] proposed GCN topology with a temporal attention module to encode
non-Euclidean skeleton structures. This method represents spatiotemporal graphs of body skeleton
sequences. Zhang et al. [23] proposed a spatial-temporal Transformer network to model dependencies
between skeletal joints using the Transformer self-attention operator. Compared with other methods,
although Transformer approach can quickly obtain global skeletal information, it is weak in encoding
human gestures from local features and short-term temporal information.

2.3 Multi-Modal GAR

Multi-modal GAR often use different frameworks to represent different gesture modes. For
example, Pu et al. [24] applied a classical CNN model (LeNet) to extract skeletal trajectories and a
3D CNN to represent hand videos, and trained a classifier with support vector machine (SVM) to
fuse these features. Wu et al. [25] proposed a deep belief network (DBN) Network and a 3D CNN
network to respectively process skeletal dynamics and depth and RGB images, and used late fusion
to fuse these representative features. Besides, two global and local spatial attention networks were
used to focus on the hand/arm movements in the GAR task [26], which combined the predicted
probabilities from those networks with the adaptive fusion strategies. Jing et al. [27] proposed a multi-
channel and multi-modal framework with 3D CNN to incorporate multimodal (RGB, depth, motion,
and skeleton joints) information. However, this approach directly encodes the skeleton using a 3D
CNN-based network without considering skeletal information operated on an irregular graph and
visual information represented on a regular grid, resulting in unsatisfactory performance. Instead,
our approach focuses on different structures of visual and skeletal data, characterizing skeletal data
as joint heatmaps in a 3D volume, retaining the irregular graphical information of the skeleton.
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3 Methodology

Fig. 1 presents the overall framework of the proposed HgaNets model. It consists of two indepen-
dent components that are designed to model the skeletal heatmaps and RGB videos, respectively. The
two components share the same network structure and each of them consists of different pseudo-3D
residual blocks (i.e., Res1, Res2, and Res3) and multi-dimensional attention blocks (MDT), a fully-
connected layer and a softmax layer. There are three kinds of attention sub-maps (i.e., spatial map,
temporal map and channel map) in each MDT block. In order to optimize training efficiency, we
implemented a residual learning concept in each component. In the end, the output probabilities
of the two components are further combined to obtain the final recognition result. The overall
network structure is developed to describe the dynamic spatial-temporal-channel correlations of
human gesture.

Figure 1: The framework of the HgaNets: Different pseudo-3D residual blocks: Res1, Res2, and
Res3; MDT blocks: Multi-dimensional attention; Attention sub-maps: Spatial map, temporal map
and channel map; FC: Fully-connected. ⊕ denotes the elementwise summation. ⊗ denotes the matrix
multiplication

3.1 Skeletal Heatmaps

As illustrated in Fig. 1, we use the RGB videos and skeletal data as input, respectively. Specifically,
we first define the visual RGB sample as I ∈ �C×T×H×W , where T is the number of frames, H and W are
the height and width of the frame, respectively. Then, we reformulate 2D skeletal data as 3D skeletal
heatmaps, as shown in Fig. 2. Formally, the size of a 3D skeletal heatmap is K ×H ×W , where K is the
number of joints, H and W are the height and width of the frame, respectively. In this work, only the
K = 30 upper skeletal joints (involving 8 joints from the body and 22 joints from the hands) are directly
relevant for the GAR task. The skeletal joints can be estimated by OpenPose [15] technique and are
often stored as coordinate-triplets (xk, yk, ck), where (xk, yk) and ck are respectively the coordinate and
confidence score of the kth joint. Finally, with the coordinate-triplets (xk, yk, ck) of the skeletal joint,
we obtain a joint heatmap J by composing K gaussian maps centered at every joint:

Jkij = e
(i−xk)

2+(j−yk)
2

2∗σ2 ∗ck (1)

where σ controls the variance of gaussian maps. The input skeletal data is obtained by stacking all
heatmaps along the temporal dimension, which thus has the size of K × T × H × W .
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Figure 2: Heatmaps of skeleton with 30 joints are extracted by OpenPose [15] technique

