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ABSTRACT

The study presents the Half Max Insertion Heuristic (HMIH) as a novel approach to solving the Travelling Salesman
Problem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) and
Nearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics,
focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative that
minimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting with
an initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half Max routine.
The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSP
benchmarks. The results indicate that HMIH consistently delivers superior performance, particularly with respect
to tour cost and computational efficiency. HMIH’s tours were sometimes 16% shorter than those generated by FIH
and NNH, showcasing its potential and value as a novel benchmark for TSP solutions. The study used statistical
methods, including Friedman’s Non-parametric Test, to validate the performance of HMIH over FIH and NNH.
This guarantees that the identified advantages are statistically significant and consistent in various situations. This
comprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for its
use in solving TSP issues. The research shows that, in general, HMIH fared better than FIH in all cases studied,
except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better than
HMIH. HMIH's efficiency is shown by its improvements in error percentage (8) and goodness values (g) compared
to FIH and NNH. In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had
20.9%, indicating that HMIH was closer to the optimal solution. HMIH consistently showed superior performance
across many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match to
the optimal tour costs. This study substantially contributes to combinatorial optimization by enhancing current
insertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem. It also creates
new possibilities for progress in heuristic design and optimization methodologies.
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1 Introduction

Various methods exist to solve the Travelling Salesman Problem (TSP), including exact solutions
and heuristics [1]. Finding the shortest tour involves determining the optimal route through a set
of cities, ensuring each city is visited exactly once before returning to the starting point [|—4]. This
completed tour is known as the Hamiltonian Cycle. It is assumed that the cost of the distance between
any pair of cities is predefined. The cost often relates to distance but may represent other notions, such
as time or money. A Hamiltonian cycle, as depicted in Fig. 1, refers to a graph cycle that traverses all
the graph’s vertices exactly once before returning to its starting vertex. The Travelling Salesman must
traverse cities 1 7o nin a Hamiltonian cycle, that is, start from city 1, traverse the remaining n — 1 cities
in a specified order and then connect back to the starting city, having touched each of the cities only
once at a minimal cost.

Figure 1: A Hamiltonian weighted graph

The TSP is simple to define, but the complexity can easily expand exponentially as the solution
space increases; thus, it is classified as an NP-Hard problem [1].

Exact techniques involve the explicit enumeration of the solution space; they try out all possible
permutations of the solution. Thus, they have a complexity of O(n!) [2-5]. Exact techniques such as
Dijkstra or Bellman-Ford algorithms may be deployed to effectively solve TSPs with a small degree
of search space [0]; others include Branch-and-Bound, Dynamic Programming Algorithms, Cutting
Plane techniques and so on. Exact algorithms guarantee optimal solutions, at least hypothetically.
However, the computational complexities of exact techniques are exponential [7]; thus, the time
required to provide their solutions grows exponentially with its solution space [6—10]. Consequently,
exact solutions are often impracticable and especially unsuitable for NP-hard problems with large
solution space. For instance, the solution renowned as the best-performing exact technique is based
on dynamic programming with a complexity of O (2'n?), thus making TSPs impracticable to solve
with the exact approach as the search space expands [11]. These limitations of the precise method have
driven the design, development, and deployment of heuristics.

Unlike precise methods [12—15], heuristics offer rough solutions while operating within a poly-
nomial time limit. These methods are known for their reliance on probabilities and specific rules to



CMC, 2024, vol.79, no.1 1583

solve problems [16—18&]. For an iterative procedure, heuristics can be used when an optimal solution is
guaranteed to obtain the solution quickly or make a decision within an exact process. In other words,
using heuristics to solve the TSP and problems related to the TSP provides acceptable results that are
not too far from the optimal yet computationally affordable.

There are different classifications of heuristics based on the atomicity of their solution procedures,
such as Tour Construction, Improvement/Local Search Heuristics, and Compound Heuristics [19—
21]. The Tour Construction heuristics are techniques that independently create solutions sequentially
following predefined procedures within the problem space. These procedures outline the steps in the
Initialization, Selection, and insertion stages. The focus of this study is on construction heuristics. Con-
struction techniques generate reasonable approximate solutions for TSP and are equally central to the
performance of the other classes of heuristics, such as improvement techniques, compound heuristics,
and metaheuristics. Construction heuristics serve as a seed for the development of some heuristics and
can be used to build initial solutions for high-performing techniques [22-25]. Construction heuristics
generally generate better initial solutions in high-performing improvement methods/metaheuristics
than random initial solutions, thereby enhancing the quality of solutions [26-29].

2 Related Works

Construction heuristic techniques have been widely utilized in addressing traditional combina-
torial optimization challenges. Various methods, such as the Nearest Neighbour Heuristic (NNH),
Nearest Insertion (NIH), Cheapest Insertion, Random Insertion, Addition heuristics, Savings Heuris-
tics, and more are commonly used. Existing tour construction methods typically fall short by between
10-30% in terms of solution quality with a worst-case complexity of 7'(n) = O (nz) The Nearest
Neighbour Heuristic, for instance, is fast, flexible, and simple to implement; it, however, solves the
Travelling Salesman Problem using a greedy approach and suffers immensely from the “curse of
dimensionality” phenomenon [30]. The Farthest Insertion, on the other hand, renowned as the best-
performing lower-order complexity heuristic [3 1], suffers from a high upper bound of error with farther
distance [32]. According to Huang et al. [32], the probability of attaining an optimal tour is higher if
the distance can be reduced.

Some well-known constructive heuristic methods are described briefly in Table 1.

Table 1: Description of some well-known tour construction heuristics

HEURISTICS DESCRIPTION
Nearest Neighbour The NNH starts its tour with a single subtour of node/city i, chosen
Heuristic (NNH) randomly or purposively, and then iteratively adds the next node k + i

not yet decided but closest to the subtour until all the nodes have been
added to the tour. This technique is naive, resulting in outliers as the
search space and nodes increase. The NNH has a complexity of O (n%)
and yields tours whose qualities are within 25%-30% of the Held-Karp
lower bound [22,23,33].

(Continued)
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Table 1 (continued)

HEURISTICS

DESCRIPTION

Nearest Insertion
Heuristic (NIH)

Farthest Insertion
Heuristic (FIH)

Cheapest Insertion
Heuristic (CIH)

Random Insertion
Heuristic (RIH)

The NIH belong to the class of Insertion Heuristics. The Insertion
heuristics start from an arbitrary point to form a sub-tour or partial
circuit. Nodes not already in the subtour are then inserted based on
predefined criteria such that the increment to the total distance of the
subtour is minimized. Given the sub-tour 7;, and given that x is the next
node to be inserted, the insertion technique inserts x between x; and x7 in
T; according to:
(x7,x7) = argmin ¢ (x;, x;, x)

(xixj)eT;
The NIH obtains a tour solution by first building its sub-tour, initial
node i and a node j nearest to i to form a partial circuit 7 =i — j — i. The
next node x* = argmin,4; {d (x, x;) ,Vx; € T, is then added iteratively till a
Hamiltonian tour is formed [23,29].
The FIH obtains a tour solution by first building its sub tour; initial node
i and a node j nearest to i to form a partial circuit 7 = i — j — i. The next
node x* = argmax,,r,{d (x, x;) ,Vx; € T, is then added iteratively till a
Hamiltonian tour is formed. The FIH solution, when evaluated:
Seu <[logn]+1
SOPT
The FIH is executed in O(n*) computational effort, and since the
algorithm runs » times, it has a complexity of O (n?) [23,24,30,34]
This method is reminiscent of the Nearest Insertion heuristic. Commence
at node 7 (arbitrary or fixed), identify cities k, i and j (where i and j are
the endpoints of an edge belonging to the partial tour and k not
belonging to that tour) such that C;, + C,, — C; is minimized. Once all
nodes have been selected, STOP; if not, repeat the process. Analysis by
Rosenkrantz et al. [34] shows that the complexity of the cheapest
insertion is 7" (n) = O (n2 log n). An experimental evaluation of the

. . SCIH
solution is

OPT

The Random Insertion Heuristic starts by choosing two arbitrary nodes
i,j € T, and form a sub tour i — j — i. Then, iteratively and arbitrarily
chooses a node k of T that is yet to be added to the cycle such that the
increase in the total cost of the tour is minimal. The loop terminates
when all nodes have been included in the tour [36,37].