3.2 Pseudo-3D Residual Model

The Pseudo-3D Residual Network (Pseudo-res3D) [28] is an improvement of the Residual Unit
[6] for learning spatiotemporal features in videos. Specifically, the 3D convolution (3 × 3 × 3) in the
Residual Unit block is replaced by a combination of 2D convolution (1 × 3 × 3) and 1D convolution
(3 × 1 × 1) in the Pseudo-res3D Block, as shown in Fig. 3. The former 1 × 3 × 3 convolution is used
to obtain the characteristics of space dimension; The latter 3 × 1 × 1 convolution effectively reduces
parameter calculation. Therefore, in this work, based on a 50-layer Residual Network (50-layer Resnet)
[6], we introduced a deep pseudo-3D residual learning model with three different pseudo-3D residual
blocks, i.e., Res1, Res2, and Res3, as described in Fig. 1.

Figure 3: Illustration of the residual unit block [6] (top) and the Pseudo-res3D block [28] (bottom)

Furthermore, increasing the depth of the pseudo-3D residual model can enhance the ability to
extract spatiotemporal features. For the pseudo-3D residual model with three different blocks, there
are a total of three depth coefficients, namely, L1, L2 and L3, as shown in Table 1. Here, following
[6], to adapt 50-layer Residual Network for human gesture recognition, we remove the original first
stage in the network and adjust the number of depth coefficients used for each block to 4, 6 and 3, i.e.,
L1 = 4, L2 = 6 and L3 = 3.

3.3 Multi-Dimensional Attention

We introduce multi-dimensional attention (MDT) to capture dynamic spatial, temporal and
feature information in gesture action, as shown in Fig. 1. The MDT blocks consist of three attention
maps: Spatial, temporal, and channel.

Spatial Map: The shape of gesture hand has rich dynamics in spatial dimension, and thus, we
introduce a spatial attention [29] to capture the dynamic shape changes. Take the spatial map in the
input visual data as an example:

Ms = σ
(
gs

(
AvgPoolt

(
X r

v

)))
(2)
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where Xr
v ∈ �Cr×Tr×Hr×Wr represents the visual data. Average pooling (AvgPoolt) denotes the temporal

average pooling across all frames, and a 2D convolution gs is used to capture dynamic information
along spatial dimension. The Sigmoid σ is used as the activation function to generate a spatial attention
map Ms ∈ �1×1×Hr×Wr .

Table 1: The pseudo-3D residual block in the proposed model

Module Block Output size

Res1

⎡
⎢⎣

1 × 1 × 1,
1 × 3 × 3,
1 × 1 × 1

⎤
⎥⎦ × L1 T × N × N

Res2

⎡
⎢⎣

3 × 1 × 1,
1 × 3 × 3,
1 × 1 × 1

⎤
⎥⎦ × L2 T × (N/2) × (N/2)

Res3

⎡
⎢⎣

3 × 1 × 1,
1 × 3 × 3,
1 × 1 × 1

⎤
⎥⎦ × L3 T × (N/2) × (N/2)

Temporal Map: The value information of human gesture is also present in different frames. Based
on spatial map, we design a temporal map to assign different importance to gesture data:

Mt = σ
(
gt

(
AvgPools

(
X r

v

)))
(3)

where average pooling (AvgPools) is the average pooling along the spatial dimension, and a 1D
convolution gt is employed to capture temporal information. The sigmoid activation function σ is
used to normalize the attention scores Mt ∈ �1×Tr×1×1.

Channel Map: There are discriminative features in the channel dimension from the human gesture.
Therefore, we also calculate a channel attention map:

Mc = σ
(
gc2

(
ReLu

(
gc1

(
AvgPoolst

(
X r

v

)))))
(4)

where average pooling (AvgPoolst) is used to average the gesture data along both the spatial and
temporal dimensions. Two linear functions, i.e., gc1 and gc2 are used to represent the discriminative
features along the channel dimension. The resulting channel map is Mc ∈ �C×1×1×1 and the activation
function is rectified linear unit (ReLu).