The Nearest Neighbour Heuristic can efficiently solve the TSP, albeit with slightly lower solution
quality. The Nearest Neighbour Heuristic is a popular choice in research due to its quick implemen-
tation and straightforward approach. Experimentally, f;/forr ~ 1.26.
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Recent research has highlighted the importance of using the Nearest Neighbor Heuristic in
ways such as integrating it into methods [21-23] or utilizing it as an initial step in metaheuristics
to create starting solutions [7,38]. While the Nearest Neighbor Heuristic is valued for its speed and
simplicity, its strategy of selecting nodes with the lowest cost can lead to what is known as the “curse
of dimensionality.” This means that outliers become apparent as the search space and nodes grow.
The term “curse of dimensionality” is commonly used to explain how increasing dimensions result in a
search space, causing data sparsity and outlier occurrences. Fischer et al. [39] described the Quadratic
Traveling Salesman Problem (QTSP) as an expansion of the Traveling Salesman Problem (TSP).
To solve the QTSP, they utilized a total of nine algorithms: Three exact algorithms (a polynomial
transformation-based exact approach to a TSP, branch-and-bound algorithm, and branch-and-cut
algorithm), seven approximate algorithms (Cheapest-Insertion Heuristic (CI), Nearest-Neighbour
Heuristic (NN), Two-Directional Nearest-Neighbor Heuristic (2NN), Assignment-Patching Heuristic
(AP), Nearest-Neighbour-Patching Heuristic (NNP), Two-Directional Nearest-Neighbour-Patching
Heuristic (2NNP), and Greedy Heuristic (GR), and Nearest-Neighbour Heuristic (2NN) were uti-
lized. Within around ten minutes, the branch-and-cut approach could tackle complicated real-world
problems with as many as one hundred nodes in an efficient manner, successfully reaching optimality.
Heuristics could handle the most complex cases in ten seconds or less, which was far faster than
the running times of exact algorithms, which were acceptable. In terms of processing speed, the
various iterations of the Nearest Neighbour algorithm worked well; nevertheless, when it came to
the correctness of their solutions, they were not as good as the exact applications.

Lity et al. [22] modelled the product ordering process of the incremental Software Product Line
(SPL) analysis as a Travelling Salesman Problem (TSP). The aim was to optimize product orders and
improve the overall SPL analysis. Products were modelled as nodes in a graph, and the solution-space
information defined edge weights between product nodes. Existing graph route-finding heuristics were
used to obtain the path with minimal costs. The first heuristic deployed was the Nearest Neighbour
heuristic. The nodes were analyzed according to their similarity, so the NNH path was built by adding
the product (node) most similar to the last node. However, it was observed that the approximation
quality was poor because it first greedily added all the similar nodes and later suffered the curse
of dimensionality when not-so-similar nodes were to be added. To circumvent this, a lookup was
introduced to examine the next node to be added to the computed path. Thereafter, two insertion
heuristics, namely Nearest Insertion and Farthest Insertion, were deployed to insert the remaining
product into the existing path created by the Nearest Neighbour Heuristic. The proposed method
was simulated on a prototype and evaluated for applicability and performance; a significantly more
optimized SPL process was reported.

In implementing the Iterated Local Search technique, Bernardino et al. [40] used a modified
version of the Nearest Neighbor heuristic to obtain an initial answer. The Family Travelling Salesman
Problem (FTSP), a famous version of the Travelling Salesman Problem (TSP), was the focus of their
research efforts. The first thing they did was model the FTSP, aiming to traverse a certain number
of nodes in each cluster to the lowest possible cost. After that, the FTSP sub tour was designed in
both a non-compact form. Three compact models were created: The Single Commodity Flow model
(SCF), the Family Commodity Flow model (FCF), and the Node Commodity Flow model (NCF),
for the compact variations options such as the Connectivity Cuts (CC) model, Rounded Visits (RV)
model and Rounded Family Visits (RFV) model were considered. These models were compared using
experiments carried out in the C++ programming language. Implementing Iterative Local Search
(ILS) in C++ aimed to establish limits for situations beyond what direct methods could handle. During
the first phase of constructing the ILS, an initial solution was constructed using a modified version of
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the Nearest Neighbor heuristic. Subsequently, a local search was run to arrive at a local optimum.
As a further step, they used a perturbation to break out of the local optimum, and finally, they
applied removal criteria to harvest the accumulated excess nodes. A well-known research hypothesis
that construction tour heuristics create excellent first solutions was verified by the International Land
Survey (ILS) performance. Experiments were carried out on benchmark instances that were accessible
to the general public, and the results of the experiments were recorded. Results showed that non-
compact models did better than their counterpart compact ones.