Structure of attention sub-maps: The three sub-maps in MDT blocks described above can be
arranged in different structures: Parallel or sequential structures with different orders. Finally, we
validated that sequential structures are generally better than parallel structure, where sequential order
is the spatial, temporal, and channel map, as shown in Fig. 1.

In conclusion, the pseudo-3D residual model can well capture the discriminatingly spatiotemporal
features for GAR. The multidimensional attention module is added to further pay attention to the
spatial-temporal-channel information of gesture data. Finally, a fully connected layer is added to
ensure that the output feature of each component has the same dimension and shape. And then, these
output features are converted into probabilities belonging to specific gesture categories by the softmax
layer.
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3.4 Multi-Modal Fusion

In this section, we will discuss how to integrate the output from the two modal components. Take
recognizing 3D skeletal heatmaps and RGB images as two modal examples. It is obvious that different
sources of gesture show unique information, so that the output of the skeletal and visual components
is more crucial. Consequently, the effect weights of the two modal components are different when the
output of the two components is fused, and they should be learned from the dynamic gesture data.
There are different manners to integrate these two components: Early fusion or late fusion. Finally,
we found that the late fusion is better, as shown in Section.4.3.2. Therefore, the final recognition result
after late fusion is:

Ŷ = α ∗ Ŷs + (1 − α) ∗ Ŷv (5)

where the Ŷs and Ŷv are provided by the two components described in Fig. 1, while α represents
the coefficient to control the contributions of each component. Its value is optimized through cross-
validation, with α set as 0.5.

Algorithm 1 is the pseudo-code of the proposed model, which describes how the classification
model recognizes gesture action.

Algorithm 1: Classifier model for gesture action recognition
Data: Input
D1: Xv ∈ �C×T×H×W represents the input of visual RGB images, where T frames in temporal dimension
and H × W is the resolution of the image in the spatial dimension, C is the number of RGB channels.
D2 : Xs ∈ �K×T×H×w represents the input of 3D skeletal heatmaps, where T frames in the temporal
dimension and H × W is the resolution of the heatmap in the spatial dimension, K is the number of
human joints.
Label: Y : Y ∈ �1×C represents the label of each type, C denotes the number of classes.
1. Obtain the visual features by the proposed model using the D1,
2. Obtain the probabilities Ŷv from the visual features by softmax layer.
3. Obtain the skeletal features by the proposed mode using the D2,
4. Obtain the probabilities Ŷs from the skeletal features by softmax layer.
5. Fuse the outputs of the two components by feeding their respective probabilities to Eq. (5).
6. Optimize the proposed model using label Y by standard gradient descent back-propagation

(SGD).
Result: Output the prediction Ŷ

4 Experiments
4.1 Datasets

The proposed model experiments on two public datasets: DEVISIGN-D [30] and ASLLVD [31].
The DEVISIGN-D is collected by the visual information processing and learning of the Chinese
academy of sciences, which covers 500 daily Chinese gesture vocabularies and contains 6000 video
samples. The ASLLVD is collected by Boston University, containing 10k samples covering 2745
gestures, with each gesture containing between 1 and 18 samples articulated by different individuals.
In the ASLLVD dataset, some gestures differ primarily in hand pose, but the overall motions of the
arm may be very similar, as shown in Fig. 4. Following [32], it is suggested to split the DEVISIGN-D
and ASLLVD datasets into four benchmarks: (1) DSLI, which contains 500 classes and is divided into
a training set (450 videos), a test set (750 videos) and a validation set (750). (2) DSLII, which contains
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50 classes and includes 620 video samples randomly split into an 80% training set and a 20% test set.
(3) ASLI and (4) ASLII, which contain 20 signs and 1080 samples selected from the ASLLVD (80%
training data and 20% test data).