In the study by Kitjacharoenchaia [41], the Nearest Neighbour and two other heuristics were
used to build an initial solution for their proposed model. Motivated by the increasing adoption of
drones to achieve fast and flexible delivery, they conducted a study to simulate a drone delivery system
formulated as a multiple Travelling Salesman Problem (m7TSP) to minimize time. They implemented
Mixed Integer Programming (MIP) to solve the problem and proposed a new technique called the
Adaptive Insertion Algorithm (ADI). The ADI was implemented in two phases. An initial solution
on only truck tours was built using three heuristics (namely the Nearest Neighbour Heuristic, Genetic
Algorithm, and Random Cluster/tour). The mTSP solution was generated from the initial tour in the
second phase. The method was then experimented on a single truck, multiple trucks, and a single truck
and drone system, and the solution was compared with the existing MIP solution. The system reported
a promising, competitive performance. It could be deduced that solutions generated from the initial
solution by heuristics, such as Nearest Neighbour, hold promising performances.

Victor et al. [42] solved the Euclidean TSPs of small and large data sizes with an efficient heuristic
that is based on the Girding Polygon, which does not take up much computer memory space and
produces approximate results that are near-optimal. The computational performance of the proposed
approximate heuristic was compared to that of NNH, which is another approximate heuristic. It was
noticed that the proposed heuristic outperformed NNH with an average error of 16.89% while that
of NN was 26.55%; it also had standard deviations of 0.05%, and NNH had 0.04%. Even though the
proposed algorithm did not produce optimal solutions for the instances used, it gave an approximate
solution significantly better than NNH’s.

Insertion heuristics starts from an arbitrary point to form a sub-tour or partial circuit. Nodes not
already in the sub-tour are then inserted based on predefined criteria such that the increment to the
total distance of the sub-tour is minimized [23,32]. Suppose that node x is to be added to the edge
(x:, x;), and given the cost function c(x;, x;, x), then, c¢(x;, x;, x) = d(x, x;) + d(x, x;) — d(x;, x;). Each
insertion technique method aims to add a node to an edge (that is, between two nodes) at a minimal
cost. Given the sub-tour 7}, and given that x is the next node to be inserted, the insertion technique
inserts x between x; and x; in T;. Accordingly:

(x7,x)) = argmin ¢ (x;, x;, X) (1)

(o)

Insertion techniques are desirable because of their speed, ease of implementation, quality of
solutions, and the fact that they can be easily modified to handle complex constraints [43]. There are
four generally known insertion techniques: Nearest Insertion, Cheapest Insertion, Random Insertion,
and Farthest Insertion. Others include Priciest Insertion, quick insertion, and greatest angle insertion
[36-44].

Insertion techniques can be used to get a good tour construction solution [45-47]; according to
Rosenkrantz et al. [33], insertion techniques find O (logn)approximate solutions. Insertion techniques
are also used as an initial solution for improvement heuristics and metaheuristics; insertion techniques
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have been proven to significantly improve the performance of 2-Opt methods when used as initial
solutions [46]. Other researchers have presented new insertion techniques, either as a modification of
state-of-the-art methods or as novel efforts.

Experimentally, the Farthest Insertion Heuristic has been known to outperform the Random
Insertion, the Cheapest Insertion, and the Nearest Insertion in that order [33-47].

3 The Proposed HMIH Technique

The proposed technique is an insertion method referred to in this study as the Half Max Insertion
Heuristic (HMIH). The motivation was to explore some strategies with the possibility of improved
tour accuracy. The design of the HMIH was motivated by two observations in literature: One, the
superior solution quality of insertion techniques based on the use of polygons as an initial tour [23—
42] and secondly, the limitation of the FIH’s accuracy due to the distance between its initial circuits
and the next node to be inserted. Huang et al. [32] argued that although FIH performs relatively well,
the distance between its circuit and new nodes to be inserted impedes its accuracy.

Suppose that a new node x is to be inserted into a partial tour p_tour, the closer x is to the edge
(x;, x;), the lesser the likelihood of it introducing error. Suppose that nodes x, and x, are to be inserted
into the same edge (x;, x;) of the partial tour p_tour to produce partial tours p_tour, and p_tour,,
respectively. Suppose that cost function ¢ (x;, x,, x,) < ¢(x;, X, x,) and d (Puur,) < d (Piowrs) » then the

d . 1(pour)+e(xjxis d . 1 e (xj.x7.0
upper bounds of the error rate for the two tours are 5”’””’,1) _ Soowrre(ign) o q doow) _ doon ()
(ptour) d(ptour) d(ptour) d(ptour)
d 1 . . . .
such that ¢er) _ dr) Thus, the performance of FIH still leaves much to be desired. If inserting

d(ptour) d(ptour) *
the nearest nodes to the circuit leads to outliers and the performance of FIH is impeded by a longer

distance, perhaps a half-max insertion routine may yield a better solution.