Figure 4: Examples of gesture action in the ASLI dataset

4.2 Parameter Settings

All experiments are performed on the PyTorch deep learning framework with the RTX 3090
GPUs. The batch size is 32 and the cross-entropy loss function is applied. while the optimization
strategy uses the stochastic gradient descent (SGD) with Nesterov momentum (0.9). For the DSLI
dataset, we set the learning rate to 0.01 and divided it by 10 at the 25_th epoch, 50_th epoch, and
75_th epoch. For the DSLII, ASLI, and ASLII datasets, we set the learning rate to 0.01, and divided
it by 10 at the 50_th epoch, 100_th epoch, and 150_th epoch.

4.3 Ablation Study

4.3.1 Empirical the MDT Module

We first studied the effect of the multi-dimensional attention (MDT) blocks by comparing the
pseudo-3D residual model on the DSLI dataset. The results are shown in Table 2. There are three sub-
maps in the MDT module presented in Section 3.3, i.e., spatial map, temporal map, and channel map,
denoted as Res3D-S, Res3D-T, and Res3D-C, respectively. As expected, the three sub-maps produce
better the accuracy of validation and test than the basic pseudo-3D model. Then we validated the
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performance of both the parallel and sequential structures for each of the sub-maps, shown as Res3D-
PA and Res3D-SA. It shows that the sequential structure for each of the sub-maps is slightly better.
Consequently, we introduced the sequential attention structure into the pseudo-3D residual model.

Table 2: The effect of MDT module on the DSLI dataset

Methods Validation (%) Test (%)

Pseudo-3D 83.71 82.81
Res3D-S 85.32 84.31
Res3D-T 85.79 85.09
Res3D-C 85.71 84.67
Res3D-PA 85.83 84.90
Res3D-SA 86.27 85.40

4.3.2 Effectiveness of the Multi-Modal Fusion

In this section, we evaluated the contribution of using skeletal heatmaps and RGB images on the
DSLI dataset, and the findings are presented in Table 3. The results demonstrate a significant improve-
ment in the skeletal-visual fusion method. One possible explanation is that skeletal information is more
robust, because it benefits from training using large and highly varied data. Instead, RGB images rely
only on the raw data and are learned solely from the training set, which may lead to overfitting. As
expected, combining the skeletal and visual information produced a significant improvement. We then
tested the performance of the two components during the early input stage and the later stage, shown
as early fusion and late fusion, respectively. This suggests that integrating these two components in
later stages brings improvement. Finally, we applied the later fusion approach to the proposed model
and obtained the better results.

Table 3: The recognition accuracy for the different modalities on the DSLI dataset

Module Validation (%) Test (%)

Skeletal heatmaps 81.69 82.70
RGB images 72.9 76.51
Early fusion 85.20 84.23
Later fusion 86.27 85.40

Additionally, we studied the complementarity between skeletal and visual data by drawing
confusion matrices on ASLI dataset, as shown Figs. 5 and 6. Fig. 5 shows the confusion matrices
between the skeletal heatmaps (left) and the RGB images (right). We can observe that the color of
the “afraid” gesture in visual confusion matrices is more yellow than in skeletal, which shows that
RGB images help a lot for the “afraid” class with fear emotion. And the color of the “Eat” and
“Drink” gestures in skeletal confusion matrices are more yellow than in visual, which shows that the
skeleton significantly different between the “Eat” and “Drink” samples. As shown in Fig. 4, the “Eat”
and “Drink” gestures have the same emotion, but their gestures are different. Thus, this model can
distinguish between them based on whether the hand is raised above the mouth by skeletal component.
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Likewise, this model also can distinguish similar gestures based on their different emotion by visual
information component. As expected, we fuse the skeletal and visual data, which brings confusion
matrices improvement, as shown in Fig. 6.

Figure 5: Confusion matrices on the ASLI dataset. Skeletal heatmaps (left); RGB images (right)

Figure 6: Confusion matrices for the skeletal-visual data on the ASLI dataset

4.4 Comparison with the State-of-the-Arts

We compared the final model with nine baselines on the ASLI and ASLII datasets. The results
are shown in Table 4. The baselines used for comparisons include the methods [9,16–18,29,32–35]. The
proposed model (Ours) achieves the state-of-the-art performance with a large margin on the datasets.
Specifically, when compared to the baseline of [17] and [32], the accuracy of the proposed model on
the ASLI dataset achieves an improvement of 9.7% and 6.82% and on the ASLII dataset improves by
10.3% and 7.32%, respectively.
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Table 4: Comparison of results with state-of-the-art related works

Module Accuracy (%)

MHI [33] 10
MEI [16] 25
PCA [18] 45
HOF [34] 70
BHOF [17] 85
ST-GCN [9] 56.82
AGCN [35] 80.96
AAGCN [29] 85.79
Aegles [32] (ASLI) 87.88
Aegles [32] (ASLII) 87.98
Ours (ASLI) 94.70
Ours (ASLII) 95.30

4.5 Performance for Recognition Accuracy

We analyzed the recognition accuracy of the proposed model on the DSLII and ASLII datasets, as
shown in Figs. 7 and 8, respectively. The accuracy on Figs. 7 and 8 is 91.91% and 95.3%, respectively.
Fig. 9 shows the recognition confusion matrix for the ASLII (left) and DSLII (right) datasets,
respectively. As shown in the figure, the proposed model achieves high accuracy and demonstrates
excellent recognition performance on different datasets.

Figure 7: Train and test accuracies on the DSLII dataset
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Figure 8: Train and test accuracies on the ASLII dataset

Figure 9: Confusion matrices for testing performance on the ASLII (left) and DSLII (right) datasets

4.6 Performance for Parameter and Time Cost

In order to evaluate the runtime performance of the proposed model, we analyzed the parameters
and runtime of the model with other baseline models on the DSLI dataset, as shown in Table 5. We set
the size of the input RGB images to 1×3×300×56×56, denoting 1 batch, 300 frames 5, 3 channels, 56
height and 56 width, and the size of the input 3D skeletal heatmaps to 1×28×300×56×56, denoting
1 batch, 300 frames, 28 joints, 56 height and 56 width. Runtime represents the time required to run
100 models using RTX 3090 GPUs. Our model requires only 2.7M parameters, which is much smaller
than other methods. Furthermore, the inference time of our method is 0.39 s, while the baseline from
[32] is 0.33 s. The extra computation mainly comes from the multimodal fusion calculations, but it is
still a small fraction of the [32] baseline. Moreover, increasing the number of modes brings additional
computational costs but not extra parameters. These evaluation results demonstrate that our proposed
method can run in real time and is helpful for GAR.
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Table 5: Runtime performance with existing methods on the DSLI dataset

Method #Parameters (M) Times (s)

ST-GCN [9] 3.12 0.09
AGCN [35] 3.47 0.26
AAGCN [29] 3.78 0.31
Aegles [32] 4.60 0.33

Ours (skeleton) 2.74 0.39
Ours (RGB) 2.74 0.39
Ours (skeleton + RGB) 2.74 0.54

5 Conclusion

In this paper, we propose an attention-enhanced pseudo-3D residual model (HgaNets) for the
GAR. This model consists of two independent components with the same pseudo-3D residual
convolution that encode the RGB videos and 3D skeletal heatmaps in an end-to-end manner. To
further enhance the proposed model, we introduce a multi-dimensional attention module in the
pseudo-3D residual model that focuses on discriminating spatial, temporal and feature information.
Finally, the outputs of the two components are fused to generate the recognition results. Experiments
are conducted on the four datasets: DSLI, DSLII, ASLI, and ASLII, and the accuracy of the proposed
model is 85.40%, 91.91%, 94.70%, and 95.30%, respectively. Moreover, our model has a size of only
2.74M on NVIDIA GeForce GTX 1070 GPU and an inference time of 0.54 s, demonstrating the
ability to run in real-time for the GAR tasks. Future research will focus on deep learning models to
process multimodal embedding and cross-modal interaction between visual and textual semantics for
the GAR task.
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