The insertion heuristics randomly pick one node from Q by init(Q) and create a partial circuit
which is expanded with every iteration. The partial circuit is made up of a minimum polygon point
U, v, w.

Let T, represent the partial circuit across nodes of size i defined as T; = (7, 7, . . ., 7;, ;). During
the (i + 1) thiteration, the insertion aims to add one node into the current circuit while minimizing the
increment in the overall circuit distance. The objective is to determine how to select a node, x, from
O\T; and determine how to insert x into 7; to obtain 7}, .

Consider an insertion of a node x(¢ T;) between u, v and w in T

The method first determines the longest distance. d,,,, of any node from either of uorv and compute
%d,,mx. It then find a node w not in the sub tour whose distance from either u or v ~ %d,,m. Determine
an edge (u, v) of the sub-tour to which the insertion of w gives the smallest increase of length, i.c., for
which Af = ¢,, + ¢, + €y — Cu 18 smallest. Insert x between u, v and w. This process is iterated until
a Hamiltonian cycle is formed.

The procedure is as follows:

Algorithm 1: HMIH algorithm

1. Start with a sub-graph consisting of node # only.

2. Find nodes v and w randomly to form sub-tour # —v — w — u.

3. Determine the length of the farthest node d,,,, from the sub-tour and compute %dmax.

4. Find a node w not in the sub-tour whose distance from any node in the sub-tour ~ %dmax,

(Continued)
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Algorithm 1 (continued)
5. Find the arc (u, v, w) in the sub-tour which minimizes c¢,, + ¢,, + €,,. — €.,,,. Insert x between u v, and w.
6. Iterate step 3 until a Hamiltonian cycle is formed.

The HMIH searches require O(n) time; therefore, the time complexity of the algorithm is O(n?).
The procedure is further depicted in the following flowchart in Fig. 2.

Initialization
Select an arbitrary node u
Add nodes v and wrandomly to u to form a
subtour T =u—v—w-—u
|
Selection

Determine the Length of the farthest node d,..

from the subtour. Find the nodew notin the subtour

whose distance from any node in the subtour =~ /3 d

1

Insertion
Find the arc [u,v,w] in the subtour
which minimizes €yy+ Cxp + Cyyx —
Cuvw- INnsert x between u,vandw

Hamiltonian
cycle formed?

Yes

Figure 2: Flowchart of the half max insertion heuristic

In implementing the proposed technique, the JAVA programming language version 13.0.1. was
used, while GNUplot 5.2 and patch-level eight were used to plot the path graph. The heuristic was
implemented on Intel Pentium Core 17 3 GHz, Windows 10 (64 bit).

4 Experimental Results

We experimented with the HMIH, together with two State-of-the-art heuristics (namely Nearest
Neighbour Heuristic (NNH) and Farthest Insertion Heuristic (FIH)) on ten publicly available
benchmark instances from TSPLIB made available by Heidelberg University on http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/tsp/. There were three groups of instances tested. Group one was
instances whose nodes were less than 100. Group two: Instances whose nodes are more than 100 but less
than 1000. Group three: Instances whose nodes are more than or equal to 1000. The implementation
module generated three outputs. The first is the computation time in milliseconds (ms). Millisecond
is one millionth of a second. Evidently, the accuracy of time is improved at that level of granularity.
The second output is the tour cost, the distance taken to generate the tour. This is necessary for the
performance evaluation of the heuristic. The third output is the tour path, the order in which the nodes
join the tour. Table 2. shows the computational speed of the NNH, FIH and the proposed HMIH on
the ten benchmark instances considered. Table 3 shows the tour cost of each of the three heuristics on
the TSP instances.
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Table 2: The computational speed of NNH, FIH and HMIH on ten benchmark instances

S/N Instances

No. of nodes

Computational speed (rs)

NNH FIH HMIH
1 att48 48 14.9 19.5 24.8
2 eil51 51 24.0 26.2 28.4
3 eill01 101 5.1 83.7 99.2
4 chl30 130 28.4 130.3 85.0
5 chl50 150 8.4 163.0 217.3
6 pr439 439 74.7 458.4 707.8
7 rat 783 783 284.6 340.6 723.9
8 dsj1000 1000 487.6 1334.3 2054.9
9 u2319 2319 3344 2.316.4 4.072.9
10 pcb3038 3038 652.8 6.571.1 10118.5

Table 3: Tour cost of NNH, FIH and HMIH on ten benchmark instances

S/N Instances No. of Nodes OPT Tour cost

NNH FIH HMIH
1 att48 48 33523 40524 35775 35657
2 eil51 51 426 510 471 471
3 eill01 101 629 811 690 690
4 chi30 130 6110 7198 6951 6650
5 chl50 150 6528 8191 7542 7211
6 pr439 439 107217 139149 122957 124322
7 rat 783 783 8806 10779 10828 10434
8 dsj1000 1000 18659688 24631468 23563031 20610943
9 u2319 2319 234256 281978 272959 256601
10  pchb3038 3038 137694 175788 173038 166196

1589

It is evident from Table 3 that the proposed HMIH has a shorter tour cost and is closer to the
optimal tour cost in terms of solution quality than both FIH and NNH. FIH, however, compares
more favourably with HMIH than NNH.

The FIH and HMIH tour graph for some benchmark instances is presented in Figs. 3—6. Fig. 3
displays the path graph of FIH and HMIH for the art48. Fig. 4 shows the path graph of FIH and
HMIH for the eil51. Fig. 5 displays the path graph of FIH and HMIH for the ei//01, and Fig. 6
displays the path graph of FIH and HMIH for the ckl50.
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5 Non-Parametric Analysis of HMIH

Non-parametric analysis was conducted using Friedman’s test to validate the superior perfor-
mance of the HMIH solutions for both NNH and FIH, which are classic tour construction heuristics.
The test was conducted for all the ten instances considered in this study. The Friedman ranking was
conducted based on the tour cost of the three algorithms, as presented in Table 3. The mean ranking for
HMIH, NNH and FIH across all instances shown in Table 4 revealed a significant difference between
the performance of HMIH and that of NNH and FIH.

Table 4: Freidman mean ranking for the Heuristics across all instances

Heuristic Mean rank
Nearest Neighbor Heuristic (NNH) Average Rank = 2.7
Farthest Insertion Heuristic (FTH) Average Rank = 2.2

Half Max Insertion Heuristic (HMIH) Average Rank = 1.1

These rank scores indicate that, on average, the HMIH algorithm (with the least score) performed
best, followed by FIH and NNH.

Given the rank, as presented in Table 4, Freidman’s test was then conducted using the following
equation:

, 12 £y kk+1)
X‘n(k+1>(zf=1R" 4 ) @

where:
n is the number of instances = 10
k is the number of TSP solutions, which in this case is 3
R; is the sum of ranks for the i—4 algorithm
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The test was premised on the following hypothesis
- Null Hypothesis (H,): There is no significant difference among the algorithms.
- Alternative Hypothesis (H,): There is a significant difference among the algorithms.

Thus, Friedman’s test on the given data instances for the three TSP heuristics (NNH, FIH, HMIH)
yielded a test statistic of approximately 15.37 and a p-value of about 0.00046. Since the p-value is
less than 0.05, the null hypothesis that there is no significant difference in the performance of these
algorithms is therefore rejected. This indicates that the HMIH performs significantly differently from
the others.

Friedman’s analysis revealed that the HMIH technique exhibits a statistically significant superi-
ority to NNH and FIH in performance.

6 Performance Evaluation and Discussion of Findings

Table 2 shows that the Nearest Neighbour Heuristic had the fastest computational speed, followed
by the Farthest Insertion Heuristic and then the proposed HMI technique in all the instances. It should
be noted that the proposed HMIH compared favourably with the FIH in this regard. This is consistent
with literature findings that insertion techniques require more computational time than the NNH
to complete tours [48-50]. Additionally, the increased computational time of the proposed HMIH
can be attributed to the additional computation of the Aalf-max insertion criteria. This is consistent
with works by [47-49,51], which suggest that computational speed is affected by the insertion criteria
computations.

The quality of the heuristic’s solution was assessed using the following factors:

Percentage Error (§): the percentage error of the heuristics’ solution quality is the percentage
deviation of the solution from the optimal tour solution. This is computed as % x 100%, where soln
is the solution cost obtained by each heuristic, and opt is the optimal solution cost. This is equivalent
to the performance ratio for suboptimal heuristics.

Quality impr. (X ): this involves enhancing the solution quality of the HMI method with NNH
and FIH. This is computed by Eyyy mn — Enyin, Where Eyyy my 15 the error in percentage of the NNH
or FIH and E;,, is the error in the percentage of the HMIH.

Goodness Value (2 ): this is also known as accuracy. This is the inverse of error and is computed
as (1 - =2=2) 100%.

opt

Table 5 displays the percentageerror, qualityimprandgoodnessvalue for all the heuristics on the ten
benchmark instances.

From Table 5, HMIH outperformed FIH in all the instances except pr439, eil51 and eil101. FIH
outperformed HMIH for pr439, while FIH and HMIH had equal tour costs for eil5/ and eill01.
The quality of the NNH tour was, on average, 24.51% lower than the quality of the highest-quality
trip. Regarding the examples that were considered, the FIH average performance was 16.24% of the
Held-Karp lower limit. At its highest point, the Nearest Neighbour Heuristic attained a value of 32%,
while its lowest point was 17.8%. At its highest point, the Farthest Insertion Heuristic achieved a
value of 26.3%, while its lowest point was 6.7%. There is a correlation between these performances
and the results that have been published in the literature about NNH and FIH [47-49]. Conversely, the
performance of HMIH was 12.1% lower than the ideal tour duration. This was a significant difference.
The HMIH that has been presented has a quality improvement of 4.14% points on average compared
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to the FIH. This chart, seen in Fig. 7, illustrates the percentage of departure that NNH, FIH, and
HMIH have from the ideal tour length.

Table 5: Percentage error, qualityimpr and goodness value for all the heuristics on the ten benchmark
instances

S/N  Instances No. of HMIH (%) FIH (%) NNH (%)
nedes T s Zem & 3 8 5 9
1 att48 48 6.3 14.6 0.4 93.7 6.7 933 209 79.1
2 eil51] 51 10.6 9.1 0 894 10.6 894 19.7 80.3
3 eill01 101 9.7 19.2 0 90.3 9.7 90.3 289 71.1
4 chl30 130 8.8 9.0 5.0 91.2 138 862 178 822
5 chl50 150 10.5 15 5 89.5 155 845 255 745
6 pr439 439 159 139 —12 84.1 147 853 29.8 70.2
7 rat 783 783 18.5 49 4.4 81.5 229 771 224 177.6
8 dsj1000 1655 10.5 21.5 15.8 89.5 263 737 32 68
9 u2319 2319 9.5 10.9 7 90.5 16,5 835 204 79.6
10 pcb3038 3038 20.7 7 5 79.3 257 743 277 723
HMIH|FIH| NNH
35
30
25
20
15

10

att48  eil51  eil101 ch130 ch150 prd439 rat783 dsj1000 u2319 pcb3038

e HMIH FIH NNH

Figure 7: Percentage error of NNH, FIH and HMIH on the ten benchmark instances

The shaded area of the chart denotes the quality improvement of the HMIH over the FIH.

The proposed Half Max Insertion Heuristic consistently outperformed the Farthest Insertion. As
seen by the shaded region of quality improvement in Fig. 7, the heuristic was applied throughout a
broad spectrum of benchmark examples, and it had a statistical significance of up to sixteen percent at
one point. A comparison was made between the proposed HMIH and the Farthest Insertion, which
had an average goodness value of 81.7%, and the Nearest Neighbour Heuristic, which had an average
goodness value of 74.5%. This means the proposed HMIH has a higher accuracy than FIH and NNH
(see Fig. 8). It is worthy of note that the Farthest Insertion is considered the best-performing Insertion
technique and among other lower-order complexity heuristics [31,47-50].
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Figure 8: Measure of goodness value of HMIH, FIH and NNH

o

2

o

Additionally, while the Farthest Insertion is faster, the computation speed of the proposed HMIH
is within the same range, and since the HMIH searches were conducted O(n) times, HMIH has the
same complexity of O(n*) as the FIH and NNH. The computational speed performance of HMIH
appears to follow a trend among lower-order complexity heuristics where the performing method tends
to take longer computation time, perhaps owing to a more intricate process involved in getting better
performance. Except for Random Insertion, which requires no computation effort to add new nodes,
the better the performance, the longer the time of computation tends to be [47-52].
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